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Upon antigenic stimulation, naïve CD4+T cells differentiate into different subsets and secrete
various cytokines to exert biological effects. Th22 cells, a newly identified CD4+T cell subset,
are distinct from the Th1, Th2 and Th17 subsets. Th22 cells secrete certain cytokines such as
IL-22, IL-13 and TNF-a, but not others, such as IL-17, IL-4, or interferon-g (IFN-g), and they
express chemokine receptors CCR4, CCR6 and CCR10. Th22 cells were initially found to
play a role in skin inflammatory diseases, but recent studies have demonstrated their
involvement in the development of various autoimmune diseases. Here, we review research
advances in the origin, characteristics and effector mechanisms of Th22 cells, with an
emphasis on the role of Th22 cells and their main effector cytokine IL-22 in the
pathogenesis of autoimmune diseases. The findings presented here may facilitate the
development of new therapeutic strategies for targeting these diseases.

Keywords: Th22 cells, IL-22, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, immune
thrombocytopenia, autoimmune diseases, autoimmune hepatitis
INTRODUCTION

CD4+ T cells mainly include Th1, Th2, Th17, Th9, Th22, follicular helper T (Tfh) cells and
regulatory T (Treg) cells (1–4), and they were initially divided into two categories: Th1 and Th2 cells
(5). This classification does not explain the pathogenesis of certain diseases; for example,
neutralizing or eliminating IL-12 or Th1 cells and the cytokine IFN-g could not prevent or
alleviate experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA);
however, the discovery of Th17 cells explains this paradox. Th17 cells do not express IL-4 or IFN-g
but secrete IL-17 at a high level (6, 7). Previous studies have shown that both Th17 and Th1 cells
secrete IL-22 (8, 9). A recent report identified that a group of special T cell subsets that could secrete
IL-22 and IL-13 but not IL-17 and IFN-g (10). Mouse T lymphoma cells stimulated with IL-9
expressed a cytokine very similar to the secondary structure of IL-10, and it is named interleukin-
10-related T cell-derived inducible factor (IL-TIF) (11). Further studies identified a new sequence
from human T cells that encodes 23% amino acids homologous to IL-10 and is 87% similar to IL-
TIF, and it is named IL-22 (12). The expression of IL-22 has been suggested to be associated with
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Th1 (8, 13) and Th17 cells (9, 14). However, Th22 cell clones in
the induced environment of Th1, Th2, Th17 and Treg cells do
not secrete their characteristic cytokines but can secrete IL-22,
which demonstrates that Th22 cells represent an independent T
cell subset. It is named Th22 because of its high level of IL-22
secretion (15). Plank et al. performed a whole gene chip analysis
and found differences between Th22 and Th17 cells, and they
determined that Th22 cells were an independent cell lineage (16).

Th22 cells can differentiate into Th1 or Th2 cells under
appropriate conditions. In an in vivo IFN-g-rich inflammatory
microenvironment or in vitro Th1-promoting conditions, Th22
cells have obvious plasticity. In an in vitro Th2 culture
environment, Th22 cells showed increased secretion of IL-13
(16). The conditions for the transformation between Th22 and
Th17 cells have not been clarified (17). Since other cells, such as
Th17 cells, also secrete IL-22, the identification of Th22 cells is
particularly important. Mousset et al. suggested that when using
flow cytometry to identify Th22 cells, Th22 cells can be identified
by integrating cell surface markers (CCR4+, CCR6+ and CCR10+),
combining cell transcription factors (AhR+ and/or STAT3+) and/or
cytokine staining (IL-22+), and requiring IFNg-, IL- 4-, IL-9-, IL-10-

and IL-17- (18). Here, we review the characteristics and effector
mechanisms of Th22 cells, with an emphasis on the role of Th22
cells and their main effector cytokine IL-22 in the pathogenesis of
autoimmune diseases, including rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE), psoriasis,multiple sclerosis
(MS), immune thrombocytopenia (ITP), immunoglobulin A
nephropathy (IgAN), autoimmune hepatitis (AIH), autoimmune
thyroid diseases (AITD), myasthenia gravis (MG), and systemic
sclerosis (SSc).
CHARACTERISTICS OF TH22 CELLS

Th22 cells secrete IL-22, IL-13, IL-26, TNF-a and granzyme B
but not IL-17, IFN-g or IL-4 (16). Activation of the transcription
factor aryl hydrocarbon receptor (AhR) significantly promotes
the differentiation of naïve CD4+T cells into Th22 cells (19). The
expression of the signature cytokines and transcription factors of
Th1, Th2 and Th17 cells was absent in Th22 cells (10, 15, 19).
Th22 cells are abundant in human skin and play important roles
in epidermal wound healing (15). These cells are tissue homing
CD4+T cells and exhibit anti-inflammatory, antibacterial and
antiviral activities. Emerging evidence has shown the critical
roles of Th22 cells in allergies, autoimmune diseases, intestinal
diseases and tumors (20–22).

