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Interleukin-17E (IL-25) is a member of the IL-17 cytokine family that includes IL-17A to
IL-17F. IL-17 family cytokines play a key role in host defense responses and inflammatory
diseases. Compared with other IL-17 cytokine family members, IL-25 has relatively low
sequence similarity to IL-17A and exhibits a distinct function from other IL-17 cytokines.
IL-25 binds to its receptor composed of IL-17 receptor A (IL-17RA) and IL-17 receptor B
(IL-17RB) for signal transduction. IL-25 has been implicated as a type 2 cytokine and can
induce the production of IL-4, IL-5 and IL-13, which in turn inhibits the differentiation of
T helper (Th) 17. In addition to its anti-inflammatory properties, IL-25 also exhibits a pro-
inflammatory effect in the pathogenesis of Th17-dominated diseases. Here, we review
recent advances in the roles of IL-25 in the pathogenesis of inflammation and
autoimmune diseases.
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INTRODUCTION

The interleukin-17 (IL-17) family belongs to a group of cytokines that play a crucial role in host
defense against extracellular pathogens and inflammatory response during autoimmune
pathogenesis (1). As the first cytokine identified in IL-17 family, IL-17A, firstly named as
cytotoxic T lymphocyte-associated antigen-8 (CTLA-8), encodes a protein with the same
homology as the putative protein encoded by the ORF13 gene of herpesvirus Saimiri (2, 3).
Based on the sequence of IL-17A, other IL-17 family members are identified, including IL-17B, IL-
17C, IL-17D, IL-17E (also known as IL-25) and IL-17F. IL-17 family cytokines exhibit functional
activity by covalently binding to form heterodimers or homodimers. IL-17A and IL-17F can form
both homodimer and heterodimer, while IL-17B, IL-17C, IL-17D and IL-25 form homodimers to
bind receptors (4, 5).

IL-17 family cytokines play an essential role in host defense against pathogens as well as in
various diseases including cancers and autoimmune disorders (1, 6). Recent studies have
demonstrated that IL-17A and IL-17F act as pro-inflammatory cytokines in the pathogenesis of
Sjögren’s syndrome (SS) (7, 8). In addition, IL-17A can sustain plasma cell response and exacerbate
the development of systemic lupus erythematosus (SLE) (9). IL-17F has also been shown to drive
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renal tissue injury in lupus mice, suggesting the pathogenic
functions of IL-17A and IL-17F in lupus pathogenesis (10, 11).
Moreover, increased levels of IL-17A and IL-17F expression are
detected in the inflamed guts of patients with inflammatory
bowel disease (IBD) (12, 13). Furthermore, elevated serum IL-
17A and increased islet antigen-specific IL-17A-producing
CD4+ T helper (Th17) cells are detected in patients with type
1 diabetes (T1D) while adoptive transfer of Th17 cells into non-
obese diabetic (NOD) mice promotes pancreatic inflammation
(14, 15). In multiple sclerosis (MS) patients, IL-17A is found to
impair the neural cell function in central nervous system (CNS)
and causes tissue destruction (16). Extensive evidence indicates
that IL-17A plays a key role in the pathogenesis of psoriasis. IL-
17A can induce keratinocytes to produce various chemokines
that recruit immune cells and promote the proliferation of
endothelial cells, leading to angiogenesis (17). IL-17A is
critically involved in the pathogenesis of collagen-induced
arthritis (CIA) in mice and rheumatoid arthritis (RA) in
patients (18). IL-17A stimulates the synoviocytes to produce
vascular endothelial growth factor (VEGF) and induces stromal
cells to produce pro-inflammatory cytokines and hematopoietic
cytokines (19, 20). As a pro-inflammatory cytokine, IL-17B can
recruit neutrophils in immune reactions (21). Elevated levels of
IL-17B expression have been found in synovial tissue of CIA
mice and RA patients while further blockade of IL-17B with
neutralizing antibodies ameliorates disease progression,
indicating a pathogenic role of IL-17B in autoimmune diseases
(22, 23). Unlike IL-17A, IL-17C is mainly expressed by epithelial
cells and can regulate epithelial immune response in an
autocrine manner (24, 25). In a dextran sulfate sodium (DSS)-
induced colitis mouse model for IBD, IL-17C exhibits a
protective role in colitis development (24, 26). However, in
mice with imiquimod-induced psoriasis, IL-17C elicits a
pathogenic effect and exacerbates psoriatic inflammation, in
which intradermal injection of IL-17C triggers leukocyte
infiltration and epidermal thickening (24). Thus, IL-17C
exerts diverse functions in the development of various
autoimmune diseases. Among IL-17 family cytokines, IL-17D
is a less studied cytokine, which has been found to induce the
expression of pro-inflammatory cytokines including IL-6 and
IL-8 in endothelial cells (27). A recent study has identified CD93
as the IL-17D receptor expressed in group 3 innate lymphoid
cells (ILC3s) whereas IL-17D exerts anti-inflammatory effects in
DSS-induced colitis through inducing IL-22 production by
ILC3s (28).

