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ABSTRACT 23 

The separation properties of polyamide reverse osmosis and nanofiltration membranes, 24 

widely applied for desalination and water reuse, are constrained by the 25 

permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes 26 

incorporating nanomaterials exhibit enhanced water permeance, their rejection is only 27 

moderately improved or even impaired due to agglomeration of nanomaterials and formation 28 

of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) 29 

has emerged in recent years. These novel TFNi membranes show extraordinary improvement 30 

in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. 31 

Such enhancements can be achieved by a wide selection of nanomaterials, ranging from 32 

nanoparticles, one-/two-dimensional materials to interfacial coatings. The use of 33 

nano-structured interlayers not only improve the formation of polyamide rejection layers but 34 

also provide an optimized water transport path, which enables TFNi membranes to 35 

potentially overcome the longstanding tradeoff between membrane permeability and 36 

selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy 37 

metals and micropollutants, which is critical for many environmental applications. This 38 

review critically examines the recent developments of TFNi membranes and discusses the 39 

underlying mechanisms and design criteria. Their potential environmental applications are 40 

also highlighted. 41 

  42 
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 INTRODUCTION 45 

Global water scarcity has been recognized as one of the most critical challenges in the new 46 

millennium,
1-3

 and it has been estimated that half of the world’s population will be living in 47 

water-stressed regions by 2025.
4
 Membrane-based separation technologies, such as reverse 48 

osmosis (RO) and nanofiltration (NF), play increasingly important roles in efficient water 49 

production, reuse, and desalination.
2, 5-7

 RO and NF membranes used for seawater 50 

desalination and water reuse generally have a thin-film composite (TFC) structure that 51 

consists of an ultra-thin polyamide selective layer of approximately 10-400 nm in thickness 52 

supported by a porous substrate.
5, 6

 TFC membranes are formed by an interfacial 53 

polymerization (IP) reaction, typically between m-phenylenediamine (MPD) or piperazine 54 

(PIP) in an aqueous phase with trimesoyl chloride (TMC) in an organic phase. These 55 

membranes have a wide range of operating pHs (e.g., pH 2-11) and reasonable thermal 56 

stability (up to 60 C).
8, 9

 Unfortunately, their separation performances are constrained by a 57 

permeability-selectivity trade-off known as the ―upper bound‖.
10-12

 Consequently, TFC 58 

membranes often have relatively low water permeance (1-20 L m
-2

h
-1

bar
-1

) in order to 59 

maintain the desired selectivity.
10

 Moreover, membrane fouling and susceptibility to chlorine 60 

attack are major issues that can deteriorate membrane integrity, decrease its life span and/or 61 

increase maintenance cost.
13, 14

 These limitations of TFC membranes motivate membrane 62 

scientists to develop next-generation high-performance RO and NF membranes.
6, 12, 15, 16

  63 

 64 

Over the past decade, TFC membranes incorporating nanomaterials have been extensively 65 

studied (Figure 1). This approach has been shown to successfully enhance water 66 

permeance
17-26

 and improve anti(bio)fouling properties.
24-35

 Nanomaterials can be 67 

incorporated into polyamide rejection layers by adding them in the monomer (MPD or TMC) 68 

solutions to prepare thin-film nanocomposite membranes (TFN, Figure 1a).
16, 36

 Alternatively, 69 

they can be added into the substrate to prepare thin-film composite membranes with a 70 

nanocomposite substrate (TFCn, Figure 1b).
6
 Hoek and coworkers

17
 pioneered the concept of 71 

TFN in 2007 by incorporating porous zeolite nanoparticles (NPs) of 0.4 nm internal pores in 72 
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the polyamide rejection layer of an RO membrane. The resulting membrane showed an 73 

enhancement of 81% in water permeance with nearly unchanged salt rejection compared to 74 

the unmodified membrane. Various other nanomaterials, such as silica, TiO2, 75 

metal-organic-frameworks (MOFs), and Ag, have also been reported for TFN membranes.
16, 

76 

37, 38
 In parallel, Pendergast et al.

39, 40
 incorporated silica and zeolite nanoparticles into a 77 

polysulfone (PSF) substrate to fabricate TFCn membrane with higher water permeance and 78 

improved mechanical stability. Likewise, Ma et al.
41

 demonstrated improved water 79 

permeance and reduced internal concentration polarization for a TFCn forward osmosis (FO) 80 

membrane with hydrophilic and porous zeolite nanoparticles loaded in its substrate. These 81 

works have been followed by a slate of additional investigations reporting the use of other 82 

nanomaterials, such as TiO2,
42

 carbon nanotubes (CNTs)
43-45

 and graphene oxide (GO).
46

 83 

Several TFN membranes have also been successfully commercialized.
47-49

 Figure 2 presents 84 

the performance enhancement factors in terms of water permeance (A value) and water/salt 85 

selectivity (A/B) for TFN and TFCn membranes reported in the recent literature. The majority 86 

of these membranes have up to 200% enhancement in water permeance. Nevertheless, 87 

enhancement in selectivity A/B is far less obvious, with many membranes even suffering 88 

from compromised selectivity due to the aggregation of nanomaterials or impaired polyamide 89 

integrity.
16, 46, 50-54

 90 

 91 

Growing interests have been focused on fabricating thin-film nanocomposite membranes with 92 

an interlayer (TFNi), where nanomaterials or coating layers can be uniformly deposited on 93 

the substrate before forming the polyamide layer. In 2015, Karan et al.
55

 fabricated TFNi 94 

membranes via introducing a sacrificial layer of cadmium hydroxide nanostrands for 95 

controlling the rate of IP reaction. They demonstrated a TFNi membrane with two orders of 96 

magnitude higher water flux than that of commercial membranes. A slate of other 97 

nanomaterials, from nanoparticles (e.g., TiO2,
56

 Ag
57

), 1D (e.g., CNTs
58-60

), and 2D (e.g., 98 

GO
61, 62

 and MOFs
63-66

) materials to other interfacial coating materials (e.g., polydopamine
67

 99 

and polyelectrolytes
68

), have also been reported for making TFNi membranes based on 100 



6 

 

surface coating,
67

 covalent bonding,
69

 co-deposition,
70

 in situ growth,
71

 evaporation,
65

 etc..
59

 101 

Despite the growing number of publications on TFNi membranes (Figure 1c) and their 102 

dramatically enhanced separation performance (Figure 2), a critical review of TFNi 103 

membranes and their potential applications is not yet available. 104 

 105 

This paper provides a comprehensive review of the recent development of TFNi RO and NF 106 

membranes. The mechanisms responsible for their enhanced water transport and solute 107 

rejection are critically analyzed. The methods and design principles for high-performance 108 

TFNi membranes are highlighted, and their environmental applications are systematically 109 

assessed.  110 

 111 

Figure 1. Recent publications of TFN, TFCn and TFNi membranes. Data for year 2020 is 112 

incomplete. All data were obtained by searching the keyword ―thin film nanocomposite 113 

membrane‖ in the database of Scopus, with further manual screening to differentiate the types 114 

of TFN, TFCn and TFNi membranes. 115 
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 116 

Figure 2. Performance enhancement factors of TFN, TFCn and TFNi (  symbol representing 117 

for NF and   representing for RO) over the recent years: (a) A value and (b) A/B value 118 

normalized by the respective values of the control TFC membrane without the inclusion of 119 

nanomaterials. The A/B values were based on simple salts (NaCl for RO membranes and 120 