IL-22 is the main effector molecule of Th22 cells and belongs
to the IL-10 family, and it acts by binding to IL-22 receptors
which are composed of IL-22R1 (main high affinity chain) and
IL-10R2 (helper receptor chain) subunits (23). IL-22R1 is mainly
expressed in nonhematopoietic organs, such as the skin, lung,
intestine and pancreas, but not in lymphoid organs including
thymus, bone marrow and spleen (24). IL-22 has little effects on
immune cells, and mainly acts on mucosal barriers of skin,
respiratory system and digestive system. IL-22 binding protein
(IL-22BP) or IL-22RA2, the soluble receptor of IL-22, is
Frontiers in Immunology | www.frontiersin.org 2
expressed in various tissues around the lung, colon and breast.
IL-22BP blocks the binding of IL-22 to IL-22R and is the receptor
antagonist of IL-22 (25). IL-22 can also be produced by lymphoid
cells, including Th17 cells, innate lymphocytes (ILCs), dermis gd
T cells, Tc17 cells, nonlymphatic macrophages (26), neutrophils
(27–29) and even fibroblasts of RA patients (28, 30–33). IL-22 in
the intestine is mainly produced by ILCs. ILCs migrate from
mucosal associated lymphoid tissue to the lamina propria after
stimulation (12). gdT cells are the primary source of IL-22 in the
skin, intestinal tract, lung, reproductive tract and other epithelial
tissues, where they respond quickly to exotic pathogens at an
early stage (34, 35). Moreover, IL-22 can induce the production
of different antimicrobial proteins by keratinocytes, intestinal
epithelial cells,bronchial epithelial cells and other different parts of
the human body (36). In addition, IL-22 can directly act on
endothelial cells through the activation of STAT3 and ERK
pathways,stimulate endothelial cell proliferation and migration,
and stimulate angiogenesis (37). IL-22 can also act on colonic
subepithelial myofibroblasts (SEMFs) to produce inflammatory
mediators such as chemokines, inflammatory cytokines and
matrix metalloproteinases (MMPs) (38).

The binding of IL-22 to IL-22R activates downstream signal
transduction (Figure 1) (39). IL-22 transmits phosphorylation
signals downstream through Janus kinase (JAK) 1 and tyrosine
kinase (TYK) 2, including the mitogen-activated protein kinase
(MAPK) pathway (p38 kinase, ERK1/2, MEK1/2 and JNK),
STAT3, STAT1 and STAT5 (39–41). Similar to other members
of the IL-10 family, IL-22 phosphorylates STAT3 mainly at
Ser727 and Tyr705 (23, 42, 43). IL-22 is also unique in that it
induces the phosphorylation of serine residues in addition to
tyrosine residues, and activates the ERK1/2 pathway (40), whereas
IL-10 induces the phosphorylation of tyrosine residues on STAT3.
This difference may be caused by the difference inreceptor R1.
The binding of SRC homologous phosphatase 2 (Shp2) to Tyr-
251 phosphorylation residues and the activation of IL-22R1 on
Tyr-301 are necessary for the activation of STAT3 (39, 44).
Moreover, the phosphorylation of STAT3 is essential for IL-22
to exert its effects on epithelial cells (45). IL-22 also induces the
expression of suppressor cytokine signaling1 and 3 (SOCS1/3),
which in turn inhibits the activity of STAT3 (39). Activation of
STAT1 and/or STAT5 can be observed in tumors (46–48). IL-22
can also activate the PI3K-Akt-mTOR pathway, which is essential
for the migration of hepatocytes and colonic epithelial cells (39,
49). The activation of Akt is important for the proliferation of
human fibroblast-like synoviocytes and epidermal keratinocytes
(50). IL-22 induces osteoclast formation in RA by p38MAPK/NF-
kB and JAK2/STAT3 signaling (51).
DIFFERENTIATION OF TH22 CELLS