IL-25 was first identified by sequence alignment from human
genomic DNA sequence information and considered as a novel
proinflammatory cytokine via activation through the nuclear
factor-kB (NF-kB) (29). Subsequently, IL-25 was defined as a
type 2 cytokine produced by Th2 cells, which was capable of
inducing IL-4, IL-5 and IL-13 gene expression and further
amplifying allergic inflammatory response in the lung and the
digestive tract (30). The functions of IL-25 as a “barrier surface”
cytokine in epithelial immunology and airway diseases have been
recently reviewed (31, 32). Here, we summarize research
advances in understanding the roles of IL-25 in inflammation
with an emphasis on autoimmune pathogenesis.
Frontiers in Immunology | www.frontiersin.org 2
IL-25 AND ITS SIGNAL TRANSDUCTION

The IL-17 cytokine family binds to its receptors for signal
transduction, which include five receptor subunits, IL-17RA,
IL-17RB, IL-17RC, IL-17RD and IL-17RE (33). Each IL-17R
subunit is a single transmembrane domain-containing protein
with several conserved motifs, including extracellular fibronectin
III-like motifs, transmembrane regions and cytoplasmic SEF/IL-
17R (SEFIR) domains (34). In addition to the SEFIR domain
expressed by all IL-17R subunits, IL-17RA also expresses Toll/IL-
1R-like loop (TIR-like loop, TILL) domain and C/EBPb-
activation domain (CBAD) (34, 35). IL-17R subunits from
both mouse and human range in size from 272 to 866 amino
acids and contain full-length forms and smaller alternatively
spliced isoforms (36). Since IL-17RA contains most of the
cytoplasmic domains, it is the largest member of the IL-17R
family and is the key component used at least by IL-17A/IL-17F,
IL-17B and IL-25 (37–39). Dimeric IL-17A and IL-17F can bind
to receptors consisting of IL-17RA/IL-17RC, IL-17RA/IL-17RD
or IL-17RC/IL-17RC (38, 40, 41). In addition, IL-17C uses IL-
17RA and IL-17RE to transduce signal (42). Recently, CD93 has
been identified as a functional receptor that recognizes IL-17D,
but whether CD93 pairs with other receptors to transduce signals
from IL-17D requires further investigation (28). Both IL-17B and
IL-25 signal through a heterodimeric receptor of IL-17RA and
IL-17RB (37, 39). IL-25 shows low affinity for IL-17RA but high
affinity for IL-17RB. However, IL-25 can also bind to IL-17RA
after it is captured by IL-17RB (43, 44) (Table 1).

The SEFIR domain is expressed by all IL-17R family
members, whereas the TILL domain and CBAD are expressed
only by IL-17RA, indicating that IL-17RA might be responsible
for more complex signaling process than other IL-17R subunits
(34). The SEFIR domain was identified as a conserved segment
similar to TIR domain which is known to mediate homotypic
interactions (51). Multiple sequence alignments showed that box
1 and box 2 motif in TIR domain are conserved in SEFIR
domain, indicating that SEFIR domain-containing protein can
interact homotypically with other SEFIR domain-containing
proteins (51). A SEFIR domain-containing protein involved in
IL-17 cytokine family signaling is activator 1 (Act1), which is an
NF-kB activator (52). Act1 can be recruited to IL-17R upon
cytokine engagement through SEFIR-SEFIR domain binding (53,
54). Two tumor necrosis factor (TNF) receptor-associated factor-
binding (TRAF-binding) sits are shown at the N terminus of
Act1, therefore TRAF-containing proteins including TRAF3,
TRAF6 and transforming growth factor b-activated kinase 1
(TGFb-activated kinase 1, TAK1) bind to IL-17R upon
engagement (54). TILL domain resembles box 3 motif of TIR
domain and are unique in IL-17RA subunit. Mutation of the
TILL domain renders mice insufficient response to LPS (34).
Another C-terminal domain, CBAD is also unique in IL-17RA
subunit, which is required for activation of C/EBPb and
induction of IL-17 target gene expression (34). Signal
transduction via IL-25 requires heterodimer of IL-17RA and
IL-17RB subunits, therefore SEFIR domain, TILL domain and
CBAD of IL-17RA as well as SEFIR domain of IL-17RB serve as
functional motifs responsible for activation of IL-25 signal (34).
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Unlike IL-17RA requires Act1 for association, it is reported that
IL-17RB can bind TRAF6 directly for the activation of NF-kB
(53, 55). However, the activation of mitogen-activated protein
kinase (MAPK) including extracellular signal-regulated kinase
(ERK), c-Jun N-terminal kinase (JNK) and p38 downstream of
IL-25 is independent of TRAF6 (55).
IL-25 IN TYPE 2 INFLAMMATION AND
AUTOIMMUNE PATHOGENESIS

