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H I G H L I G H T S  

• Assessment of a demand charge on electricity consumption in the commercial sector. 
• A clustering technique is applied to generalized electricity consumption patterns. 
• Electricity consumption decreased after implementation of a demand charge. 
• Effects of demand charge vary between cluster segments in the commercial sector.  
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A B S T R A C T   

Demand-based charges have been employed as a tool intended to reduce electricity users’ maximum demand but 
there is a lack of consensus regarding their efficacy. One reason for this may be the diversity in the flexibility 
potential of different types of users. This study explores the flexibility potential of different types of electricity 
consumers in the small to medium-sized commercial sector (35-63A) in response to a compulsory demand 
charge. The objective is to characterize varying levels of flexibility with respect to different types of commercial 
users with different load patterns. A multivariate clustering technique was used to group commercial users with 
comparable load patterns based on a year of hourly data before the tariff change was introduced. This method 
was used to: (1) match users from the intervention area and reference area with similar load patterns, without 
losing any user data, and (2) compare how users with different load patterns react differently to the tariff change. 
We found clear distinctions in the types of commercial users in each cluster and their response to the tariff, 
demonstrating the extent to which demand flexibility may be dependent on the nature of an organization’s 
activities and its respective load patterns. The highest demand flexibility was found in clusters which had a large 
share of users in the IT sector, commerce and public administration. The lowest demand flexibility was found in 
the real estate and education sectors. Future research should further investigate these variations and explore the 
possibilities of tailoring interventions to the specific types of users.   

1. Introduction 

1.1. Background 

A decarbonized electricity sector is fundamental to any transition 
towards a sustainable energy system. As countries strive to reduce their 
CO2 emissions through increased electrification, they face new chal
lenges in adapting their electricity grids to higher levels of renewable 
energy penetration. The problem of intermittency, where the supply of 

power from renewable energy sources like wind and solar is much more 
volatile due to the chaotic nature of atmospheric conditions, creates 
vulnerabilities in the power system that pose a threat to the continued 
expansion of renewables [1]. Parallel to that, electricity grids are 
becoming increasingly strained by bottlenecks in the grid’s transmission 
capacity. Capacity shortages, induced by high surges in demand during 
peak hours of consumption, are also responsible for vulnerabilities in the 
electricity system that require expensive upgrades in infrastructure. One 
proposed remedy to both these problems is increasing the flexibility of 
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the demand side, through demand side management (DSM) measures 
that involve motivating users to shift their electricity usage [2]. Demand 
response (DR) is a subset of these measures that typically relies on using 
the price of electricity to incentivize end users to make changes in their 
electricity usage [2]. 

The residential sector has been the focal point of research in demand 
response. Despite the broad range of literature, this research has yet to 
converge on a common resolution regarding the magnitude of response 
that can be expected from price-based policies and the role that demand 
response can play in the electricity sector at large [3]. The policies being 
tested and implemented are usually financial, and the wide disparity in 
their outcomes point to the prospect of pricing as an instrument that is 
too crude in incorporating the variety of complex elements that drive 
human behavior [4]. The assumption of forward-thinking rational 
agents is arguably more apt for the commercial sector. Though studied 
less frequently, the commercial sector has been identified as a candidate 
with a large potential for demand-response participation, and one that 
could be more responsive to prices [5,6]. One U.S. study with a time-of- 
use (TOU) pricing scheme characterized by low peak to off-peak price 
differentials shows minimal effects on peak demand [7]. In contrast, a 
Korean study on the effects of a critical-peak-pricing (CPP) scheme with 
more extreme peak to off-peak ratios detected larger effects, as well as a 
correlation between the magnitude of response and a given firm’s 
expenditure share on electricity [8]. As in the residential sector, a 
consensus is yet to emerge on the efficacy of price-based demand 
response measures in the commercial sector. 

1.2. Problem statement 

The heterogeneity of the commercial sector makes it difficult to 
generalize an evaluation of any price-based intervention. The constitu
ents of this sector vary widely in their size, the activities they conduct, 
their reliance on electricity and the flexibility of their consumption. 
Segmenting this sector and outlining these differences allows for a 
sharper understanding of the aspects relevant to commercial demand 
response. In the context of this study, the “commercial sector” refers to 
users that have a small to medium-sized electricity connection (35-63A), 
and are either businesses, organizations or public institutions. This study 
then explores the effects of a rolled-out demand charge on the con
sumption patterns of these users. 

Demand charges, which apply a per-kW fee to a given user’s monthly 
maximum rate of energy consumption (in kW) have an extensive history 
in the industrial sector but have been used less frequently in the resi
dential and service sectors [9,10]. Renewed interest in these charges 
stems from the heightened need to contain costs in the distribution of 
electricity, mainly through “incentivizing smarter load management” 
and “improving utility cost recovery” [11]. The extent to which these 
charges can in fact influence behavior so as to meet these goals remains 
to be established. Accordingly, our aim is to explore the flexibility po
tential of different types of commercial users, map out their load pat
terns and measure changes in their consumption behaviors in response 
to a demand charge. In doing so, we aim to quantify the effect of the 
demand charge, segment users into distinct groups based on their load 
characteristics, and differentiate the effect of the demand charge be
tween these segments while examining their composition. 