The differentiation of Th22 cells is regulated by many factors,
which are different from other CD4+T cell subsets including
Th1, Th17 and Tfh cells (Figures 2A, B). Both IL-6 and TNF-a
can induce the differentiation of Th22 cells, IL-6 alone drives
the differentiation of naïve CD4+T cells into Th22 cells.
July 2021 | Volume 12 | Article 688066
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TNF-a further promotes the differentiation of Th22 cells
induced by IL-6, while a high dose of TGF-b inhibits the
differentiation of Th22 cells (10). In the presence of anti-IL-4/
IFN-g, IL-17A secretion still occurs when combined with IL-6,
IL-23, IL-1b and 6-formylindolo (3, 2-b) carbazole (FICZ). The
TGF-bR inhibitor (galunisertib) effectively inhibits the
production of IL-17Abutdoes not affect the secretion of IL-22.
Under this culture condition, the levels of IL-13 and granzyme B
also increase significantly. Under this culture condition,the levels
of granzyme B and IL-13 also increased significantly (16). IL-21
alone or in combination with IL-1b or IL-23 can induce Th22 cell
differentiation and IL-22 expression (52). Many reports show
Frontiers in Immunology | www.frontiersin.org 3
that differentiated Th22 cells can be identified by integrating cell
surface markers (CCR4+, CCR6+ and CCR10+) or its correlated
intracellular cytokines including IL-22+, IL-17- and IFN-g-

(Figure 3) (15–19).
In addition,plasmacytoid-like dendritic cells (pDCs) could

induce Th22 cells more strongly than conventional dendritic
cells (cDCs), and both of them release high concentrations of
TNF-a and IL-6 after activation. Blocking TNF-a and IL-6
inhibited 70% of Th22 cells in culture, which indicates that
DCs may promote Th22 differentiation in both direct and
indirect ways (10). Foreign antigens, such as microorganisms,
can also activate DCs. After stimulation by the serotypes of
FIGURE 1 | Signaling pathways mediated by IL-22. The IL-22 receptor complex consists of IL-22R1 and IL-10R2. By binding to its receptor, IL-22 activates TYK2 and
JAK1and triggers multiple intracellular pathways, including p38MAPK, MEK1/2, ERK1/2 and AKT, by phosphorylating serine and tyrosine in STAT3, STAT1 and STAT5,
which can ultimately lead to immune homeostasis. IL-22BP is a soluble receptor antagonist that specifically neutralizes the activity of IL-22. AhR, aryl hydrocarbon
receptor; APCs, antigen-presenting cells; JAK1, Jenus kinase 1; TYK2, tyrosine kinase 2; MAPK, mitogen-activated protein kinase; IL-22BP, IL-22 binding protein.
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A. actinomycetemcomitans, the levels of AhR and IL-22 in T
lymphocytes were increased,and the levels of TNF-a and IL-6 in
DCs were significantly increased. This type of actinomycete can
trigger the polarization of Th22 cells, which may be an important
part of the subgingival biofilm (53). Langerhans cells (LCs) from
the human epidermis and dermis can also induce naïve CD4+T
cells and peripheral blood T cells to differentiate into Th22 cells,
and the effect of LCs on the epidermis is stronger than that of
dermal DCs (54). Endogenous TLR4 ligands stimulate
keratinocytes to secrete IL-23 which activates DCs and induces
the differentiation of Th22 cells and IL-22 production (55).
Frontiers in Immunology | www.frontiersin.org 4
Activated B cells and initial T cells significantly inhibit the
expression of RORgt and the production of IL-17, but
significantly increase the differentiation of Th22 cells and the
production of IL-22 by cultured Th17 cells in vitro. Further in
vivo experiments showed that MRL/lpr lupus mice treated with
activated B cells exhibited reduced levels of anti-dsDNA
antibody and urinary protein. Meanwhile, Th17 cell
differentiation was inhibited and Th22 cell differentiation was
enhanced in these mice (56).

AhR is an important transcription factor in the differentiation
of Th22 cells. However, the expression of IL-22 in naïve CD4+T
A