Type 2 Inflammation and
Allergic Response
Type 2 inflammation in respiratory system is the hallmark of
diseases such as asthma and allergy (56). IL-25, originally
identified as a type 2 cytokine produced by Th2 cells, promotes
the production of IL-4, IL-5 and IL-13, leading to inflammation
in the respiratory tract (30). In addition to Th2 cells as the
cellular source, IL-25 may also be derived from group 2 innate
lymphoid cells (ILC2s), macrophages, eosinophils, basophils and
pulmonary epithelial cells (57). It has been reported that
transgenic mice with IL-25 overexpression in pulmonary
epithelial cells spontaneously develop asthma-like symptoms,
including mucus production and airway infiltration by
macrophages and eosinophils (45). Moreover, IL-25 produced
by Th2 memory T cells can induce angiogenesis in asthmatic
bronchial mucosa (58). Further, blockade of IL-25 significantly
reduced antigen-induced infiltration of eosinophils and CD4+ T
cells in the airways (59). Notably, combined blockade of type 2
cytokine IL-13 and IL-25 was even more effective than blockade
alone in reducing infiltration of inflammatory cells in the airways
with attenuated airway hyperresponsiveness and tissue
remodeling (60). In a mouse model of asthma, natural killer T
cells (NKT) with a phenotype of CD4+IL-17RB+ are able to
produce IL-13 and Th2 chemokines in response to IL-25
stimulation and therefore promote airway hyperresponsiveness
(61). Recent studies have demonstrated that IL-25 drives the
expression of the transcription factor GATA-3 in naïve T cells by
potentiating the induction of NFATc1 and JunB (45). Moreover,
Frontiers in Immunology | www.frontiersin.org 3
IL-25 can increase the expression of vascular endothelial
growth factor (VEGF) and VEGF receptor via activating
phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and
ERK/MAPK pathways in endothelial cells (58). As an adaptor
protein in the downstream of IL-17 cytokine family, Act1
controls the allergic asthma-like inflammation initiated by IL-
25 while depletion of Act1 abolishes the asthma symptom in
mice (62). In addition, IL-25 promotes eosinophils to produce
monocyte chemoattractant protein-1 (MCP-1), macrophage
inflammatory protein-1a (MIP-1a), IL-6 and IL-8 via the
activation of JNK, p38 MAPK and NF-kB pathways (63).
Together, available evidence indicates that IL-25 is critically
involved in the development of type 2 inflammation. In a
preclinical study, ABM125, an anti-IL-25 monoclonal antibody
that neutralize human and mouse IL-25, has shown therapeutic
effects in treating virus-induced allergic airway disease (64).
Thus, targeting IL-25 or IL-17RB+ immune cells may represent
a promising strategy for the treatment of allergic inflammation.

Skin Inflammation
Psoriasis is a typical autoimmune disease of skin inflammation
characterized by epidermal hyperplasia, increased angiogenesis
and dermal inflammation (65). Although the exact pathogenesis
of psoriasis is not clear, it has been suggested that systemic Th1/
Th2 imbalance and the involvement of Th17 cells contribute to
the initiation and exacerbation of this disease (66). Studies by
Senra et al. have demonstrated that IL-25 derived from
keratinocytes can directly induce skin inflammation in vivo by
recruiting neutrophils and activating macrophages (67, 68). IL-
25 promotes recruitment of human primary neutrophils by
activating human primary macrophages. Moreover, IL-25
stimulates human primary macrophages via activation of p38
and NF-kB (67). IL-25 is highly expressed in the skin lesion of
patients with psoriasis and in a mouse model of psoriasis. IL-25 is
found to promote proliferation of IL-17RB+ keratinocytes and
exacerbation of psoriasis (46). As the major IL-17RB-expressing
cells in psoriasis, keratinocytes can be activated by IL-25 via
activation of STAT3 transcription factor (46). Notably, blockade
of IL-17RA using Brodalumab, a co-receptor for IL-17A,
IL-17F and IL-25, has shown high efficacy in the treatment of
TABLE 1 | IL-17 family cytokines, receptors and functions in autoimmune diseases.