Na2SO4 for NF membranes). 121 

 122 

 CONVENTIONAL TFN AND TFCn MEMBRANES 123 

While a comprehensive review of conventional TFN and TFCn membranes is beyond the 124 

scope of the current paper and can be found elsewhere,
16, 37, 38, 72, 73

 a brief discussion of these 125 

membranes and the relevant transport mechanisms are helpful to facilitate the better 126 

understanding of TFNi membranes. Table 1 classifies TFN and TFCn membranes based on 127 

the types of the incorporated nanofillers (e.g., solid, porous or sacrificial fillers). Solid 128 

nanofillers such as silica,
50, 51, 53, 74

 silver,
75

 TiO2
76, 77

, ZnO
78

 and 2D-nanoclay
79

 have been 129 

shown to enhance the permeance of TFN membranes by improving their hydrophilicity
16

 130 
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and/or creating interfacial nanochannels between the nanofillers and the polyamide matrix.
57, 

131 

58
 In comparison, porous nanofillers such as microporous zeolite,

17, 80
 mesoporous silica,

18, 54, 
132 

81
 MOFs,

23, 82-84
 covalent-organic-frameworks (COFs),

85
 aquaporins,

86-88
 and artificial water 133 

channels
89

 can provide additional selective water channels through their defined 134 

micro/mesopores to further enhance separation performance.
16, 17, 37, 73

 Sacrificial nanofillers, 135 

which are etched after membrane formation, can also be used to generate nanosized voids or 136 

channels in the polyamide rejection layer to enhance its permeance.
90

 Enhanced formation of 137 

nanovoids of several tens of nm in size can also be achieved by the creation of nanosized gas 138 

bubbles.
91-93

 139 

 140 

The solute rejection and thus selectivity of TFN membranes are strongly dependent on the 141 

properties of the incorporated nanofillers.
16

 It is believed that highly defined interior channels 142 

of some porous nanofillers (e.g., zeolite,
17

 MOFs,
83

 COFs
85

 and aquaporins
94

) can 143 

significantly enhance membrane selectivity due to their size exclusion effect.
6, 7, 16, 37, 73

 While 144 

their nanochannels are large enough for the transport of water, a solute whose size is greater 145 

than the channel size cannot transport through the interior channels. Solute rejection can also 146 

be improved by additional solute-nanofiller interactions such as enhanced electrostatic 147 

repulsion of anions by negatively charged nanofillers (e.g., silica,
18

 Ag,
95

 GO
52

, and MOF
96

). 148 

Similarly, the use of some hydrophilic nanomaterials (e.g., polydopamine, hydrophilic MOFs, 149 

etc.) has been shown to improve the selectivity against hydrophobic compounds such as 150 

endocrine disruptor compounds (EDCs) as a result of suppressed hydrophobic interaction.
97-99

 151 

In addition to interior channels, selective interfacial nanochannels can also be created to 152 

achieve enhanced solute rejection.
57

 Nevertheless, despite the presence of selective 153 

nanochannels (i.e., interior channels for porous fillers and interfacial channels for both porous 154 

and solid fillers), many TFN membranes show little enhancement in selectivity or even suffer 155 

from reduced solute rejection (Figure 2b) as a result of impaired membrane integrity caused 156 

by aggregations of NPs
52, 54

 and/or defects formation.
58

 Compared to typical interior channels 157 

and interfacial channels of sub-nm to a few nm, nanovoids or channels created by sacrificial 158 
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fillers often have much larger sizes (e.g., ~ or > 10 nm), making them less selective. For 159 

example, Yang et al.
90

 incorporated sacrificial copper nanoparticles (CuNPs) in a polyamide 160 

rejection layer. The nanovoids resulted from the subsequent acid etching led to a 3-fold 161 

increase in water flux but at the expense of slightly decrease NaCl rejection. 162 

 163 

In a similar fashion, solid, porous and sacrificial nanofillers can be incorporated into the 164 

support layer to prepare TFCn membranes (Table 1).
43, 46, 51, 76, 100

 Like TFN membranes, 165 

TFCn membranes can achieve significant enhancement in membrane permeance but often 166 

show similar or even reduced solute rejection compared to their respective controls without 167 

the loading of nanofillers.
51, 101

 In addition to RO, TFCn membranes are often reported for 168 

forward osmosis (FO) or pressure retarded osmosis (PRO), since the enhanced hydrophilicity 169 

and porosity of the substrate is favorable to reduce the structural parameter (i.e., the S value) 170 

and to mitigate internal concentration polarization (ICP).
41, 43

 Studies
39, 40, 102

 also reported 171 

enhanced membrane mechanical stability for some TFCn membranes due to the interaction 172 

between the nanofillers and the polymeric matrix of the substrate. 173 
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Table 1. Classifications of different nanocomposite membranes. 174 

 Type of nanofillers Membrane structure Examples Transport mechanism General membrane 

performance 

TFN Solid fillers 

 

ZnO,
103

 Ag,
95

 silica
104, 105

 

and TiO2.
106, 107

 

 

Nanofiller-induced interfacial channels; 

potentially improved selectivity due to 

enhanced size exclusion, hydrophilicity 

and/or charge repulsion 

Enhancement of permeance 

by up to 200%. Despite the 

potential of selective 

interior and/or interfacial 

channels, TFN membranes 

often show no major 

improvements in solute 

rejection (or even 

deteriorated rejection) due 

to aggregations of NPs 

and/or formation of defects 

in the polyamide rejection 

layer.  

Porous fillers 

 

Zeolite,
17, 80

 MCM-41,
18, 54

 

CNT,
108, 109

 MOFs,
82, 83

 

COFs,
85

 β-cyclodextrin,
110

 

and aquaporins.
86, 87

 

Selective interior channels in addition to 

the possible presence of interfacial 

channels; potentially improved 

selectivity due to enhanced size 

exclusion, hydrophilicity and/or charge 

repulsion 

Sacrificial fillers 

(Nanovoid formation) 

 

Enhanced nanobubble 

formation.
91-93

  

Relatively large (and non-selective) 

nanovoids of ~ or > 10 nm in size; 

enhanced water transport 

TFCn Solid fillers 

 

ZnO,
111

 Ag,
75

 silica
50, 74

 

and TiO2.
112

 

Enhanced hydrophilicity of substrate Enhanced permeance, often 

with similar or deteriorated 

solute rejection for RO 

membranes. Reduced S 

value and thus ICP for FO 

and PRO membranes. 

Porous fillers 

 

Zeolite,
40, 41

 MCM-41,
51

 

CNT
43, 113

 and MOFs.
101

 

Improved porosity and/or hydrophilicity 

of substrate 

Sacrificial fillers 

(Nanovoids)  

Etching of MOF
100

 and 

CaCO3.
114

  

Improved porosity of substrate 

TFNi NPs, in the form of 

solid, porous and 

sacrificial nanofillers  

TiO2,
115

 Ag
57, 71

 Mitigated NPs aggregation; enhanced 

hydrophilicity; additional water 

pathways and reduced membrane 

Enhancement of water 

permeance by up to an 

order of magnitude with 
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Zeolite,
116

 MOFs
63, 64

 hydraulic resistance; improved formation 

of polyamide (see Table 2) 

simultaneously enhanced 

solute rejection 

 

CuNPs
90

 

Nanotubes (1D) 

 

CNTs
58, 59, 117, 118

 Gutter effect (analogue to that for gas 

separation
119, 120

) ) by reducing water 

transport pathways in polyamide layer;  

improved interfacial channels with 

higher aspect ratio of the incorporated 

nanomaterials; improved formation of 

polyamide (see Table 2) 

2D materials or 

interfacial coatings 

 

PDA,
67

 TA/Fe
3+

,
121

 

polyphenol/PEI
122

, GO
123

 

and MXene
124

 

Interfacial voids 

 

Sacrificial nanostrands
55

 Significantly reduced hydraulic 

resistance 
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 MECHANISTIC INSIGHTS INTO TFNi MEMBRANES 175 

Figure 3 shows a comparison of TFNi and TFN membranes. Conventional TFN membranes 176 

face a critical limitation of little or limited improvement in water/solute selectivity (also see 177 