B

FIGURE 2 | Regulation of Th22 cells differentiation. (A) The diagram illustrates the differentiation of Th cell subsets from naïve CD4+ T cells. (B) IL-21, IL-21
combined with IL-23 or IL-1b can induce the differentiation and IL-22 expression of Th22 cells; IL-6 and TNF-a secreted by DCs or external IL-6 or IL-6 and TNF- a
can promote the differentiation of naïve CD4+T cells into Th22 cells, and IL-1b promotes the differentiation; IL-6, IL-23, IL-1b, FICZ and TGF-bR inhibitor can promote
the differentiation of naïve CD4+T cells into Th22 cells. Both TGF-b and T-bet inhibit the expression of IL-22 in Th22 cells.
July 2021 | Volume 12 | Article 688066
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cells was reduced in the absence of RORc (gt) but increased in
Tbx21-deficient cells. Therefore, RORgt is considered a positive
regulator of Th22, while T-bet is considered a negative regulator
(16). Runt-related transcription factor 3 (RUNX3) is a runt-
domain family transcription factor. The number of Th22 cells
decreased significantly with the inhibition of RUNX3 (57).
Recent studies have shown that miR-31 mimic transfection can
Frontiers in Immunology | www.frontiersin.org 5
increase the levels of AhR and IL-22 and promote the
differentiation of Th22 cells in coronary heart disease.
Overexpression of miR-31 promotes the differentiation of
Th22 cells by inhibiting the BTB domain and CNC homolog-2
(Bach2) pathway (58). Medroxyprogesterone acetate (MPA) can
also enhance the Th22 cell response and decrease the expression
of Th1 and Th17 cell signature genes by activating AhR
signaling, thus affecting susceptibility to inflammatory diseases
and infectious diseases (59).
TH22 CELLS IN AUTOIMMUNE DISEASES

Recent studies have shown that Th22 cells play a regulatory role
in the initiation and development of many diseases, such as
kidney disease (60), cardiovascular disease (61), tumors (62) and
infectious diseases (63). IL-22, the main effector of Th22 cells,
also exerts different functions in different autoimmune diseases.
Cytokines of the IL-10 family mainly act on interstitial cells and
tissue epithelial cells, which can promote the proliferation and
repair of tissues and organs, protect the integrity of the barrier,
and play a patrolling role (23). These cytokines have both
proinflammatory and anti-inflammatory functions. Here, the
roles of Th22/IL-22 in the pathogenesis of autoimmune
diseases are reviewed (Table 1).

RA
RA is a common autoimmune disease that is characterized by
uncontrolled joint inflammation, bone erosion and cartilage
damage. The levels of Th22 cells, Th17 cells and IL-22 in
FIGURE 3 | Schematic diagram illustrates the flow cytometric analysis of
Th22 cells. Th22 cells are identified as CD3+CD4+IL-17-IFN-g-IL-22+, as well
as high expressions of CCR4,CCR6 and CCR10.
TABLE 1 | Dual role of Th22/IL-22 in autoimmune diseases.

Disease Mechanism of Th22 cells Th22
frequency

IL-22 serum
level

References

Pathogenic
RA Promote osteoclast differentiation, induce osteoclast formation by p38MAPK/NF-kB and JAK2/STAT3

signaling
↑ ↑ (20, 64, 65)

SLE Positively correlated with Th17 cells, correlated with the disease activity index and the severity index ↑ ↑ (66–68)
↓ ↓ (69–71)

Ps Activate keratinocyte overproliferation, induce dermatitis and acanthosis by activating the STAT3-mediated IL-
23 pathway

↑ ↑ (72–74)

MS Activate the NF-kB pathway, inhibit Foxp3 expression,promote oligodendrocyte apoptosis ↑ ↑ (75, 76)
ITP Positively correlated with Th1/Th17/Tfh cells ↑ ↑ (77–79)
IgAN Activate STAT3 and JAK signaling pathways, regulate renal fibrosis through the ERK,AKT and p38 signaling

pathways
↑ ↑ (80, 81)

AIH Th1/Th17/Th22 imbalance with Treg ↑ ↑ (82)[A]
AITD Secrete proinflammatory cytokines, such as IL-22 and IL-6 ↑ ↑ (83–86)
SSc Express massive fibroblast growth factor, promote the response of skin fibroblasts to TNF-a ↑ ↑ (87–89)
AS Positively correlate with Th17 cells ↑ ↑ (20)

— ↑ (90)
Vasculitis Involved in GCA B cell proliferation, differentiation and arterial remodeling * ↑ (91)
Protective
MS Severity of EAE was reduced in IL-22BP deficient mice * ↑ (92)[A]
MG IL-22 level was negatively correlated with serum anti-ACHR antibody level * ↓ (93)