Cytokine Structure Receptors Functions Ref

IL-17A
IL-17F

IL-17A/IL-17A IL-17RA/IL-17RC Pathogenic in psoriasis, SLE, SS, T1D, RA, MS and IBD (7, 9, 12–14, 16, 17, 19, 38, 40, 41)
IL-17RA/IL-17RD

IL-17A/IL-17F IL-17RA/IL-17RC
IL-17F/IL-17F IL-17RC/IL-17RC

IL-17B IL-17B/IL-17B IL-17RA/IL-17RB Pathogenic in RA and SLE (22, 23, 37)
IL-17C IL-17C/IL-17C IL-17RA/IL-17RE Pathogenic in IMQ-induced psoriasis

Protective in DSS-induced colitis
(24, 42)

IL-17D IL-17D/IL-17D CD93 Protective in DSS-induced colitis (28)
IL-17E (IL-25) IL-25/IL-25 IL-17RA/IL-17RB Pathogenic in psoriasis, SS and

type 2 inflammation
Protective in IBD, T1D, MS and SLE

(39, 45–50)
May
SLE, systemic lupus erythematosus; SS, Sjögren’s syndrome; T1D, type 1 diabetes; RA, rheumatoid arthritis; MS, multiple sclerosis; IBD, inflammatory bowel disease; IMQ, imiquimod;
DSS, dextran sulfate sodium.
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psoriasis (69). Thus, blockade of IL-25 may represent a
promising strategy for targeting skin inflammation.

Inflammatory Bowel Disease
As a chronic inflammatory disorder of gastrointestinal tract,
inflammatory bowel disease (IBD) contains two major idiopathic
forms: ulcerative colitis and Crohn’s disease (CD). It has been
recognized that dysfunctions of mucosal immune response to
commensal bacterial flora, as well as genetic and environmental
factors, contribute to the pathogenesis of IBD (70). Using
Campylobacter jejuni infection and dextran sulfate sodium
(DSS) treatment to induce colitis in mice, Jennifer R. O’Hara
et al. showed a significant decrease in both IL-25 and IL-17A in
mouse colonic homogenates, as well as disrupted Toll-like
receptor 9 (TLR9) signaling in apical epithelium, which is
responsible for maintaining colonic homeostasis (71).
Furthermore, IL-25 production by intestinal epithelial cells
inhibits Th17 expansion by suppressing macrophage-derived
IL-23 production (72). In addition, IL-25 has been shown to
suppress intestinal mucosa CD14+ cell-derived IL-12 production
(73). In patients with active IBD, IL-25 is significantly decreased
in serum and inflamed mucosa. Moreover, in vitro studies show
that TNF, IFNg and IL-17A production in IBD CD4+ T cells is
inhibited by IL-25, which also has an inhibitory function in Th1
and Th17 differentiation (47). Similarly, levels of IL-25 are
significantly lower in the intestine of IBD patients than those
in normal controls. Consistently, stimulation of normal colonic
explants with TNF-a reduced IL-25 synthesis (74). However,
treatment with TGF-b1 induces IL-25 production in normal
colonic explants (74). Interestingly, IL-25-deficient mice display
resistance to DSS-induced colitis while IL-25 upregulates IL-33,
IL-6 and TNFa expression in colonic epithelial cells, indicating
that IL-25 may contribute to the pathogenesis of IBD (75).
Currently, it is unclear how IL-25 exerts dual functions in
different cell types or disease stages of IBD. Therefore, further
clinical investigations await to validate IL-25 as a therapeutic
target for the treatment of patients with IBD.