Figure 2). The random blending of nanomaterials in monomer solutions for TFN (or in 178 

substrates for TFCn) can cause severe agglomeration of these nanofillers (see Figure 3a1,2 179 

and Ref. 
18, 19, 53, 71, 125-127

), which not only restricts their loading efficiency
71

 but also results 180 

in defects formation.
73

 These challenges can be effectively overcome by incorporating 181 

nanofillers as a more ordered interlayer between the substrate and the rejection layer for the 182 

case of TFNi. For example, interlayers of AgNPs formed by in situ reduction (Figure 3b1)
57

 183 

or CNTs prepared by vacuum filtration (Figure 3b2)
128

 present a more uniform loading of 184 

nanomaterials, thereby leading to significant enhancement in solute rejection of the resulting 185 

TFNi membranes. Furthermore, TFNi membranes often exhibit remarkable improvement in 186 

water permeance (sometimes by an order of magnitude, see Figure 2),
55, 117, 121, 129

 which can 187 

be attributed to (1) the optimized transport pathways due to the inclusion of a 188 

high-permeability interlayer (i.e., the gutter effect
119, 130-132

) and (2) the improved interfacial 189 

polymerization conditions and thus the formation of better-quality polyamide rejection layers 190 

(e.g., thinner layers with higher cross-linking degrees
55, 57, 129

). This section analyzes the 191 

detailed mechanisms responsible for enhanced separation performance of TFNi membranes. 192 
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 193 

Figure 3. Comparison of TFN and TFNi membranes with respect to membrane separation 194 

performance, loading and distribution of nanomaterials, and the corresponding polyamide 195 

structures. Cross-sections of some representative TFN and TFNi membranes are shown in 196 

transmission electron micrographs. The following parts are reprinted with copyright 197 

permission: Part 3a1 from Ref.,
18

 Part 3a2 from Ref.
19

, Part 3b1 from Ref.,
57

 and Part 3b2 198 

from Ref.
128

 199 

 200 

Effect of interlayer on transport pathway - the “gutter mechanism” 201 

Despite that numerous experimental studies have demonstrated enhanced water permeance 202 

for TFNi membranes (Figure 2),
18, 19, 53, 71, 125-127

 this phenomenon is somewhat 203 

counterintuitive at the first glance. Based on the resistance-in-series model,
133, 134

 the 204 

inclusion of an additional layer would have increased the overall hydraulic resistance. For 205 

instance, coating a polydopamine layer on a membrane surface decreases its water 206 

permeance.
98, 135

 Nevertheless, the use of polydopamine as an interlayer can lead to an 207 
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opposite effect of greatly improved water permeance.
132, 136, 137

 These contradictory results 208 

can be reconciled by recognizing the effect of a high-permeability interlayer on shortening 209 

the transport path through the low-permeability rejection layer (Figure 4a,b). Although this 210 

―gutter‖ effect has been well documented for gas separation membranes 
119, 120, 130, 131

, it has 211 

been far less discussed in the context of TFNi membranes used for water filtration.
132

  212 

 213 

A recent modelling study on the role of substrates by Ramon et al.
138

 can provide some 214 

important insights on the transport of water in conventional TFC polyamide membranes. 215 

These authors argue that water molecules, after passing through the polyamide rejection layer, 216 

have to be collected by the pores in the substrate, i.e., the polymeric matrix of the substrate is 217 

assumed to be impermeable. Accordingly, water collected by polyamide far away from a pore 218 

region follows a slanted direction through the polyamide layer (Figure 4a), resulting in an 219 

effective transport distance that could be an order of magnitude higher than the thickness of 220 

the polyamide layer.
138

 Ramon’s model predicts that substrates with a greater number of 221 

smaller surface pores are preferred to reduce the transport distance through the polyamide 222 

layer and thus increase the water permeance,
138

 which has been experimentally confirmed by 223 

Jiang et al.
139

 In this regard, the use of a porous interlayer can effectively meet these criteria 224 

and therefore enhance the overall transport efficiency.
58-60, 132, 140, 141

  225 

 226 

While Ramon’s model
138

 did not explicitly include the effect of the interlayer, the gutter 227 

effect has been more systematically investigated through numerical simulations by Kattula et 228 

al.
119

 for gas separation membranes. According to their simulations, the inclusion of a 229 

high-permeability gutter layer reduces the effective transport distance through the 230 

low-permeability selective layer by making the transport path less slanted (Figure 4b). 231 

Intuitively, the gutter effect can be better understood using the concept of the least resistance 232 

path, i.e., water transport between any two points assumes a path with the lowest overall 233 

hydraulic resistance. Since this overall resistance is contributed by both the transport distance 234 

in the selective layer and that in the gutter layer with the latter being more permeable than the 235 
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former, it is preferred for water to take a shorter transport path in the selective layer (i.e., 236 

closer to the normal direction) at the expense of longer transport path in the gutter layer (i.e., 237 

the incident angle 𝜃1  the refracted angle 𝜃2 in Figure 4b).  238 

 239 

Although Ramon’s 
138

 and Kattula’s 
119

 models provide useful insights, modelling of the 240 

gutter effect is not yet available in the context of TFNi RO and NF membranes. In view of the 241 

critical role of the gutter effect, quantitative models need to be developed for the optimization 242 

of these water filtration membranes, e.g., with respect to the permeability and thickness of the 243 

interlayer. Presumably, the permeability of the interlayer must be far greater than that of the 244 

polyamide layer to prevent excessive hydraulic resistance through the gutter. The thickness of 245 

the interlayer also needs to be optimized to provide effective guttering without suffering 246 

severe hydraulic resistance of the gutter layer itself. Future studies should confirm these 247 

design principles through both systematic theoretical modelling and experimental validation. 248 

Furthermore, the role of the interlayer on solute transport and thus on water-solute selectivity 249 

needs to be investigated systematically.  250 

 251 

A detailed survey of literature data (Figure 2a) further reveals that the TFNi strategy tends to 252 

be more effective in enhancing water permeance for interlayered NF membranes formed by 253 

PIP and TMC (up to an order of magnitude enhancement 
121, 129, 142, 143

) compared to 254 

interlayered RO membranes formed by MPD and TMC (1 - 3 fold enhancement
57, 68, 144

). This 255 

observation is contradictory to Ramon’s 
138

 and Kattula’s 
119

 models (Figure 4c) that would 256 

predict the greater influence of interlayers (or substrate properties) for membranes with 257 

thinner rejection layers, noting that the intrinsic polyamide film thicknesses for RO 258 

membranes (approximately 10 - 20 nm
142, 143

) are usually smaller than those of NF 259 

membranes (typically on the order of 100 nm
121, 129

). This disparate observation can be 260 

potentially explained by the nanovoid-containing structure of polyamide films formed via the 261 

interfacial polymerization of MPD and TMC - the state-of-the-art chemistry for polyamide 262 

RO membranes (Figure 4d and Refs.
91, 142, 143, 145, 146

). Originated from interfacial degassing 263 
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(e.g., the release of CO2 gas bubbles from the HCO3
-
-rich MPD solution under the combined 264 

effects of interfacial heating and H
+
 generation during interfacial polymerization

91, 92, 147-149
), 265 

these nanovoids with negligible hydraulic resistance would provide a self-guttered effect, 266 

rendering any additional gutter layers less effective in further enhancing the water permeance. 267 

In contrast, polyamide layers formed by the PIP/TMC chemistry typically contain fewer or no 268 

interior voids, resulting in a more marked gutter effect with the TFNi approach. Future 269 

studies should systematically investigate the detailed mechanisms involved in both 270 

MPD/TMC and PIP/TMC chemistries for the optimization of separation performance of 271 