— * (94)
July 202
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”↑” represents an increase compared to the healthy control; “↓” represents a decrease compared to the healthy control; “—” indicates similar to the healthy control; “*” indicates not
mentioned; “[A]” indicates animal model; non an notated references include human studies.
RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; Ps, psoriasis; MS, multiple sclerosis; ITP, immune thrombocytopenia; IgAN, immunoglobulin A nephropathy; AIH,
autoimmune hepatitis; AITD, autoimmune thyroid diseases; SSc, systemic sclerosis; AS, ankylosing spondylitis; MG, myasthenia gravis.
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patients with RA were significantly higher than those in healthy
controls. The numbers of Th22 cells were positively correlated
with the IL-22 levels. Moreover, the percentages of Th22 cells
and Th17 cells were positively correlated with the disease activity
score in 28 joints (DAS28) scores and C-reactive protein (CRP)
levels in RA patients (20, 64, 65). Not only did the levels of IL-17
and IL-22 in plasma increase, but the levels of IL-17 and IL-22 in
the subchondral bone marrow of patients with RA were also
significantly higher than those in plasma. The percentage of Th1,
Th17 and Th22 cells and the levels of IL-17 and IL-22 in bone
marrow were also positively correlated with DAS28 (95). The
frequency of Th22 and Th17 cells in peripheral blood and the
levels of IL-22, IL-17 and IFN- g in plasma were decreased in RA
patients who received effective treatment with methotrexate and
leflunomide, although significant changes were not observed in
patients with nonresponsive RA (96).

However,there are different views on whether Th22/IL-22 is
involved in T cell-mediated synovitis. Researchers have found
that the disease severities of wild-type mice and IL-22-deficient
mice are comparable to those of T cell-mediated arthritis,Th17
cells have a strong effect on synovial fibroblasts while targeting
Th17 cells and IL-17A but not Th22/IL-22 has been suggested as
a focus treatment for T cell-mediated synovial inflammation
(97). Recently, IL-22 neutralization was shown to inhibit
osteoclast formation. Th22 cells promote osteoclast
differentiation by producing IL-22 and play an important role
in bone destruction in patients with RA (98). High levels of IL-22
in synovial tissue induce the proliferation of synovial fibroblasts
and produce chemokines to enhance the inflammatory response
of synovial tissue (29). IL-22 also induces osteoclast formation by
inducing the p38MAPK/NF-kB and JAK2/STAT3 signaling
pathways in synovial fibroblasts. Moreover, Th22 cells migrate
to synovial tissues, which might be associated with the high
expression of C-C chemokine ligand 28 (CCL28) in RA patients
(98). IL-22 induces osteoclast formation by p38MAPK/NF-kB
and JAK2/STAT3 signaling in RA development (51). In an
animal model of CIA, blocking chemokine receptors was able
to effectively inhibit the progression of RA. After treatment with
the selective CXCR3 antagonist AMG487, the percentage of Treg
cells in CIA mice was increased while the percentages of Th1,
Th17 and Th22 cells were decreased. The expression of T-bet, IL-
17A, IL-22 and RORgt was down-regulated, and the expression
of Foxp3 was up-regulated. Chemokine receptor antagonists
have been suggested as an effective strategy for the treatment
of RA (99). Current studies support the hypothesis that Th22/IL-
22 plays a pathogenic role in RA pathogenesis, although this
mechanism requires further study. Blocking IL-22 may serve as a
novel effective therapeutic method for the treatment of
the disease.

SLE
SLE is another common autoimmune disease that is
characterized by increased autoantibodies and immune
disorders leading to tissue and organ damage. The role of
Th22 cells in SLE is still controversial. Zhao et al. found that
the plasma levels of IL-17A and IL-22 in patients with SLE were
Frontiers in Immunology | www.frontiersin.org 6
higher than those in healthy controls, and they showed that Th17
and IL-22 levels were positively correlated with the SLE disease
activity index (SLEDAI), indicating that IL-22 and IL-22+CD4+