Type 1 Diabetes
Type 1 diabetes (T1D) is featured with immune dysregulations
including pancreatic b-cell destruction triggered by T cells such as
Th1 cells and Th17 cells (76, 77). However, IL-25, as an IL-17
cytokine family member, exhibits an inhibitory effect on the
pathogenesis of type 1 diabetes. Studies by Emamaullee et al.
have reported that IL-25 administration in non-obese
diabetic (NOD) mice with spontaneous T1D onset significantly
reduces T cell infiltration in the pancreas and decreases serum
autoantibodies with similar effects to anti-IL-17A administration,
suggesting a protective role of IL-25 in the pathogenesis of T1D
(78). Intriguingly, peripheral blood mononuclear cells (PBMC)
from T1D patients display significantly increased IL-25
expression together with enhanced production of IL-17A and
IL-6 when compared with healthy donors (79). Thus, further
studies are needed to address possible dual functions of IL-25 in
mediating inflammatory responses in T1D, which may provide a
rationale in therapeutic design of IL-25 blockade for treating T1D
patients at different disease stages.
Frontiers in Immunology | www.frontiersin.org 4
Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic inflammatory disease
characterized by inflammation in synovium, cartilage damage
and bone erosion, which further leads to joint destruction. It has
been shown that IL-25 is overproduced by RA synovial
fibroblasts as a pro-inflammatory cytokine during disease
pathogenesis (80). However, IL-25 can also act as a receptor
antagonist of IL-17A function, resulting in suppressed Th17
response. Moreover, IL-25 can inhibit IL-22-induced
osteoclastogenesis via activation of signal transducer and
activator of transcription 3 (STAT3) and p38 MAPK pathway
(81, 82). Lavocat et al. reported that RA synoviocytes express
IL-17RB and also secrete IL-25 while TNFa treatment increases
IL-17RB expression (81). IL-25 treatment of fibroblast-
like synoviocytes (FLS) from RA patients inhibits p38
phosphorylation whereas IL-25 pretreatment downregulates
the phosphorylation of STAT3, p38 and IkB-a triggered by
IL-22 stimulation in FLS from RA patients (82). In mice with
collagen II-induced arthritis (CIA), IL-25 is significantly
increased at the late stage of CIA while IL-17 is increased at
the early stage, suggesting that IL-25 and IL-17 may be involved
in arthritic progression at different stages of inflammatory
responses (83).

Multiple Sclerosis
Multiple sclerosis (MS) is a chronic autoimmune neurological
disease of the central nervous system (CNS), which attacks the
myelinated axons and destroys the myelin and axons to varying
degrees (84). Th17 cells have been characterized as a major CD4+

T cell subpopulation mediating the pathogenesis of MS. Recent
studies show that IL-25-deficient (Il25-/-) mice are highly
susceptible to experimental autoimmune encephalomyelitis
(EAE), a mouse model for human MS, while neutralization of
IL-17A prevents EAE in IL-25-deficient mice, indicating a role of
IL-25 in attenuating inflammation by inhibiting Th17 function
(48). In addition, IL-25 inhibits T cell-triggered neuronal injury
and cell death by reducing expression of lymphocyte function-
associated antigen-1 (LFA-1) (85). Moreover, Sonobe Y et al.
reported that in TNF-a-induced impairment of blood-brain
barrier (BBB) permeability, IL-25 treatment downregulates
expression of junction adhesion molecule claudin-5, via
phosphorylation of protein kinase C epsilon (PKCϵ), suggesting
that IL-25 produced by brain capillary endothelial cells can
maintain BBB integrity (86). Together, available evidence
indicates a protective role of IL-25 in the development of MS.

Systemic Lupus Erythematosus
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune
disease involving multiple organs including kidney and brain,
characterized by anti-nuclear autoantibody (ANA) and immune
complex deposition in kidney, which further causes immune-
complex glomerulonephritis (87, 88). Several studies show that
IL-25, together with other Th2-related cytokines, is significantly
increased in SLE patients, especially in those with lupus
nephritis, contributing to the pathogenesis of SLE (89, 90).
Although IL-25 is upregulated in SLE patients, IL-25 can
ameliorate lupus pathogenesis in mice by inhibiting
May 2021 | Volume 12 | Article 691559
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inflammatory cytokines (49). We have recently identified a
critical role of IL-17 in maintaining plasma cell survival and
autoantibody production in both SLE patients and murine lupus
(9). Currently, it is unclear whether IL-25 modulates the multiple
functions of various B cell subsets in autoimmune pathogenesis
(91). Thus, further investigation is needed to determine whether
IL-25 plays a pro-inflammatory or anti-inflammatory role during
the development of SLE.