TFNi membranes. 272 

 273 

 274 

Figure 4. The gutter effect in TFNi membranes. (a) Schematic illustration of water transport 275 

path in a TFC/TFN membrane. The average transport path through the polyamide layer is 276 

significantly longer than the thickness of the polyamide layer. (b) Schematic illustration of 277 

water transport path in a TFNi membrane. To minimize the overall hydraulic resistance, water 278 

will take a shorter path in the less permeable polyamide layer at the expense of a longer path 279 

in the more permeable interlayer, causing the incident 𝜃1 to be greater than the refracted angle 280 

𝜃2. (c) Simulation of the gutter effect for gas separation membranes. The horizontal axis 281 
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shows the normalized gutter layer thickness, i.e., the ratio of gutter layer thickness over the 282 

substrate pore radius. The vertical axis shows the membrane permeance efficiency, i.e., the 283 

permeance of the composite membrane over the ideal permeance of the selective layer (with 284 

the latter obtained assuming all the transport paths are normal to the selective layer). The 285 

simulation is performed for three different scaled selective layer thickness (S = 1, 4 and 10), 286 

where S is the ratio of selective layer thickness over the substrate pore radius. Other 287 

simulation conditions include: substrate porosity = 1% and the gutter layer is 10 times as 288 

permeable as the selective layer. (d) Schematic illustration of the gut effect in RO and NF 289 

TFNi membranes, respectively. Figure 4c was modified from reference
119

 with copyright 290 

permission.   291 

 292 

Effect of interlayer on the formation of polyamide rejection layer 293 

In addition to the important gutter effect, the interlayer can also significantly change the 294 

formation of the polyamide rejection layer due to its influence on the interfacial 295 

polymerization reaction via (1) changing the reaction interface,
55, 121

 (2) affecting the uptake 296 

and release of the amine monomers,
55, 121

 and/or (3) enhancing the confinement effect to 297 

interfacially degassed nanobubbles.
150

 These effects and their impact on the physicochemical 298 

properties on the TFNi membranes, summarized in Table 2, are discussed in detail in this 299 

section.  300 

 301 
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Table 2. The effect of interlayer on the formation of polyamide rejection layer. 302 

Role of interlayer Schematic illustration  Effect on membrane 

morphology/chemistry 

Effect on separation 

performance TFC TFNi 

Improved reaction interface 

Improved uniformity, 

reduced surface pore size, 

reduced surface roughness, 

and/or enhanced surface 

hydrophilicity  

Minimizing defects in 

polyamide rejection 

layers
121, 122

 

Improved selectivity
151, 

152
 

Reduced surface pore size 

 

Eliminating intrusion of 

polyamide into substrate 

pores
117, 121, 132

 

Enhanced water 

permeance by preventing 

the ―bottleneck‖ effect
117, 

121, 132
 

Improved interfacial 

stability 

 

Reactive/functional 

interlayers firmly bound 

to the polyamide rejection 

layer with improved 

stability 
67, 69

  

Improved selectivity
67, 

122, 136
 

Enhanced sorption of amine monomers 

Increased effective amine 

monomer concentration 

 

Enhanced polyamide 

crosslinking degree
132

 

Improved selectivity
57, 

153
 

Controlled release of amine monomers 
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Reduced release rate of 

amine monomers and 

slowing down their 

diffusion 

 

Thinner and smoother 

polyamide rejection 

layer
55, 129

 

Improved water 

permeance
55, 129

 

Enhanced confinement effect for interfacially-degassed nanobubbles 

Better confinement of 

interfacially degassed 

nanobubbles 

 

Rougher polyamide 

surfaces with more 

extensive nanovoids
66, 132, 

150
; possibly reduced 

intrinsic polyamide 

thickness
142, 146, 147, 149, 154

 

Increased filtration area; 

hence improved 

membrane permeance
66, 

132, 150
  

 303 
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Improved reaction interface. The inclusion of an interlayer can significantly change the 304 

properties of the reaction interface, e.g., improved uniformity, reduced surface pore size, 305 

reduced surface roughness, and/or enhanced surface hydrophilicity.
59, 124, 150, 151

 These 306 

improved surface properties are beneficial to minimize the formation of defects in the 307 

polyamide rejection layer and thus improve the selectivity of the resulting TFNi membranes 308 

(Table 2).
117, 121, 151

 In addition, the shift of the reaction interface and the smaller surface pore 309 

size can prevent the intrusion of polyamide into the substrate pores (Table 2).
117, 121

 In 310 

contrast, the intrusion of polyamide into substrate pores have been reported for conventional 311 

TFC membranes (particularly when relatively large substrate pores are used),
117, 118, 121, 149, 155

 312 

which can present a ―bottleneck‖ effect to significantly reduce their water permeance.
121

  313 

 314 

In some cases, the functional groups introduced to the interlayer can also participate in the 315 

interfacial polymerization reaction [e.g., the reaction between -OH groups of PDA and 316 

polyvinyl alcohol (PVA) with TMC to form ester bonds], which tends to improve membrane 317 

rejection.
151, 152

 In view of the poor interfacial stability of conventional TFC membranes (due 318 

to the lack of chemical bonding between the polyamide layer and the substrate and their 319 

different swelling tendance
67

), the use of a reactive/functional interlayer can be effective in 320 

address this problem. For example, several studies have reported the effective use of 321 

polydopamine
67, 69, 132, 136, 156

 and PVA
151, 152, 157

 to effectively enhance the interfacial strength. 322 

Reactive/functional interlayers can firmly attach the polyamide rejection layer to the substrate 323 

through covalent bonding,
158, 159

 hydrogen bonding
69, 160

, and/or electrostatic attraction,
68, 161

 324 

thereby enhancing the membrane performance stability in terms of water flux and salt 325 

rejection.
67, 162

 Future studies should further explore the tailoring of physical binding and 326 

chemical bonding of the interlayer to the polyamide layer and to the substrate. 327 

 328 

Enhanced sorption of amine monomers. Recent studies show that some interlayer materials 329 

(e.g., polyphenol
 121, 122

, polydopamine
69

 and polyvinyl alcohol
151, 152

) can significantly 330 

increase the sorption of amine monomers, sometimes by orders of magnitude.
121

 The 331 
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enhanced uptake of MPD or PIP monomers can be attributed to the enhanced hydrophilic 332 

interaction
57, 163

 or chemical bonding.
67, 121

 According to the existing literature on interfacial 333 

polymerization, increasing the effective amine monomer concentration is beneficial to form a 334 

more highly crosslinked rejection layer.
68, 149, 164, 165

 In addition, the enhanced amine uptake 335 

may further minimize the formation of defects in the rejection layer.
55

 Indeed, many studies 336 

on TFNi (e.g., using interlayers of AgNPs
57

, CNTs
59

, GO
166

 and coating layers of 337 

polydopamine
132, 156

 and tannic acid/Fe
3+121

) reported enhanced rejection of various solutes 338 

(e.g., NaCl
68, 71

, Na2SO4
118, 121

, neutral solutes
57, 136

 and some trace organic compounds
57, 132

).  339 

 340 

Controlled release of amine monomers. The presence of an interlayer can significantly 341 

reduce the release rate of amine monomers and slow down their diffusion, which tends to 342 

create thinner polyamide layers with smoother surface (Table 2).
55, 68, 121, 129

 For instance, a 343 

desorption study using a quartz crystal microbalance with dissipation (QCM-D) show that a 344 

tannic acid (TA)/Fe
3+

 interlayer slowed down the release rate of PIP by nearly an order of 345 

magnitude compared to the bare polysulfone substrate.
121

 This controlled release of amine 346 

monomers results in a more uniform and thinner polyamide rejection layer. The thinner 347 

rejection layer together with other beneficial effects for the resulting TFNi (e.g., the gutter 348 

effect and the elimination of polyamide intrusion) led to an order of magnitude improvement 349 

in water permeance compared to the control TFC NF membrane.
121

 Likewise, Lee et al.
68

 350 

observed a significantly smoother and thinner polyamide rejection layer of a TFNi RO 351 

membrane using a polyelectrolytes-based interlayer. These authors further demonstrated 352 

reduced organic fouling of the TFNi membrane, possibly attributed to its much smoother 353 

membrane surface. 354 

 355 

Enhanced confinement effect for interfacially-degassed nanobubbles. Although some 356 

studies reported reduced surface roughness for TFNi membranes,
55, 68

 other researchers 357 

observed the opposite trend of increased surface roughness.
121, 150

 The latter can be explained 358 

by the gas confinement effect during an interfacial polymerization reaction. According to the 359 
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nano-foaming theory, the byproducts (H
+
 and heat) of interfacial polymerization reaction 360 

converts bicarbonate in the high-pH amine solution into CO2 gas bubbles, i.e., HCO3
-
 + H

+
 361 

∆
→ CO2 + H2O.