T cells play an important role in the pathogenesis of SLE (66). In
2014, the team further found that the levels of IL-22 and IL-
22+CD4+ T cell before and after immunosuppressant and
glucocorticoid (GC) treatment did not differ compared with
the healthy controls (100). In 2017, this group also found that
the levels of CCR6+ T cells, CCR6+Th22 cells and plasma IL-22
increased in SLE patients. The percentage of Th22 cells was
positively correlated with the area of lupus erythematosus and
the severity index (RCLASI) of the skin. The percentage of Th22
cells in SLE patients with renal damage was positively correlated
with ESR, suggesting that CCR6+ Th22 cells may be a therapeutic
target for SLE treatment (67). Defects in TGF-b1 signaling in
patients with active SLE are also associated with the over-
production of IL-22 (101). Yang et al. found that the IL-22
levels increased in MRL/LPR mice while treatment with anti-IL-
22 monoclonal antibody significantly decreased the urinary
protein, urea nitrogen and serum creatinine in these mice (68).
Moreover, Th22 cells might be a better predictor of SLE tissue
involvement than Th17 cells (102). Other studies have shown
that the level of IL-22 is decreased in patients with SLE (69–71)
and significantly lower in patients with primary SLE (70).
Urinary IL-22 mRNA levels are decreased in SLE patients
with proliferative glomerulonephritis. IL-22 mRNA can also be
used to evaluate the activity of lupus nephritis (71). In Chinese
SLE patients, IL-22 gene polymorphisms may increase
susceptibility to SLE by reducing the expression of IL-22 (103).
In addition, recent studies have shown that activated B cells
suppress the development of lupus by promoting Th22 cell
differentiation and inhibiting Th17 (56). These results show
that both Th22 cells and IL-22 levels are related to SLE;
however, the exact mechanism is still unclear. Moreover,these
studies show that IL-22 levels differ at different stages of SLE (70)
and indicate its involvement in tissue inflammation and damage
to different organs (102). The currently available results suggest
the complexity of IL-22 and the heterogeneity of SLE, which
needs to be further explored.

PSORIASIS
Psoriasis is a chronic inflammatory autoimmune disease
mediated by T cells, and it is characterized by the abnormal
proliferation of keratinocytes. IL-22 is considered an activator of
keratinocyte over-proliferation (104, 105). The levels of Th22
cells and plasma IL-22 in patients with psoriasis are increased
and positively correlated with the severity of the disease (72–74).
High levels of IL-22 can induce the expression of antimicrobial
proteins (AMPs), antimicrobial peptides such as S100A7,
S100A8 , S100A9 and b -de fens in , and neu t roph i l
chemoattractants CXCL8, CXCL5 and CXCL1 in the epidermis
(106, 107). It can also inhibit keratinocyte differentiation,
interfere with the normal skin healing process, and induce the
production of MMPs, which is conducive to extracellular tissue
degradation (108, 109). IL-22 also induces dermatitis and
acanthosis by activating the STAT3-mediated IL-23 pathway
July 2021 | Volume 12 | Article 688066
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(9, 110). In addition, IL-22 neutralizing antibody treatment
decreased antimicrobial peptide levels and inhibited disease
development in a psoriasis mice model, suggesting the
therapeutic potential of IL-22 inhibitors in psoriasis (111).

Psoriasis is characterized by recurrent lesions in the same
anatomic area. New lesions appear in areas that have healed after
successful treatment because even if the psoriatic plaque
disappears, tissue resident memory cells (TRMs) are still
present in the skin (105, 112). In the active stage of psoriasis,
the expression of IFN-g, IL-17A and IL-22 in CD4+ and CD8+ T
cells in the epidermis is increased. IL-22 is mainly produced by
CD4+ epidermal T cells, where it activates keratinocytes and
leads to acanthosis. IL-17A is mainly produced by epidermal
CD8+ T cells, and it drives keratinocytes to participate in the
recruitment of neutrophils and produces chemokines and
proinflammatory cytokines (113). TNF-a promotes the
differentiation of Th22 cells, while TNF-a blockade has
achieved satisfactory results in the treatment of psoriasis
patients. However, Th22 cells in the healed skin epidermis still
produce IL-22 after 6 years of remission. Therefore, Th22 cells
play an important role in the memory of psoriatic relapse (113).
Previous findings suggest that IL-22 in the psoriatic epidermis is
produced by IL22+IL-17+ Th17 cells. Recent studies show that
there is no significant correlation between the expression of IL-
17A and IL-22 in psoriasis, which does not support the existence
of double-secreted IL-17A/IL-22 Th17 cells (114).