The measure through which different users can be compared are 
numerous, i.e. size and type of business, operating hours, etc. Among 
these different factors, the load pattern is one of the most illuminating 
measures. Profiling the different loads and evaluating their variability 
allows for an assessment of a given user’s contribution to demand peaks 
in the local grid. Furthermore, characterizing this variability has been 
demonstrated to be effective in estimating the potential degree of de
mand response [12]. While distribution system operators (DSOs) are 
forbidden from discriminatory pricing and therefore need to uniformly 
apply their pricing schemes to their designated areas, the ability to 
distinguish between different user and load types can influence how and 

to whom demand response policies should be communicated. 
In this study, the analysis is conducted by clustering the users ac

cording to their distinct load patterns and evaluating the quantitative 
effect on the monthly mean and maximum demand (measured hourly) 
within the different clusters. We match the clusters between the inter
vention area and the reference area to understand the effect of the de
mand charge. We also study the industrial classification codes of the 
companies in each cluster to understand which types of business are 
present in each cluster and investigate their flexibility to adapt to the 
demand charge. 

1.3. Profiling users 

Clustering is one technique that has commonly been used to cate
gorize users. A form of unsupervised learning, it can be used to classify 
electricity users according to certain properties of their consumption 
patterns. Clustering has been used quite extensively in the residential 
sector, mainly to characterize, identify and classify the different types of 
users [13–15]. It has also been used to distinguish users who are higher 
contributors of peak demand [16]. Research that considers mixed or 
industrial sectors has been more focused on the performance of the al
gorithms and models used for classification rather than the interpreta
tion of their outcome [17–19]. Clustering has also been used to improve 
load-forecasting models, with one study looking at a case in Finland 
where a sample of mixed users is used to generate load profiles for 
different customers [20]. One study targets a non-residential sample in 
the U.S. and uses clustering to generate 16 different load patterns for 
different types of commercial users [21], but otherwise, research that 
strictly applies clustering techniques to the commercial sector is scarce. 
The commercial sector represents a much more diverse set of users, with 
variations that are highly contingent on the type of commercial or ser
vice activity a given user engages in. Applying these clustering tech
niques could therefore lead to a more comprehensive understanding of 
user heterogeneity within the sector, and in turn, more precise demand 
response policies. In this paper, we cluster the users based on their load 
patterns using their hourly electricity consumption data. We adopt 
multivariate clustering techniques to match users with different load 
patterns by considering their mean, standard deviation, and skewness of 
total energy consumption, as well as the mean and standard deviation of 
their power spectral density to capture the periodicity in electricity 
consumption. 

2. Data 

2.1. Data collection 

It is important to note that electricity in Sweden, the location of the 
empirical setting, is paid for through two different bills. The first goes to 
a retailer, and covers the cost of procuring and supplying the electricity, 
while the second goes to the distribution system operator (DSO) and 
covers the cost of transmission and distribution. This study strictly deals 
with the second of these bills, that of the DSO. 

The set of users consists of two groups that fall into an intervention 
and a reference area. The reference area is the city of Sundsvall, Sweden 
and has an energy-based distribution tariff that consists of a volumetric 
charge of 0.13 SEK/kWh and a fixed fee that ranges from 8210 to 14795 
SEK/year, depending on the fuse size. The intervention area is the city of 
Sandviken (227 km south of Sundsvall). Prior to the intervention, users 
were subject to a two-part tariff similar to that in the reference area, with 
a volumetric charge of 0.225 SEK/kWh and a fixed charge that ranged 
from 5250 to 10,000 SEK/ year, also depending on fuse size. The DSO for 
the intervention area replaced this two-part tariff with one centered on a 
demand charge. Users were now subject to a fixed fee of 5250 SEK/year 
(increased to 5426 SEK in the third year) and a demand charge that 
varied in each month. This applied to all users with a fuse size of 35–63 
A. The various rates are displayed in Table 1. 
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The first thing to note is that users would pay according to their 
maximum monthly demand, which is calculated at an hourly rate. A 
temporal resolution of one hour means that a user’s maximum “peak” is 
taken to be their monthly maximum hourly consumption in kWh, hence 
the units in Table 1. A user who’s highest hourly consumption is 1 kWh 
for some arbitrary hour in January 2016 would then pay 93 SEK. The 
second point to note is that this rate varies with each month, priced in 
accordance to the average peak load during that respective month over 
the past two years. Months where aggregate demand is typically higher 
(winter months) are therefore priced at higher rates. 

The aim of this tariff was to encourage users to reduce their 
maximum demand, and therefore reduce the strain imposed on the local 
grid. Electricity consumption data in kWh/h were collected on an hourly 
timescale for all users in the intervention (212 users) and reference 
(1055 users) areas spanning the period from May 1st, 2014 to April 30th 
2017. This includes one year of data before the introduction of the new 
tariff (pre-treatment) and two years of data after the introduction of the 
tariff (post-treatment). More information about the dataset can be found 
elsewhere [22]. In addition to consumption data, each user was matched 
by a Swedish Standard Industrial Classification (SNI) code [23] in order 
to map them to their respective commercial activity category. 

2.2. Data preprocessing 

The pretreatment period of hourly electricity consumption data from 
each user was checked for extremely low or high consumption values, 
extremely low variability in the time series, and long periods of missing 
data. These data were cleaned from the dataset to avoid having them 
influence the results. Following Öhrlund, Schultzberg and Bartusch 
[22], users were removed from the dataset when either of the following 
conditions were met: i) their annual mean hourly electricity consump
tion was lower than 0.1 kWh, ii) their minimum consumption was higher 
than 13 kWh, iii) their maximum consumption was lower than 2 kWh, 
iv) their variance in electricity consumption was smaller than 0.05 kWh 
and v) their data was missing for more than 100 days. In the intervention 
area, data from 15 out of 212 users (7.1%) were excluded based on these 
criteria. In the reference area, data from 91 out of 1055 users (8.6%) 
were excluded. The clustering of the users and analyses of the effects 
were performed on the remaining 1161 users, of which 197 in the 
intervention area and 964 in the reference area. 