91, 92, 148
 These nanosized gas bubbles, if sufficiently retained by the substrate 362 

and subsequently encapsulated by the polyamide film, are responsible for the nanovoids 363 

contained in rejection layers (particularly those formed by the MPD/TMC chemistry) and 364 

their ridge-and-valley surface roughness.
147, 149

 The inclusion of an interlayer can 365 

significantly decrease the surface pore size, resulting in better confinement of the 366 

nanobubbles (i.e., preventing the gas bubbles from escaping through the porous substrate 367 

during the interfacial polymerization reaction) and therefore rougher polyamide surfaces.
150

 368 

According to the literature, the greater surface roughness created by better confinement 369 

effects can significantly increase the effective filtration area and also possibly decrease the 370 

intrinsic thickness of the polyamide film, therefore leading to improved water permeance.
142, 

371 

146, 147, 149, 154
 372 

 373 

The above mechanisms may compete with each other in some cases. For example, while the 374 

slower release of monomers tends to favor a smoother membrane surface,
55, 68

 the greater 375 

amine monomer uptake and enhanced confinement effect tend to promote a greater surface 376 

roughness through improved nano-foaming conditions.
132, 149, 150

 The resultant membrane 377 

morphology is, therefore, an interplay of the various effects, with the nano-foaming effects 378 

more dominating for the MPD/TMC chemistry and the smoothing effect more dominating for 379 

the PIP/TMC chemistry. Likewise, the better amine uptake can increase the crosslinking of 380 

the polyamide,
57, 69, 153

 yet its slower release may cause an opposite effect.
121, 163, 167

 These 381 

competing effects need to be systematically investigated in future studies.  382 

  383 
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 MATERIALS AND PREPARATION METHODS FOR TFNi MEMBRANES 384 

Materials used for interlayers can be classified into nanoparticles, 1D nanotubes or nanowires, 385 

2D nanosheets or nanoplates, as well as interfacial coatings (Table 1 and Figure 5). In 386 

addition, the nanofillers used for interlayers can be porous or nonporous. Examples of 387 

nanoparticles used in TFNi membranes include AgNPs,
57

 TiO2,
56, 115

 carbon quantum dots 388 

(CQDs)
168, 169

 and FeO
170

. These solid hydrophilic nanoparticles can induce the formation of 389 

interfacial channels around the nanoparticles (Figure 5a).
57, 81

 For example, Yang et al.
57

 390 

observed selective nanochannels of approximately 2.5 nm in size, which are attributed to the 391 

hydrolysis of TMC monomers by water molecules adsorbed on the nanoparticles during the 392 

interfacial polymerization reaction. These interfacial channels led to a tripled water 393 

permeance together with the enhanced rejection of NaCl, boron, and a range of organic 394 

molecules. In contrast, the use of solid hydrophobic nanoparticles (e.g., CuNPs) may cause a 395 

reduction in permeance due to the lack of such interfacial channels. Porous nanoparticles are 396 

also frequently reported for TFNi membranes, such as zeolite,
116

 MOFs (ZIF-8,
63, 64, 171-173

 397 

ZIF-67,
63

 ZIF-93,
174

 UiO-66
65, 175

 and HKUST-1
174

), and covalent organic framework 398 

(COF)
129

, whose interior channels may further enhance water permeance.
81

  399 

 400 

Nanofillers with higher aspect ratios have also been widely reported for TFNi membranes. 401 

Examples including 1D nanomaterials (Figure 5b) such as carbon nanotubes (CNTs)
58-60, 140, 

402 

141
 and their derivatives,

58, 118, 128, 144, 176
 Cd(OH)2 nanostrands/nanowires,

55
 cellulose 403 

nanocrystals,
163

 and halloysite nanotube
177

 and 2D nanomaterials (Figure 5c) such as 404 

graphene oxide (GO)
123, 159, 178

 and their derivatives
61, 141

 and MXene
124

. In addition, highly 405 

permeable interfacial coatings (Figure 5d) have been used, such as polydopamine
67, 136, 137, 156, 

406 

179
 and its derivatives,

69, 71
 polyethyleneimine (PEI) and its derivatives

68, 69
 polyphenols,

122
 407 

tannic acid/Fe
3+ 

nanoscaffold,
121

 porous organic polymer,
180

 PDA/COFs,
153

 408 

MOFs/Noria/PEI
70

 and gelatin
167

. Figure 6 compares the enhancement of water permeance 409 

and water/salt selectivity for different types of materials. On average, NPs double the water 410 

permeance but with relatively insignificant enhancement in selectivity. Interestingly, 1D 411 
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nanofillers are more effective in enhancing water permeance, which is probably associated 412 

with the greater interfacial area as a result of their high length-to-width aspect ratio. 413 

Compared to 1D materials, interlayers formed by 2D nanomaterials (e.g., lamellar layers of 414 

GO
62

 or MXene
124

 prepared with vacuum filtration) are on average less effective in 415 

enhancing water permeance but more effective in improving selectivity, which is likely due to 416 

the relatively tortuous transport path in such lamellar structures (Figure 5c).
181, 182

 A possible 417 

further improvement is the use of porous 2D nanosheets (e.g., MoS2
183

 and 2D MOFs
66, 184

) 418 

as interlayer materials, whose defined nanopores may facilitate the fast transport of water 419 

molecules while selectively retaining the target solutes. Future studies need to systematically 420 

investigate the detailed roles of materials geometry (e.g., size, shape, and aspect ratio) and 421 

porosity (e.g., porous 2D nanosheets) on the separation performance of TFNi membranes. 422 

 423 

Among all the materials, interfacial coatings appear to be the most effective to achieve 424 

enhanced membrane separation (Figure 6). This trend may be explained by the 425 

ultrapermeable and continuous nature of these interlayer coatings, which results in more 426 

efficient gutter effect (Figure 4) compared to discrete NPs, 1D, or 2D nanomaterials. In 427 

addition, some interfacial coating materials are more effective in minimizing defects in the 428 

rejection layer and their specific chemistry may improve membrane integrity.
67

 A good 429 

example is polydopamine, whose catechol, amine and hydroxyl groups can form covalent 430 

bonds with diamine monomers through Michael addition and/or Schiff base reaction.
67, 185

  431 

 432 
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 433 

Figure 5. Schematic illustrations (left panel) and transmission electron micrographs (right 434 

panel) of TFNi membranes incorporated with (a) NPs, (b) 1D, (c) 2D nanomaterials and (d) 435 

interfacial coatings as interlayers. The TEM images are reprinted from references (NPs,
57

 436 

1D,
59

 2D
178

 and interfacial coating-based
68

) with copyright permissions. 437 

 438 
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 439 

Figure 6. Statistical analysis of (a) normalized water permeance A and (b) normalized 440 

selectivity A/B for TFNi membranes based on NPs,
64, 65, 71, 115, 129, 171, 173, 186