MS
MS is an autoimmune disease of the central nervous
system (CNS), and it is characterized by the loss of the
axonal myelin sheath and inflammation of the CNS, showing
clinical symptoms such as muscle spasm and paralysis.
Proinflammatory cytokines such as IL-22, IL-17, TNF-a and
IFN-g are involved in MS pathogenesis through multiple
signaling pathways. The proportion of Th22 cells (75, 76) and
the level of IL-22 in the serum of patients with MS increased
(75, 76, 115–121), and the level of IL-22 in recurrent stage was
significantly higher than that in progressive stage and remission
stage (115, 116, 119, 122). The level of IL-22 in cerebrospinal
fluid is also increased, and IL-22 increases the survival rate of
brain astrocytes. The IL-22 receptor subunit IL-22R is mainly
expressed on astrocytes (119), suggesting that astrocytes may
play an important role in IL-22-mediated pathological changes
in MS. IL-22 also inhibits the expression of Foxp3 by activating
the NF-kB pathway and promotes the expression of Fas in
oligodendrocytes, which leads to apoptosis of oligodendrocytes
(123). Large-scale studies of 5019 MS patients in Norway and
Sweden by Beyenet et al. identified IL-22RA2 as a risk gene for
MS (124). The high expression of T-bet and CCR6 in Th22 cells
of MS patients suggests that Th22 cells may migrate to the
central nervous system. The infiltration of Th22 cells leads to an
increase in T cell infiltration and contributes to the destruction
of the blood-brain barrier (76, 125). In addition, the resistance
to IFN-b therapy in MS patients may be related to the low
expression of IFN receptor 1 on the surface of Th22 cells, and
similar findings have been observed in the MS animal model of
EAE (115).
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A study in 2014 suggested that IL-22 played a protective role
in CNS inflammation (126). The severity of inflammation was
positively correlated with the level of IL-22BP in the
cerebrospinal fluid of patients with MS. IL-22BP has a
pathogenic effect on EAE in both mice and rats, and IL-22BP
is theoretically an antagonist of IL-22. IL-22BP has been
proposed to reduce IFN-g produced by brain-derived T cells in
lymph nodes (92). Previous studies showed that the
histopathological features of EAE in IL-22-deficient mice were
comparable to those in wild-type mice (14). Hannes et al.
conducted EAE experiments on wild-type mice, IL-22 deficient
mice, IL-22BP deficient mice, and IL-22 and IL-22BP double
deficient mice and concluded that the loss of control of IL-22
signal in IL-22BP deficient mice reduced the severity of EAE,
which supported the protective effect of IL-22 in MS; thus, they
suggested that IL-22BP could be used as a new target for MS (92).

ITP
ITP is an autoimmune disease that is characterized by increased
destruction and decreased production of platelets (127). The
frequency of Th22 cells and the level of plasma IL-22 in patients
with ITP were significantly higher than those in the control
group (77, 78, 128). The increase in plasma IL-22 levels in ITP
patients was reported to be associated with the dysregulation of
Th1 and Th22 cells (128). Furthermore, Th22 cells in ITP
patients were positively correlated with Th1 and Th17 cells
(77, 79), and patients treated with high-dose dexamethasone
(HD-DXM) exhibited significantly decreased frequencies of Th1
and Th22 cells and plasma concentrations of IL-22 (78). The
level of IL-22 was also increased in pediatric ITP patients
compared with healthy populations (129). A recent study
showed that the frequencies of Th22, Th17, Tfh and Th1 cells
in the bone marrow of ITP patients were significantly higher
than those in the control group; moreover, the frequency of Th22
cells in bone marrow was significantly higher than that in
peripheral blood (130). Notably, ITP patients with negative
autoantibodies showed a higher percentage of Th22 cells than
patients with positive detection of autoantibodies (77). In
summary, Th22 plays a proinflammatory effect in ITP and acts
synergistically with Th1/Th17 and Tfh cells. Th22 cells play an
important role in the pathophysiological process of ITP patients.
Therefore, blocking IL-22 may serve as a potential therapeutic
target for treating ITP patients.