3. Methods 

3.1. Clustering users 

To explore the effects of the tariff change, the electricity consump
tion in the posttreatment years of the intervention area and reference 
area have to be compared. We are aiming for causal inference, i.e. 
attributing changes in electricity consumption behavior to the changes 

in the tariff scheme. This requires, however, that the electricity con
sumption in the pretreatment year was similar for the users in both 
areas. Due to intrinsic differences between the users in both areas and 
other area characteristics such as outdoor temperature, this is not 
necessarily the case. Therefore, some kind of matching is required to 
pair users in the intervention area and reference area with similar 
electricity consumption patterns. There are multiple ways to do such 
pairing, e.g. one-to-one pairing or finding a subset in the larger reference 
group which matches with the smaller intervention group [22]. How
ever, in both cases, data will be lost. Also, when matching is based on 
single statistical values such as the mean electricity consumption, large 
differences in variance or periodicity could be neglected. 

In this study, we propose using a multivariate clustering technique to 
be able to avoid the beforementioned problems, as well as to be able to 
explore the effects of the tariff change on different types of users, 
characterized by the clusters. Note that for the clustering, only the data 
from the pretreatment year was used. We denote the hourly energy 
consumption of each user c at hour h by xc,h. First, summary statistics 
were computed for each user c: mean (mc), standard deviation (sc) and 
skewness (bc) of total energy consumption based on its hourly electricity 
consumption data, as well as the mean (μc) and standard deviation (σc) 
of the power spectral density (PSD) plot of each user. Welch’s PSD was 
used as a measure of periodicity within the electricity consumption of 
each user. The mean electricity consumption for user c is calculated as: 

mc =
1

Hc

(
∑Hc

h=1
xc,h

)

(1)  

where Hc is the number of hours for which data is available for user c. 
The sample standard deviation is then defined as: 

sc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Hc − 1

∑Hc

h=1

(
xc,h − mc

)2

√
√
√
√ (2)  

and the skewness is calculated as: 

bc =

1
Hc

∑Hc
h=1

(
xc,h − mc

)3

(sc)
3 (3) 

Welch’s PSD was calculated by dividing the time series of the hourly 
electricity consumption of each user into 10 equally-sized segments with 
zero overlap. The Hamming window function was applied to smooth the 
autocovariance function: 

w(n) = α − (1 − α)cos
(

2πn
N − 1

)

, 0 ≤ n ≤ N − 1  

with α = 0.54 and N equal to the size of the output window [24]. A 
periodogram was calculated based on the discrete Fourier trans
formation [25]. Welch’s PSD is mainly used in signal processing. In this 
study, we treat the fluctuating energy consumption pattern as a signal, 
to determine the periodicity in the energy consumption. Welch’s PSD 
returns two vectors: a vector containing frequency bins and a vector 
containing the power in each of the frequency bins. An example of a PSD 
plot is shown in Fig. 1. The frequency bins represent periods such as 
days, weeks and months. A stronger periodicity in the electricity con
sumption, for example weekday/weekend patterns or day/night pat
terns, will return higher peaks in power. Although the frequency bins 
themselves are not interpretable in this form, they are similar for each 
user. This means that we can use the power vectors to compare the 

periodicity of different users. Given the power vector pc =
{

pc,1⋯pc,F

}

for user c, consisting of the power for each frequency bin f ∈ 1⋯F, we 
can then compute the mean (μc) and standard deviation (σc) of each PSD 
as: 

Table 1 
Monthly demand charge rates (SEK/kWh/h) over the evaluation period.  

Month Year 

2015 2016 2017 

January  93 89 
February  83 85 
March  80 78 
April  65 65 
May 55 55 56 
June 53 53 53 
July 51 51 51 
August 53 53 51 
September 66 66 63 
October 75 75 74 
November 76 76 86 
December 95 95 94  
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μc =
1
F

(
∑F

f=1
pc,f

)

(4)  

σc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
F − 1

∑F

f=1

(
pc,f − μc

)2

√
√
√
√ (5) 

Next, consider vc = {mc, sc, bc, μc, σc} to be the vector of summary 
statistics for user c ∈ 1⋯C, where C is the total number of users. Using k- 
means clustering, the set of all observations {v1,⋯, vC} is partitioned 
into k number of sets or clusters, where k ≤ C. The sets S = {S1,⋯, Sk}

are chosen such that the within cluster sum-of-squares is minimized: 

min

(
∑k

i=1

∑

vc∈Si

‖vc − mSi‖
2

)

(6)  

where mSi is the mean of vc in set Si, where i ∈ 1⋯k. This makes mSi the 
center of cluster i. The Hartigan-Wong method was used for minimiza
tion of the within cluster sum-of-squares [26]. First, the observations are 
divided into random sets Si. Each observation is assigned to the nearest 
cluster center. Then, in each iteration, the within cluster sum-of-squares 
is calculated for each observation in a cluster, as well as the case in 
which the observation would have been assigned to a different cluster. 
The observation is then assigned to the new cluster if that cluster has a 
smaller sum-of-squares: 

Ni
∑

vc∈Si
‖vc − mSi‖

2

Ni − 1
<

N1
∑

vc∈S1
‖vc − mS1‖

2

N1 − 1
(7)  

where Ni is the number of observations in the candidate cluster Si and N1 
is the number of observations in the current cluster S1. In each iteration, 
mSi is updated. The algorithm terminates when no changes can be made 
to further minimize the within cluster sum-of-squares. As the randomi
zation in the first step may influence the results, it is strongly suggested 
to run the Hartigan-Wong algorithm multiple times with new random 
starting sets. In this study we used three runs. 