, 1D,
55, 58, 117, 118, 140

, 441 

2D materials,
62, 123, 124

 and interfacial coating
70, 121, 122, 132, 187

. The water permeance A and 442 

selectivity A/B have been normalized by their respective control TFC without the interlayer. 443 

The A/B values were based on simple salts (NaCl for RO membranes and Na2SO4 for NF 444 

membranes). 445 

 446 

The general fabrication routine for TFNi membranes is to first form a uniform layer of 447 

nanomaterials or interfacial coating prior to the interfacial polymerization reaction. A wide 448 

range of available methods have been explored in the literature, such as in situ growth,
71

 449 

evaporation,
65

 vacuum filtration,
129

 covalent bonding,
69

 co-deposition,
70

 dip coating,
67

 spray 450 

coating,
173

 spin coating,
166

 electrospraying coating
188

 and brush coating
59

 (see details in 451 

Supporting Information S1). It is important to note that some fabrication methods may not be 452 

cost-effective and could be difficult to scale up. For instance, the spin coating method
166

 may 453 

face the challenge of material loss and difficulties in mass production. Similarly, vacuum 454 

filtration may face the constraints of small membrane area and the stability of the filtered 455 

layer of nanomaterials. Interlayers based on nanoparticles or nanotubes, e.g., formed by in 456 

situ growth or vacuum filtration, may be subject to concerns of loss/leaching of nanomaterials 457 

in addition to the high fabrication cost. In this regard, coating layers formed by conventional 458 

dip coating can be more cost competitive and more readily integrated with existing 459 

membrane production lines, considering the fact that PVA surface coating has already been 460 
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routinely applied in the post-treatment of commercial RO membranes.
189-191

 Coating layers 461 

prepared by spraying (including electrospraying) could also be potentially scaled up, although 462 

their commercial viability needs to be further assessed (e.g., through pilot scale production 463 

lines).  464 

  465 
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 ENVIRONMENTAL APPLICATIONS 466 

The high water permeance and better selectivity of TFNi membranes may enable them to be 467 

used for a wide range of applications to potentially achieve reduced energy consumption 468 

and/or improved product water quality (Table 3). This section summarizes some important 469 

applications scenarios and then analyzes the potential benefits and limitations of TFNi 470 

membranes for these applications. 471 

 472 

Application Scenarios 473 

Seawater and brackish water desalination. RO-based seawater (SWRO) desalination has 474 

been increasingly used in many coastal regions facing a shortage of freshwater supply.
2, 5, 192

 475 

A typical seawater has a total dissolved solids (TDS) content in the range of 32-35 g/L, which 476 

means that salt removal is the primary treatment objective. The high TDS and thus the 477 

elevated osmotic pressure (on the order of 25 bar) dictates a high specific energy 478 

consumption (SEC) of approximately 2 kWh/m
3
 for the first pass SWRO.

193-196
 Boron is 479 

another important contaminant to be removed during SWRO,
197-200

 with the World Health 480 

Organization and European Union guideline boron concentrations for drinking water of 2.4 481 

mg/L
201

 and 1.0 mg/L,
202

 respectively. Due to its small molecular size and neutral charge at 482 

typical environmental pHs (pKa of boron = 9.25), commercial SWRO membranes generally 483 

have low to moderate boron rejection of 40-80%.
199, 203, 204

 For this reason, many SWRO 484 

plants implement a two-pass RO treatment, where the second-pass RO together with pH 485 

adjustment is designed to ensure sufficient boron removal. This requirement of an additional 486 

second-pass RO can significantly increase the overall cost, SEC and footprint of seawater 487 

desalination. In addition to boron, the presence of bromide in desalinated water can be a 488 

concern in some cases due to the potential formation of bromide-containing 489 

disinfection-byproducts (DBPs) upon chlorination.100, 205-209 Some plants in Israel also 490 

implement a second-pass RO to meet the stringent chloride requirement to prevent corrosion 491 

of pumps/pipelines.
210

 Similar to SWRO, RO-based brackish water (BWRO) desalination 492 
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aims primarily for TDS removal. Compared to SWRO, BWRO has much lower SEC thanks 493 

to its lower TDS and osmotic pressure. 494 

 495 

Water reuse. Membrane-based water reuse of municipal wastewater was first practiced at the 496 

Water Factory 21 in Southern California and has been gaining increasing popularity in recent 497 

decades due to its relatively low SEC compared to seawater desalination.
7
 Since the TDS 498 

content of typical municipal wastewater is much lower than that of seawater, the removal of 499 

TDS is generally a less critical challenge in the context of membrane-based water reuse.
98, 211

 500 

In contrast, trace organic contaminants (TrOCs), such as DBPs, pharmaceutically active 501 

compounds (PhACs), endocrine-disrupting compounds (EDCs), herbicides, pesticides, and 502 

antibiotics, are of greater concern due to their potential effects on human health.
7, 98, 212, 213

 503 

Commercial TFC membranes, though well optimized for the rejection of TDS, often show 504 

insufficient removal of some toxic TrOCs such as the small molecular-weight DBP 505 

N-nitrosodimethylamine (NDMA) and many hydrophobic EDCs.
7
 In addition, membrane 506 

integrity and the removal of viruses are critical issues for potable water reuse.
7, 142, 214, 215

 507 

 508 

Drinking water treatment. NF membranes can be applied for groundwater treatment for the 509 

partial removal of hardness and TDS. Both RO and NF membranes have also been applied to 510 

treat arsenic-contaminated groundwater.216, 217 Increasing number of publications have also 511 

investigated the use of RO and NF membranes for the removal of TrOCs, such as 512 

polyfluorinated alkyl substances (PFASs), PhACs, DBPs, EDCs, antibiotics in surface and/or 513 

ground water.
98, 99, 212, 218-220

 514 

 515 

Industrial wastewater treatment and reuse. RO and NF membranes have been applied in a 516 

variety of industrial wastewater treatment and/or reuse applications to target the removal of 517 

hardness, dissolved organic matter, heavy metals, sulphate, nutrients, and other 518 

industrial-specific hazardous chemicals.
221-224

 Membrane selectivity plays a critical role in 519 
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these applications to ensure high treatment efficiency and reliability.  520 

 521 

Resource recovery. Resource recovery presents additional opportunities for 522 

high-performance RO and NF membranes. Notable examples include the recovery of 523 

high-value metals (e.g., lithium or palladium),
225, 226

 dyes molecules,
227-231

 and nutrients (e.g., 524 

nitrogen and phosphorous)
232, 233

. Some of these applications may require high solute/solute 525 

selectivity (e.g., Li
+
/Mg

2+
 for the case of lithium extraction from brine

225
) in addition to high 526 

water permeance and high water/solute selectivity.
225, 234

  527 

 528 

Table 3. Potential environmental applications of TFNi membranes. 529 

Applications Target contaminants Remarks Refs 

Seawater 

desalination 

TDS High TDS of 32-35 g/L for seawater; high osmotic 

pressure 

2, 235, 236
 

Boron Low boron removal (typically 40-80%) by 

commercial RO membranes. WHO guideline 

concentration of 2.4 mg/L for drinking water. Many 

SWRO plants install a second RO treatment for boron 

removal. 

197, 200, 203, 

237
 

Bromide Potential formation of toxic DBPs upon chlorination 
209, 238-241

 

Chloride Potential corrosion issues. Resulted in a second-pass 

RO in some SWRO plants in Israel. 

210
 

Water reuse TDS Partial removal of TDS 
7, 242, 243

 

NDMA A notorious DBP and a suspected carcinogen. Low 

rejection by RO membranes (20 – 80%). Notification 

level of 10 ng/L in California. 