Sjögren’s Syndrome
Primary Sjögren’s syndrome (pSS) is characterized as a systemic
autoimmune disease with progressive inflammation of salivary
glands (SG) and lacrimal glands, which leads to dry mouth and
dry eyes (92). Our previous studies have demonstrated that Th17
Frontiers in Immunology | www.frontiersin.org 5
cells are important in initiating the pathogenesis of SS, indicating
a key role for IL-17A in SS (7). Recently, we observed
significantly increased expression of IL-25 in SG and
peripheral blood from pSS patients compared with healthy
controls (50). In culture, IL-25 significantly increases the
number of IL-17RB+ inflammatory ILC2s (iILC2s) from SG
and peripheral blood (50). Furthermore, blockade of IL-25
using a neutralizing antibody markedly improves saliva flow
rate and ameliorates SG tissue damage in mice with experimental
SS (ESS), accompanied with decreased ILC2 infiltration in SG of
ESS mice. In SGs of pSS patients, significant upregulation of
TRAF6 in CD3+ T cells and ILC2s suggests that IL-25 signal is
functional via coordinating activation of ERK1/2 and relative
transcription factors (50). Recent studies show that ILC2
TABLE 2 | IL-25 in inflammatory and autoimmune disorders.

Disease Effect Change Signaling Pathways Ref

Allergies Pro-inflammatory Increase NFATc1/JunB-GATA3; PI3K/AKT; ERK; JNK; p38; NF-kB (45, 58, 63)
Psoriasis Pro-inflammatory Increase JAK/STAT3; p38; NF-kB (46, 67)
SS Pro-inflammatory Increase ERK (50)
IBD Pro-/Anti-inflammatory Decrease N/A (47)
T1D Anti-inflammatory Increase PI3K/AKT; p38; ERK (94)
MS Anti-inflammatory Increase PKC-claudin-5 (86)
RA Pro-/Anti-inflammatory Increase JAK/STAT3; p38 (82)
SLE Anti-inflammatory Increase N/A (49)
May 2021 | Volume 12 | A
SS, Sjögren’s syndrome; IBD, inflammatory bowel disease; T1D, type 1 diabetes; MS, multiple sclerosis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.
FIGURE 1 | Roles of IL-25 in type 2 inflammation and autoimmune pathogenesis. During the development of autoimmune diseases, IL-25 plays a pro-inflammatory
or anti-inflammatory role in activating or inhibiting immune cells and tissue cells. Auto Abs, autoantibodies; Baso, basophil; BCEC, brain capillary epithelial cell; Eos,
eosinophil; IBD, inflammatory bowel disease; IEC, intestinal endothelial cell; ILC2, group 2 innate lymphoid cells; SS, Sjögren’s syndrome; MF, macrophage; Mono,
monocyte; MS, multiple sclerosis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; T1D, type 1 diabetes.
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provokes inflammation in airways causing persistent asthma
symptoms, which can be activated by IL-25. Therefore,
available studies have indicated that IL-25 plays a pathogenic
role during the development of SS (50, 93).
CONCLUSION AND PERSPECTIVE

As a member of IL-17 cytokine family, IL-25 acts primarily as a
type 2 cytokine and is functionally distinct from other IL-17
cytokines. In inflammation and autoimmune pathogenesis, IL-25
binds to receptor subunit IL-17RB expression in immune cells
and tissue cells whereas IL-25 levels increase in peripheral blood
and inflammatory microenvironment. Current studies suggest
that IL-25 has a dual role in regulating immune responses during
the development of autoimmune diseases. As a pro-
inflammatory cytokine, IL-25 exacerbates allergic inflammation
by promoting the production of type 2 cytokines including IL-4,
IL-5 and IL-13 by Th2 cells. Moreover, IL-25 activates innate
immune cells and induces proliferation, production of other pro-
inflammatory cytokines and recruitment of immune cells in
psoriasis and SS. In contrast, IL-25 exerts anti-inflammatory
effects by inhibiting Th1 or Th17 differentiation via production
of Th2 cytokines in IBD, T1D, RA, MS and SLE (Table 2 and
Figure 1). Given that IL-25 exerts dual functions in various
Frontiers in Immunology | www.frontiersin.org 6
autoimmune diseases, further investigations are needed to
determine the exact roles played by IL-25 at different stages of
inflammatory responses and autoimmune diseases. Increasing
evidence indicates the functional diversities of both B cells and T
cells in autoimmune pathogenesis. Future studies on the roles of
IL-25 in regulating immune responses may contribute to the
design of new therapeutic interventions by targeting IL-25 for the
treatment of inflammatory disorders.
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