Note that the clustering is performed on the summary statistics of the 
complete pretreatment dataset including both the users in the inter
vention area and reference area. Users from the intervention area and 
reference area are combined in the same cluster based on similar 
amounts and patterns in their electricity consumption. To minimize the 
chance of clusters having no or only a few users from the smaller 
intervention area group, the number of clusters k should not be too high. 
In this study, we found k = 4 to be a suitable number of clusters for a 
good balance between minimizing the within-cluster variability and 
maximizing the between-cluster variability. Results for other values of k 
are included in Figure S1 in the Supplementary Materials. The between- 
cluster variability and within-cluster variability were visually inspected 
based on the time series plots of the pretreatment period. The aim was to 
obtain large differences between clusters in terms of mean electricity 

consumption and periodicity, while minimizing the within-cluster dif
ferences of the users in the intervention area and the users in the 
reference area. The goal of the latter is to have comparable user groups 
in the reference area and intervention area, such that the effects in the 
post-treatment period can be attributed to the tariff change and not to 
other within-cluster differences between the user groups. 

3.2. Evaluating the effects of the demand charge on consumption patterns 

Within each cluster S1,⋯, S4 we compared the electricity consump
tion before and after the tariff change. Note again that each cluster 
contains users from the intervention area and from the reference area. 
To minimize the effects of within-cluster variability on differences be
tween the users in the intervention area and reference area, we do not 
compare their absolute differences, but the relative differences between 
the pretreatment period and posttreatment period for the intervention 
area vs. the reference area. We considered relative differences in the 
mean for the full year as well as for the summer only, to eliminate 
possible bias due to differences in wintertime heating between the 
reference area and intervention area. We also considered differences in 
monthly peaks, i.e. the average monthly maximum energy consumption 
of the users in each group, and the peak-to-average ratio (PAR), where 
PAR is defined as the ratio between the monthly maximum of the hourly 
energy consumption and the monthly mean of the hourly energy con
sumption for each user. The relative change in peaks and the PAR in the 
posttreatment period compared to the pretreatment period is evaluated 
for the intervention area users and reference area users within each 
cluster. The monthly peaks and PAR are used, because the demand 
charge is also based on monthly peak consumption. A decrease in 
monthly peaks would demonstrate a positive effect of the demand 
charge. 

3.3. Evaluating the types of user in each cluster 

To further explore the clusters, the Swedish Standard Industrial 
Classification (SNI) codes [23] were used to map the users to their 
respective commercial activity category. At the most general level, a 
letter between A to U is given to designate an entire sector (agriculture, 
mining or manufacturing for instance). Each letter corresponds to a set 
of two-digit codes that then specify certain sub-sectors. The general 
agricultural sector (A) can be split into agriculture, forestry and fishing 
for example, each represented by a unique two-digit code. Each addi
tional digit provides a further level of specification and the full five 
digits will give a highly detailed classification (“retail sale of pet ani
mals, and pet food in specialized stores” for example). The guide of SNI 
codes and their respective categorizations was downloaded from Sta
tistics Sweden (SCB) and was then used to match users from the dataset 
to their associated commercial activity. 

Compositional bar charts were then generated for each cluster, 

Fig. 1. Example of a Welch PSD plot.  
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showing the distribution of different user types. The 2-digit SNI codes 
were used to create these charts. While using the 5-digit codes could 
provide a higher data granularity, it severely limited the ability to 
identify wider patterns and draw any conclusions due to the limited 
number of users that fall into each specific business type. The charts 
generated provided the proportional representation of the different 
commercial activities in each sector and allowed us to visualize the 
distribution of users across the clusters. 

4. Results 

4.1. Clustering results 

The clustering based on the mean, standard deviation, skewness, 
mean of PSD and standard deviation of PSD led to four distinct clusters. 
The algorithm converged after 4 iterations. Cluster 1 contained 328 
users, of which 73 were located in the intervention area and 255 in the 
reference area. Cluster 2 contained 345 users, of which 52 were located 
in the intervention area and 293 in the reference area. Cluster 3 is the 
smallest cluster with 178 users, of which 23 were located in the inter
vention area and 155 in the reference area. Cluster 4 consisted of 310 
users, of which 49 were located in the intervention area and 261 in the 
reference area. The time series for each group were visually inspected to 
evaluate whether the within-cluster variability was small enough to 
make the intervention group and reference group comparable in terms 
of their average electricity consumption, weekly consumption patterns 
and seasonality. Fig. 2 shows the time series in the pretreatment year for 
all clusters. For visualization purposes, a 24-hour rolling mean was used. 
The actual analysis was performed using hourly values. 

As can be seen in Fig. 2, the patterns in the electricity consumption of 
the users in the intervention area and reference area largely overlap. 
This will allow comparability in the posttreatment period. In clusters 1 
and 2, the mean electricity consumption was slightly higher in the 
intervention area compared to the reference area. In cluster 4, the 
electricity consumption was slightly higher in the reference area. Since 
we are comparing relative differences, these small differences are 

negligible. In Fig. 2 we can also see that the between-cluster variability 
is large, showing good effectiveness of the clustering algorithm. Clusters 
can be distinctly differentiated in terms of mean electricity consump
tion, weekly periodicity patterns and seasonality throughout the year. In 
cluster 1, the mean electricity consumption is low, around 2 kWh per 
hour. The consumption stays relatively constant throughout the year 
and there are no strong weekday/weekend patterns, suggesting a low 
periodicity. Cluster 2 has a medium mean electricity consumption with a 
strong seasonal pattern. The consumption is lowest in summer with a 
demand around 4 kWh per hour, and higher in winter with a demand 
around 8 kWh per hour. There are some signs of weekday/weekend 
patterns with a medium strength. Cluster 3 contains the users with the 
highest electricity consumption. Additionally, in this cluster there is a 
strong effect of seasonality, with a demand around 7 kWh per hour in 
summer and around 13 kWh per hour in winter. Here, the weekday/ 
weekend effect is very clear with a strong increase in demand during the 
week and a strong decrease in demand during the weekend. Cluster 4 is 
characterized by a low and stable demand of around 3 kWh per hour 
throughout the year, with a small increase during winter. However, 
compared to cluster 1 there is a large difference in periodicity. Whereas 
cluster 1 had a low periodicity, cluster 4 clearly shows strong weekday/ 
weekend patterns. 