7, 244-246
 

Other TrOCs, such as 

DBPs, PhACs, EDCs, and 

antibiotics  

Many of TrOCs are toxic. Some are poorly removed 

by RO membranes (e.g., hydrophobic EDCs and some 

neutral hydrophilic compounds with small molecular 

weights). 

97, 98, 174, 212, 

247
 

Viruses Incomplete removal of viruses due to the presence of 

defects in membranes and modules. 

214, 248-250
 

Drinking water 

treatment 

Hardness (Ca
2+ 

and Mg
2+

) Commercial NF membranes are often negatively 

charged, which reduce the removal efficiency for Ca
2+ 

and Mg
2+

 

251-253
 

Arsenic, selenium, 

uranium 

Toxic metals in some ground water. Low removal for 

neutrally charged As(III) by RO/NF membranes. 

216, 217, 254, 

255
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Perfluorochemicals (PFCs) Toxic compounds with extremely high persistence. 

Examples include perfluorooctanoic acid (PFOA) and 

perfluorooctane sulfonate (PFOS).  

218, 219, 

256-258
 

Other heavy metals and 

TrOCs 

Toxic chemicals 
98, 99, 212, 219, 

220, 259
 

Industrial 

wastewater 

treatment 

 

Hardness, sulphate, silica, 

colloids, and dissolved 

organic carbon in cooling 

tower blowdown water 

and paper mills 

Prone to fouling and scaling. Requirement for specific 

solute/solute selectivity. 

221, 260, 261
 

Heavy metal ions (Cr, Ni, 

etc.) in mining, 

electroplating, etc. 

Requirement for the removal of industry-specific 

heavy metals 

222, 262-266
 

Resource 

recovery 

Precious metal recoveries, 

such as lithium (Li) or 

palladium (Pd) 

Often suffering from low ion-ion selectivity 
225, 226, 234, 

267
 

Nutrients, such as nitrogen 

(N) and phosphorous (P) 

Low removal of N in some cases 
232, 233, 268

 

Dyes recovery in textile 

wastewater 

Requirement for dye/salt selectivity in addition to 

dye/water selective and high water permeance  

227-230, 269, 

270
 

 530 

Assessment of the Potential of TFNi membranes for reduced energy consumption 531 

A frequently claimed benefit of ―ultrapermeable‖ membranes in the existing literature is the 532 

potential for reducing the SEC. Since TFNi membranes could provide up to an order of 533 

magnitude improvement in water permeance, it is interesting to evaluate their potential 534 

energy saving in different applications. Figure 7a presents the typical scenario of SWRO 535 

desalination (osmotic pressure of 25 bar for seawater, ~ 50% water recovery ratio (WRR) for 536 

large scale SWRO plants or 30% for some smaller plants). Commercially available TFC and 537 

TFN SWRO membranes are used for benchmarking purpose. Despite the ultra-high water 538 

permeance of TFNi membranes (e.g., > 10 Lm
-2

h
-1

bar
-1

), limited savings in SEC can be 539 

achieved at a WRR of 50% (e.g., approximately 16.6% reduction in SEC for a TFNi 540 

membrane of 15 Lm
-2

h
-1

bar
-1 271

 vs. a TFC membrane of 1 Lm
-2

h
-1

bar
-1

). This marginal 541 

reduction in SEC is largely due to the dominance of energy consumption by the high osmotic 542 

pressure of seawater.
193, 194, 272

 Similarly, Cohen-Tanugi et al.
195

 suggested that a tripled water 543 

permeance would only result in approximately 15% saving in SEC in the context of SWRO 544 
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desalination. Interestingly, at a lower WRR of 30% (applicable for some smaller-scale SWRO 545 

desalination plants), a much more attractive energy saving is feasible (e.g., 46.1% reduction 546 

in SEC for the same TFNi membrane), thanks to the lower osmotic pressure of the 547 

desalination brine (35.7 bar at 30% WRR vs. 50 bar at 50% WRR).  548 

 549 

The potential for energy saving is much more significant for applications involving 550 

low-osmotic-pressure feed waters, for which the hydraulic resistance of the membrane plays 551 

a dominant role in dictating the applied pressure and thus the SEC related to a given 552 

membrane process. Here we consider a typical water reuse application with a feed water 553 

osmotic pressure of ~ 0.5 bar and a WRR of 80% (Figure 7b). Compared to the commercial 554 

BWRO membranes, the use of TFNi membranes can achieve > 80% reduction in SEC (e.g., 555 

compared to the commercial LFC3 membrane). A similar reduction of SEC is expected for 556 

other applications involving low-osmotic-pressure feed waters. Some studies suggested the 557 

use of ultra-permeable membranes for saving the footprint of membrane plants, i.e., by 558 

applying the same or similar applied pressure (without energy savings) but using less 559 

membrane area.
195

 This strategy can potentially lead to significant savings in capital cost (e.g., 560 

reduced membrane area, fewer pressure vessels, and reduced building size). Nevertheless, the 561 

approach inevitably demands the application of higher water fluxes, which could promote 562 

more severe concentration polarization and fouling.
273

 Therefore, future studies need to 563 

systematically investigate the fouling issues for TFNi membranes. 564 

 565 
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 566 

Figure 7. The relationship between specific energy consumption (SEC, KWh m
-3

) and 567 

membrane water permeance (Lm
-2

h
-1

bar
-1

) in the context of (a) seawater desalination and (b) 568 

water reuse. Commercial membranes used for benchmarking include a TFC membrane 569 

SW30HR and a TFN membrane LG-SW for seawater desalination; and TFC membranes 570 

LFC3, LFC1, and XLE and a TFN membrane LG-BW for water reuse).
48, 49, 274

 Water 571 

permeance results of TFNi membranes were adopted based on Figure 2. For SEC calculations 572 

of seawater desalination, the osmotic pressure is set at 25 bar (TDS of approximately 32000 573 

ppm). Two water recovery ratios (WRR) are evaluated, with WRR = 50% applicable for 574 

large-size SWRO plant and 30% for some smaller plants. For water reuse applications, the 575 

osmotic pressure is set at 0.5 bar (TDS of approximately 600 ppm) with a WRR of 80%. The 576 

detailed calculation of energy consumptions can be found in Supporting Information S2.  577 

 578 

Assessment of the Potential of TFNi membranes for improved treatment efficiency 579 

The selectivity of a membrane plays a critical role in its treatment efficiency, e.g., the 580 

rejection of contaminants in desalination, wastewater treatment, and water reuse or the 581 

recovery ratio in resource recovery applications.
6, 7, 193, 225, 259, 275, 276

 Existing literature on 582 

TFNi membranes have been heavily focusing on the removal and selectivity respect to 583 

common inorganic salts and ions such as NaCl,
57, 68

 Na2SO4 (or SO4
2-

),
121, 151

 Ca
2+

,
187, 277

 and 584 

Mg
2+

.
71, 122

 Compared to their TFC controls, TFNi membranes generally show improved 585 

selectivity for these contaminants (Figure 2b and Figure 6b). The enhanced selectivity can be 586 

attributed to (1) the increased crosslinking degree
57, 69, 153

 and fewer defect regions
57, 121, 122

 in 587 

the polyamide layer and (2) the creation of selective transport channels including interior 588 

channels of the nanomaterials/coatings
97, 98

 or the interfacial channels formed between the 589 
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nanofillers and polyamide
57, 81

). However, it is worthwhile to note that conventional TFC 590 

membrane has already been highly optimized for salt removal.
98, 247

 For example, fully 591 

aromatic RO membranes based on the MPD/TMC chemistry can easily achieve high NaCl 592 

rejections of > 99%.
6, 190, 191

 Likewise, semi-aromatic NF membranes based on the PIP/TMC 593 

chemistry show high rejection against divalent ions (e.g., >99% for Na2SO4).
37, 274, 278