4.2. Effects of the demand charge 

Fig. 3 shows the electricity consumption of the different clusters 
throughout the posttreatment period. The posttreatment period covers a 
period of two full years. Compared to Fig. 2, two winter peaks are visible 
and the periodicity of the weekly patterns is more compressed. The ef
fects of the tariff change can be distinguished most clearly in the second 
year of the posttreatment period of clusters 3 and 4, where the red line of 
the intervention area clearly drops below the line of the reference area, 
both during summer and winter. 

In Table 2, the differences are quantified. When the difference in
dicates a positive value, the consumption was higher in the intervention 
area compared to the reference area. As this was already the case for 3 

Fig. 2. Energy consumption in the pretreatment year for each cluster. For visualization purposes, a 24-hour rolling mean is used.  
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out of 4 clusters, we are mostly interested in the change in this difference 
throughout the years. For all clusters, we see that the energy con
sumption decreased in the intervention area compared to the reference 
area. The effect of the tariff change is visible in the first posttreatment 
year and becomes stronger in the second year. For example, in cluster 1 
we see that the average consumption in the intervention area was 7.62 % 
higher than in the reference group during the pretreatment period. After 
the tariff change, this reduced to 6.35 % in the first year and even to 1.01 
% in the second year, indicating a large effect of the tariff change on the 
average consumption. In cluster 2 we see a similar pattern, although less 
strong. In cluster 3, where the electricity demand in the intervention 
area was 1.81% higher than in the reference area during the pretreat
ment period, the electricity demand in the intervention area dropped in 
comparison to the reference area, such that the electricity demand in the 
intervention area was even 5.88 % lower in the intervention area than in 
the reference area during the second year after the tariff change. In 
cluster 4, the electricity demand in the intervention area was already 
much lower than that of the reference area in the pretreatment period. 

However, even in this case, the effect of the tariff change is visible 
through an increase in the difference. 

To validate that the effects were actually caused by the tariff change 
and not by other factors such as seasonal temperature variations, which 
differ between the intervention area and reference area and from year to 
year, we carried out the same analysis only on the summer months of 
June-August. The results are shown in Table 3, which shows that the 
demand charge also had an effect on electricity consumption in summer 
only, at least for clusters 1, 3 and 4. We don’t see an effect in cluster 2, 
which also had the least strong effect visible in Table 2. For complete
ness, Table 3 also includes the results during the winter months 
December-February. Due to possible temperature differences between 
the areas, these should be used for comparison only, and not for eval
uation of the effect of the tariff change. 

As the demand charge is based on a given user’s maximum monthly 
consumption (kWh/h) an effect would also be expected users’ “peaks”. 
This effect can clearly be seen for clusters 1, 2 and 3 (Table 4). Again, we 
look at the change in difference between the two areas over time rather 

Fig. 3. Energy consumption in the posttreatment years for each cluster. The red line represents the intervention area. The blue line represents the reference area. For 
visualization purposes, a 24-hour rolling mean is used. 

Table 2 
Differences in electricity consumption between the intervention area and reference area, throughout the pretreatment and posttreatment periods.  

Cluster Pretreatment Posttreatment year 1 Posttreatment year 2 Posttreatment overall 

Cluster 1 Intervention area 1.95 kWh 2.03 kWh 1.99 kWh 2.01 kWh 
Reference area 1.81 kWh 1.91 kWh 1.97 kWh 1.94 kWh 
Difference 7.62 % 6.35 % 1.01 % 3.71 % 

Cluster 2 Intervention area 5.71 kWh 5.73 kWh 5.46 kWh 5.60 kWh 
Reference area 5.31 kWh 5.37 kWh 5.22 kWh 5.30 kWh 
Difference 7.52 % 6.81 % 4.53 % 5.7 % 

Cluster 3 Intervention area 9.83 kWh 9.41 kWh 8.83 kWh 9.12 kWh 
Reference area 9.65 kWh 9.54 kWh 9.38 kWh 9.46 kWh 
Difference 1.81 % − 1.41 % − 5.88 % − 3.59 % 

Cluster 4 Intervention area 2.73 kWh 2.72 kWh 2.68 kWh 2.70 kWh 
Reference area 3.12 kWh 3.17 kWh 3.22 kWh 3.19 kWh 
Difference − 12.60 % − 14.38 % − 16.79 % − 15.55 %  
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than the absolute peak values, which would fluctuate too much over 
time to draw conclusions only based on those. In clusters 1 and 3, the 
peaks were a bit higher in the intervention area than in the reference 
area within the pretreatment period. However, in the posttreatment 
period, the peaks were lower in the intervention area compared to the 
reference area, indicating an effect of the tariff change. In cluster 2, the 
peaks were substantially larger in the intervention area than in the 
reference area during the pretreatment period. During the posttreatment 
period, the difference became considerably smaller. The peak con
sumption of users in cluster 4 did not seem to be affected by the tariff 
change. No difference in the PAR was found after the tariff change, 
indicating that the mean and peak consumption decreased with a similar 
magnitude. 

4.3. User types 

Given that the mean of a user’s monthly electricity usage was one of 
the parameters on which the clustering was based on, one would expect 
to detect a relationship between a user’s fuse size and the cluster in 
which they were placed. The heatmap in Fig. 4 illustrates this 
relationship. 

It is evident that a majority of the users in clusters 1 and 4, which 

were the clusters with the lowest average consumption, have the 
smallest possible fuse size and so are indeed “low-energy” consumers. 
Cluster 2 was characterized as a cluster of “medium” energy usage, with 
its users distributed roughly evenly among all three fuse sizes. Cluster 3 
which had the highest average energy usage places most of its users in 
the largest possible fuse size. Fig. 4 confirms the role played by fuse size 
in the clustering outcomes but provides little additional insight. Even 
though the majority of users in cluster 3 have the largest fuse size, less 
than 30% of all users with the largest fuse size fall into cluster 3. That is 
to say, a user in cluster 3 is likely to have the largest fuse size, but having 
the largest fuse size is not necessarily an indicator of being in cluster 3. 
Further insight on the type of users in each cluster must be drawn from 
other factors. 

Using the SNI codes, users could be matched to the type of activities 
associated with their organization. The SNI codes provide a high level of 
classification for each user type, but users were grouped into their 
broader sectors as the data was too sparse to detect general patterns 
using the more detailed codes. Fig. 4 shows how each sector is distrib
uted among the clusters, with each cluster represented by a different 
color. The left segment of Fig. 5 shows the frequency chart of the sector 
composition, with the x-axis corresponding to the total number of or
ganizations that fall within a given sector and cluster. The sectors are 
organized in decreasing order, starting with those occupying the largest 
share of the total sample. Sectors beneath “Hotel and restaurant” each 
make up less than 5% of the total sample and are increasingly difficult to 
explore. To ease a visual understanding of the data, the right segment of 
Fig. 5 shows the normalized sector composition, with an x-axis that 
represents the proportion of each cluster in the sector. The numbers in 
brackets to the right of Fig. 5 represent the total number of organizations 
that fall within the corresponding sector, and the numbers centered in 
each bar show how many organizations fall within each cluster. 

The main deduction to be made from Fig. 5 is the sharp contrast 
between the real estate and commerce sectors. It should be stressed that 
users contained in the real estate sector are not private households but a 
combination of housing or tenant-owner associations and a variety of 
other types of property rentals and management. Nonetheless, elec
tricity usage associated with this sector is “residential” because it pri
marily involves activities carried out by or for residents. This could be 
lights and heating used in common areas, or laundry rooms and common 
gyms, for example. This sector makes up almost half of the total sample 
(48.5%) and so when looking at the clusters individually, it is difficult to 
identify any patterns because each cluster has a high share of the real 
estate sector. Fig. 5 also illustrates the proportions of each sector that fall 
into each cluster. More than half the real estate sector (56%) for example 
falls into the low consumption and seasonal periodicity clusters, clusters 
1 and 4. In contrast, the proportion of the real estate sector that falls into 
cluster 3, which is characterized by high energy use and strong peri
odicity is extremely low (12.4%). These proportions are virtually 

Table 3 
Differences in electricity consumption between the intervention area and reference area, throughout the summer periods (June-August) and winter periods (December- 
February) in the pretreatment and posttreatment periods.  

Cluster Pretreatment summer Posttreatment summer Pretreatment winter Posttreatment winter 

Cluster 1 Intervention area 1.48 kWh 1.56 kWh 2.42 kWh 2.44 kWh 
Reference area 1.35 kWh 1.44 kWh 2.38 kWh 2.56 kWh 
Difference 9.35 % 8.59 % 1.65 % − 4.51 % 

Cluster 2 Intervention area 4.24 kWh 4.31 kWh 7.36 kWh 7.01 kWh 
Reference area 3.79 kWh 3.86 kWh 6.95 kWh 6.86 kWh 
Difference 11.75 % 11.83 % 5.90 % 2.22 % 

Cluster 3 Intervention area 7.83 kWh 7.06 kWh 11.69 kWh 11.03 kWh 
Reference area 7.43 kWh 7.18 kWh 11.92 kWh 11.73 kWh 
Difference 5.40 % − 1.74 % − 1.88 % − 5.98 % 

Cluster 4 Intervention area 2.19 kWh 2.09 kWh 3.44 kWh 3.44 kWh 
Reference area 2.26 kWh 2.24 kWh 4.09 kWh 4.23 kWh 
Difference − 3.08 % − 6.70 % − 16.06 % − 18.54 %  

Table 4 
Differences in monthly maximum electricity consumption averaged over the 
users in the intervention area and reference area, throughout the pretreatment 
and posttreatment periods.  

Cluster Pretreatment Posttreatment 
year 1 

Posttreatment 
year 2 

Cluster 
1 

Intervention 
area 

8.58 kWh 8.35 kWh 8.27 kWh 

Reference 
area 

8.47 kWh 8.73 kWh 8.79 kWh 

Difference 1.31 % − 4.35 % − 5.97 % 

Cluster 
2 

Intervention 
area 

15.13 kWh 14.55 kWh 14.08 kWh 

Reference 
area 

13.79 kWh 13.88 kWh 13.71 kWh 

Difference 9.68 % 4.82 % 2.67 % 

Cluster 
3 

Intervention 
area 

21.42 kWh 20.71 kWh 19.49 kWh 

Reference 
area 

21.11 kWh 20.78 kWh 20.24 kWh 

Difference 1.48 % − 0.30 % − 3.70 % 

Cluster 
4 

Intervention 
area 

7.43 kWh 7.29 kWh 7.48 kWh 

Reference 
area 

8.78 kWh 8.92 kWh 8.81 kWh 

Difference − 15.42 % − 18.28 % − 15.11 %  
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reversed in the commerce sector, where less than 7% of users fall into 
the cluster 1 with low consumption and periodicity, and almost 30% fall 
in cluster 3 with high consumption and periodicity. The hotel and 
restaurant sector mostly consists of restaurants and largely falls into 
clusters 2 and 3 (76%) with medium–high consumption and strong 
periodicity. While distinct from the commerce sector, restaurants are 
also regarded as part of the commercial sector and so reinforce the 

finding that users in this sector tend to fall in clusters with stronger 
periodicities. A similar divide can be found among the education sector, 
predominantly made up of primary schools. 70% of this sector falls into 
clusters 2 and 4, which is reflective of schools being low-medium energy 
consumers with strong periodicity. Sectors smaller than the hotel and 
restaurants category each form less than 5% of the total sample. The 
number of users in these sectors becomes too small and too varied to 

Fig. 4. Heatmap of user’s fuse size and corresponding cluster.  