 In 594 

contrast, these membranes often show insufficient rejections of some important contaminants 595 

such as boron,
197, 200, 203, 237

 heavy metals, 216, 217, 255 and TrOCs.97, 98, 174, 212, 247
 In this regard, it will 596 

be highly valuable to investigate the effectiveness of TFNi for these important solutes. 597 

 598 

Despite the critical importance of adequate removal of TrOCs for potable water reuse 599 

applications
7, 259, 279, 280

 and boron for desalination applications
197, 200, 203, 237

, only handful 600 

studies have investigated the applicability of TFNi membranes for this purpose.
132

 In 601 

principle, improved physicochemical properties of TFNi membranes (e.g., higher 602 

crosslinking degree
57, 69, 153

, less defect regions
121, 122

, enhanced charge interaction,
71, 158

 etc.) 603 

and the presence of selective interior/interfacial channels would contribute to better removal 604 

of these contaminants. For example, Yang et al.
57

 demonstrated the use of hydrophilic AgNPs 605 

for the creation of selective interfacial channels for the effective enhancement of water 606 

permeance. The resulting TFNi membrane showed increased selectivity against boron thanks 607 

to the higher cross-linking degree of its polyamide rejection layer. Greater improvements in 608 

selectivity were observed for NaCl and a hydrophobic EDC propylparaben due to enhanced 609 

Donnan exclusion and suppressed hydrophobic interaction, respectively, in addition to the 610 

size exclusion effect. The inclusion of porous materials
96, 97, 281

 and coating layers
98, 99, 247

 611 

with intrinsically high selectivity against target solutes are also of great potential. 612 

Furthermore, improving solute/solute selectivity
276

 could be another sweet spot for the future 613 

development of TFNi membranes, e.g., Cl
-
/SO4

2-
 selectivity for the treatment of cooling 614 

tower water and paper mills wastewater,
221, 260, 261

 dye/salt selectivity in textile wastewater 615 

treatment,
227-230, 270

 Li
+
/Mg

2+
 selectivity for lithium extraction from salt lake water.

225
 616 

 617 
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 CONCLUDING REMARKS AND FUTURE PERSPECTIVES 618 

This review provides the state of the art of TFNi membranes in terms of materials, 619 

mechanisms, and separation performance. The relevant environmental applications are 620 

assessed with respect to potential savings in energy consumptions and process efficiency on 621 

the basis of membrane water permeance and selectivity. In general, TFNi membranes offer 622 

great potential for simultaneous enhancements in both water permeance and solute selectivity. 623 

Significant energy savings (e.g., up to 80%) is possible for feed waters with low osmotic 624 

pressure (e.g., water reuse). In contrast, only marginal reduction in SEC is expected for 625 

SWRO since its SEC is largely dictated by the high osmotic pressure of seawater. The 626 

existing literature seems to have mainly focused on the removal of simple salts, yet there is a 627 

lack of systematic studies on other important contaminants that are critical for certain 628 

environmental applications (Table 3). Future studies should extend TFNi membranes to a 629 

wider selection of solutes and investigate their solute/water and solute/solute selectivity to 630 

fully unleash their potential. Furthermore, although the review has focused primarily on RO 631 

and NF processes, the mechanisms involved and application constraints are also relevant to 632 

other membrane processes such as FO.
282, 283

 Compared to RO and NF, the applications of 633 

TFNi membranes for FO process could offer additional benefits. For example, the inclusion 634 

of a hydrophilic interlayer could greatly reduce the structural parameter (S value) of the TFNi 635 

FO membranes.
117, 136

 This could be possibly explained by the elimination of PA inside 636 

substrate pore that not only reduces the overall membrane hydraulic resistance but also 637 

mitigates internal concentration polarization.
117

 In addition, the significantly improved 638 

selectivity of TFNi membranes (Figure 2), originated from reduced defects formation
121, 122

 639 

and/or enhanced crosslinking degree
57, 153

 of its polyamide rejection layer, could further 640 

reduce the specific salt flux in the FO process.
124

 As a result of these beneficial effects, TFNi 641 

membranes can potentially offer nearly an order of magnitude improvement in FO water flux 642 

together reduced reverse solute flux.
117, 124

  643 

 644 

In view of the greatly enhanced separation performance of TFNi membranes over their 645 
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conventional TFN counterparts and the fact that several TFN membranes have also been 646 

successfully commercialized,
47-49

 it is reasonable to expect the potential commercialization of 647 

TFNi membranes in the near future. However, several critical issues need to be thoroughly 648 

addressed, including costs, long-term membrane stability, and risks of nanomaterials leaching. 649 

Based on these considerations, the dip coating method may be the most practical way for the 650 

preparation of interlayers in view of its relatively low cost and its existing use in commercial 651 

membrane production lines (e.g., PVA coating in RO post-treatment).
189-191

 652 

 653 

In view of the important gutter effect on the transport paths in TFNi membranes, more 654 

modelling and experimental works are needed to systematically evaluate the effect of 655 

interlayer properties (e.g., thickness, permeability, continues coatings vs. discrete nanofillers, 656 

etc.) on both water permeance and selectivity. One interesting aspect for future research is to 657 

explore the use of specific chemistry of interlayer materials for improving the selectivity 658 

against target contaminants.
98, 99, 247

 Furthermore, advanced membrane characterization 659 

techniques (e.g., QCM-D
57, 121

, Rutherford backscattering spectrometry,
284, 285

 660 

electrochemical impedance spectroscopy,
286, 287

 positron annihilation lifetime spectroscopy,
288, 

661 

289
, 3D TEM tomography

290, 291
 and etc.

146, 154, 292, 293
) are needed. Such advanced 662 

characterization can provide better understanding of the effect of interlayers on the 663 

physiochemical properties of polyamide layers, particularly with respect to the 664 

orientation/pattern of nanofillers, their interactions with the rejection layer and substrate, their 665 

effect on the transport behavior and the overall membrane integrity,
7, 142, 214, 215

 which are 666 

critical issues for many membrane applications.  667 

 668 

Despite the great enhancement effect in membrane permeability and selectivity, there have 669 

been only a handful studies on the fouling and chlorine resistance of TFNi membranes. For 670 

some TFNi membranes, the slower/controlled release of amine monomers can result in 671 

smoother membrane surfaces (Table 2),
55, 68

 which tends to mitigate membrane fouling.
68

 672 

Although TFNi membranes incorporating biocidal agents (e.g., AgNPs) can still achieve 673 
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some antimicrobial and antibiofouling properties via non-contact killing,
71

 the embedding of 674 

such materials underneath the polyamide would inhibit the direct killing mechanism that is 675 

often utilized in surface-laden TFN membranes (e.g., by coating biocidal agents on a TFC 676 

membrane surface
134

). Nevertheless, the additional coating layer in the latter case could 677 

adversely affect membrane hydraulic resistance,
10

 resulting in reduced water permeance.
10, 98

 678 

An interesting opportunity exists to achieve better antifouling performance for TFNi 679 

membranes. The inclusion of an interlayer changes the water transport path in the polyamide 680 

layer towards a more uniform distribution (Figure 4b). This could potentially eliminate hot 681 

spots of extremely high localized flux (e.g., directly over the substrate pores in Figure 4a
138

) 682 

and thereby reducing the membrane fouling tendency.
294

 Some recent studies have also 683 

demonstrated the possibility of interlayer materials for improving chlorine resistance, e.g., by 684 

the inhibition of N-chlorination and ring-chlorination,
14, 186

 resulting in improved membrane 685 

chlorine resistance.
186

 Future studies need to perform more systematic evaluation on the 686 

fouling and chlorine resistance to enable a wide range of real applications.
13, 295-297

   687 
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