Fig. 5. Distribution of clusters among sectors.  
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draw general observations. A full proportional breakdown of clusters 
and sectors can be found in Table S1 in the Supplementary Materials. 

5. Discussion 

A set of commercial users were categorized into four clusters based 
on their consumption patterns. Within each cluster we see clear trends in 
electricity consumption with respect to fuse size and the sectors repre
senting each cluster. In cluster 1, we see users with low energy con
sumption and a small fuse size. The periodicity within the time series is 
low, indicating no strong weekday/weekend peak effects. In cluster 2, 
we find users with a medium energy consumption and a large variability 
in fuse sizes. The periodicity in cluster 2 is also medium while the sea
sonality is stronger, with an increase in electricity consumption in 
winter. Both clusters 1 and 2 only responded mildly to the change in 
tariff scheme. This is partially explained by the composition of these 
clusters, which consist mostly of the real estate sector. As stated, this 
sector refers not to the end-users in the residential buildings, but the 
common facilities as well as shared lighting and heating in the common 
areas, elevators, laundry rooms and gyms. These are usually on 24/7, 
which explains the low periodicity in the time series. The lack of user 
engagement and direct accountability regarding electricity consumption 
in this sector explains the low response to the tariff change. Cluster 3 
consists of users with a high electricity consumption, large fuse sizes and 
a high periodicity, showing a strong increase in consumption during 
weekdays and a drop in consumption during weekends. Cluster 4 con
sists of low electricity consumers with small fuse sizes and a high peri
odicity. The users in clusters 3 and 4 showed the strongest response to 
the new tariff. 

The clusters differed not only in their load patterns but also in their 
composition. While the real estate sector made up half the entire sample, 
it predominantly fell into clusters 1 and 2. Moderate electricity con
sumption and low periodicity are in line with expectations as the ac
tivities associated with this category are mostly base-load activities that 
occur in the public spaces of buildings (e.g. lighting, HVAC, etc.). The 
decrease in the average and peak consumption described in section 4.2 
was only expressed at the cluster level. It is therefore not entirely clear 
“who” reduced their consumption within a given cluster. All the units in 
a cluster might have decreased their consumption by small amounts or a 
few units could have made substantial changes while a majority made 
little to no change. Given the large representation of the real estate 
sector in each cluster, at least some residential units are very likely to 
have played a role in this decrease. This may be overlooked as a 
straightforward consequence of the demand charge but it should raise a 
serious question - how and why was this reduction achieved? As pre
viously mentioned, these units are not households, but various forms of 
associations that manage and administer buildings and properties. If the 
reduction was due to behavioral changes in activity, then the residents 
necessarily played a role, perhaps through their usage of the common 
facilities. In turn, this implies an exchange of information between the 
residents and the property’s management, who consequently must have 
informed them. If this is the case, then what and how they communi
cated to their residents should be a question of major interest. If on the 
other hand these reductions came from managers and administrators 
carrying out specific passive changes themselves (e.g. retrofitting, 
switching to more efficient lighting, HVAC, etc.) then this is also an 
interesting finding that reflects an unusual amount of effort exerted to 
save costs that have historically just been pushed onto the residents 
(through higher monthly fees). 

Primary schools make up the second largest share of the sample, 41% 
of which fell into cluster 4, a cluster with high periodicity and the least 
responsive to the tariff. There is little flexibility in the activities that take 
place in a primary school, which are centered around a rigid schedule 
with a regimented set of routines. Education is distinct in that it is a 
public good, not a purely commercial activity. While the cost of elec
tricity might be a factor to consider in the operation of a business, it is 

not something that is likely to bear a heavy influence on the operation of 
a school. Similar to the real estate sector above, the direct users of the 
facilities (students, teachers, workers) have no direct incentive to reduce 
their electricity consumption as they incur no cost. While property 
managers in the residential sectors could hypothetically use their elec
tricity savings to make their properties more attractive through adver
tising reduced monthly fees, it is unclear if a similar incentive would 
exist for the facility managers of a school. Whether the facility managers 
have any incentive to reduce their electricity consumption is ambiguous 
and likely depends on if and how they pay for their electricity use. 
Variations in these details between schools are likely too wide to draw 
general conclusions. Additionally, primary schools do fall within the 
other clusters as well, but their low representation in those clusters 
(around 10%) make it difficult to decipher whether they played any role 
in the cluster’s response. 

Less than 7% of all users registered under the commerce SNI code fall 
into cluster 1. Around 20% fall into cluster 2 and the remainder fall into 
clusters 3 and 4. One conclusion is that it is highly unlikely that a 
business in the commercial sector has both low energy use and low 
periodicity. A business in the commercial sector is very likely to have a 
medium–high energy consumption with a medium–high periodicity. If a 
business is a low energy user, it is very likely that it has a high period
icity and so falls within cluster 4. The high periodicity associated with 
the commercial sector points to loads driven by activities, contrary to 
the more stable base-loads of the real estate sector. If we disregard the 
7% of commercial units that fall in cluster 1, we find that the remainder 
are almost evenly split between the clusters 2 and 3, which were more 
responsive with peak consumption (Table 3) and the less responsive 
cluster 4. An attempt to describe this disparity was made through further 
unpacking the commercial sector to see if there were different distri
butions between its constituents. The three subdivisions of the com
mercial sector are wholesale, retail and the automotive sector. All three 
were similarly distributed among clusters, with a slight underrepresen
tation of the automotive sector in cluster 3. There were no clear patterns 
as to which companies fall into a more or less responsive cluster. Further 
dividing the companies into more specific categories lowers the count of 
each user-type to a degree where it is difficult to make any generalizable 
conclusions. One could, for example, unpack the retail sector and count 
four grocery stores in cluster 3 and four stores that specialize in “eye
glasses and optics” in cluster 4, but these figures are too small to 
generalize. On the one hand, one could presume the commercial sector 
to be more responsive to a demand charge, given that electricity is a 
running cost that affects the operation of a business. On the other hand, 
flexibility in the timing of electricity use is not something one would 
expect of all businesses. Certain sets of activities might be more difficult 
to shift in time and so regardless of what sort of tariff a business has, it 
cannot be compelled to make changes if there are detrimental effects on 
its operations. Given an extensive set of barriers and challenges to de
mand response in the commercial sector [27], identifying which busi
nesses reduced their consumption and how they did it is a particularly 
interesting question that requires going further than analyzing SNI 
codes. 

A final note with important implications is the fact that while re
ductions were detected in the intervention area’s maximum hourly de
mand (users’ peaks), the PAR remained constant. Users must therefore 
have necessarily also decreased their average monthly energy usage. If 
users had responded to the demand charge by load-shifting, one would 
expect their average energy usage to remain constant, and therefore 
detect a decrease in the PAR. A stable PAR points to users responding 
through reducing their average energy usage instead of load-shifting, 
and indirectly reducing their maximum monthly demand through a 
general overall reduction in electricity use. While this may be glossed 
over as a minor technical detail, it raises important questions concerning 
how users respond to demand charges. Given that the tariff lacked a 
volumetric charge, there was no incentive for users to decrease their 
average energy consumption, only to decrease their maximum hourly 
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demand in a given month. If users resorted to an indiscriminate decrease 
in energy because they misunderstood the tariff or its implications, then 
this points to potential issues with communication, and demands 
attention be channeled into ensuring users are better informed and 
guided with practical advice on how to best respond to their tariff. One 
may argue that this is a pedantic concern, given that there was still a 
detectable overall response. But if users “missed the point” of load- 
shifting, then it may be possible that users who are able to load-shift 
but unable to decrease their average energy usage were left out, non- 
responsive due to a misunderstanding or a lack of guidance. 

6. Conclusion 

In this paper, a multivariate clustering technique is used to incor
porate more statistical parameters in the evaluation of the demand 
charge while also classifying users in accordance to their consumption 
patterns. Using SNI codes that match users to their associated activities, 
we tried to explore the distributions of user-types among clusters and 
detect patterns in the data. By doing this, we aimed to develop a more 
detailed understanding of the tariff’s effects along with the heteroge
neity of its subjects. 

The users were divided into four clusters, each with distinct char
acteristics. Effects of the new tariff through decreases in mean and 
maximum monthly electricity consumption were detectable in three of 
the four clusters. Both these results point to disparities between users 
who make up the sample that are overlooked when the sample is treated 
homogenously. The clearest result in the user-type investigation was the 
stark divide between the real estate and commercial sectors. The real 
estate sector predominantly fell into clusters 1 and 2, characterized by 
low to moderate energy consumption and periodicity. In contrast, the 
commercial sector predominantly fell into clusters 3 and 4, character
ized by high periodicity, while restaurants largely fell into clusters 2 and 
3, indicating a medium–high energy use and a medium–high periodicity. 
While the more detailed 5-digit SNI codes allow one to match each user 
to more specific types of activity, no clear patterns were identified due to 
limitations in the sample size. 

Price tariffs are geographically indiscriminate. Users of the same 
local network will receive the same tariff regardless of their load pat
terns or consumption habits. While we refrain from making a judgment 
on this state of affairs, a demand-response policy would likely be 
strengthened by catering to the diversity of the users in a target sample. 
This need not take the form of differentiated pricing but could be applied 
in the communication strategies used in parallel to demand charges. One 
could be content with the moderate overall effect detected in [22] but 
this study reveals the heterogeneity of users and varying degrees of 
response that underlies the average. Demand response policies could 
therefore be strengthened if specific strategies are adopted for different 
user types. The real estate sector was characterized by low periodicity 
and low to medium consumption. Despite this, the real estate sector 
makes up half the sample, and so minor changes in its overall levels of 
demand could be more substantial for the local grid’s system peaks than 
smaller but more volatile users. Moderate improvements in energy ef
ficiency and performance can have effects on demand response that 
outweigh those achieved by behavioral changes [28]. If the patterns 
associated with this sector are in fact due to base-load energy usage and 
not driven by resident activity, then it could perhaps be appropriate to 
emphasize retrofitting and the adoption of more energy efficient systems 
in public places instead of targeting behavior in public spaces. 

One posited explanation for the predominant share of primary 
schools in the least responsive cluster was that those who use electricity 
are not the same as those who pay for the costs incurred. Bridging this 
gap would require a realignment of incentives and a strategy that goes 
beyond a basic price signal. In the case of the commercial and hospitality 
sectors (restaurants and hotels), demand is very likely to be driven by 
activity as evidenced by the higher periodicities. The tariff creates an 
incentive to decrease or shift activities peaks, but the efficacy of this 

incentive is uncertain, as many of these users fall into cluster 4 which 
was unresponsive when it comes to monthly maximum electricity con
sumption. Whether some businesses fail to respond due to limited 
knowledge on the implications of the tariff or weak financial incentives, 
or whether they cannot respond because the activities associated with 
their load patterns are essential to the operation of the business is 
another avenue for future research. 
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