IGAN
IgAN is the most common primary glomerular disease
characterized by inflammatory cell infiltration and IgA
deposition in the mesangial area of the glomerulus, which is an
important cause of renal failure (131). Although the exact
pathogenesis is still unclear, the involvement of T cells has
been confirmed. IgAN has a higher proportion of circulating
Th2, Th17, Th22, Tfh and gd T cells, but a lower proportion of
Treg and Th1 cells (80). Peng et al. also showed that Th17 and
Th22 cell frequencies in peripheral blood and plasma IL-22 levels
were significantly increased in patients with IgAN, and Th22
cells were positively correlated with Th17 cells and plasma IL-22
levels. In addition, compared with IgAN patients without
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proteinuria, IgAN patients with proteinuria showed a higher
percentage of Th22 cells (81). Th22 cells in patients with IgAN
are higher than those in healthy controls, and the percentage of
increase is positively correlated with the degree of kidney disease
in patients with IgAN. Moreover,tonsillitis aggravates the over-
expression of Th22 cells and the chemokines CCL20, CCL22 and
CCL27 and aggravates kidney damage in IgAN (132). Xiao et al.
confirmed that streptococcal infection can increase the
chemotaxis of Th22 cells and aggravate kidney inflammation
(133). Chronic inflammation is a common sign of chronic
fibrosis,and fibrosis is one of the common pathological changes
of IgAN. IL-22 binds to kidney IL-22R1 to activate STAT3, JAK
and other signaling pathways, and regulate renal fibrosis through
the ERK, Akt, and p38MAPK signaling pathways. Therefore,
Th22 cells promote renal fibrosis in IgAN (134, 135). Treatment
is mainly reflected in the reduced chemotaxis of Th22 cells. After
treatment with cordyceps (CS), dexamethasone and losartan, the
frequency of Th22 cells in the IgAN mouse model decreased and
the expression of CCR10, CCL27 and IL-22 was also significantly
reduced (60, 136). The above treatments all regulate the
chemotaxis of Th22 cells to inhibit inflammation and improve
renal function in patients. Acteoside (the main component of
Rehmannia glutinosa) can also inhibit Th22 cell proliferation
and inhibit Th22 cell chemotactic factors to regulate Th22 cell
chemotaxis (137). In addition, the IL-22R1 gene polymorphism
is genetically associated with the development of childhood IgA
nephropathy (138).

AIH
AIH is a chronic autoimmune inflammatory liver disease that is
characterized by high autoantibodies, high liver enzyme levels,
and liver damage (139). Hepatocytes are one of the target cells
of IL-22. IL-22 has dual effects on hepatocytes: protecting
hepatocytes and inducing acute phase proteins. IL-22 acts on
liver progenitor cells (LPCs), which is beneficial for liver
reconstruction after injury. In human and mouse chronic
HBV-infected livers, IL-22 promotes hepatocyte proliferation
through the STAT3 pathway (140, 141). Patients with drug-
induced liver injury (DILI) have increased intrahepatic and
peripheral Th22 cells and IL-22 levels, and the liver IL-22 level
is positively correlated with regeneration. Th22/IL-22 has a
hepatoprotective effect in DILI (142). Studies have indicated
that the increase in Th22/IL-22 is related to the severity of
hepatitis B virus-related chronic liver failure (HBV-ACLF) and
suggested that Th22/IL-22 can be used as a biomarker for the
prognosis of HBV-ACLF (143). Few studies have focused on the
pathogenesis of Th22/IL-22 in AIH. Studies have shown that
compared with healthy controls, the serum levels of IL-6,IL-10,
IL-17F, IL-21, IL-23 and TNF-a in AIH are significantly
increased while those of IL-22 and IL-17A are not. According
to the grouping of immunoserological markers, the cytokines of
type 2 AIH patients are characterized by elevated levels of IL-21
and IL-22 (144). The mouse experimental autoimmune
hepatitis (EAH) model and AIH patients present reduced
serum IL-10 and Treg levels. The number of Th22, Th17 and
Th1 cells and the number of corresponding cytokines IL-22, IL-
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17A and IFN-g were all reduced. Moreover, the number of
Tregs was negatively correlated with the number of Th22, Th17
and Th1 cells and cytokine levels. More interestingly, the serum
IL-22 and IL-17A levels were positively correlated with liver
injury in patients with AIH, suggesting that the imbalance
between Th1/Th17/Th22 and Treg cells may be involved in the
process of AIH (82).

AITD
AITD mainly includes Graves’ disease (GD) and Hashimoto’s
thyroiditis (HT). GDmanifests as hyperthyroidism caused by the
overproduction of thyroid hormone, while HT manifests as
hypothyroidism (145). T cell dysfunction and/or corresponding
cytokine abnormalities cause the destruction of immune
tolerance, which leads to abnormal immune responses in
AITD. Research on Th22/IL-22 in AITD is also limited. The
study by Peng et al. showed that the percentage of Th17 and
Th22 cells and plasma IL-17 and IL-22 in GD patients were
increased and positively correlated with serum TSAb levels (83,
84). GD patients not only have higher Th22 cell frequencies and
serum IL-22 levels than healthy people but also have higher IL-22
mRNA and AhR expression, whereas HT patients do not show
an increase in Th22/IL-22 (146). However, different results have
also been presented. Bai et al. found that the circulating Th22 cell
level of HT patients was significantly higher than that of the
healthy control group and the GD patient group, and was
positively correlated with the serum IL-22 level and thyroid
peroxidase antibody (TPOAb) titer. Under TNF-a and IL-6
stimulation,the T lymphocytes of HT patients showed an
enhanced ability to differentiate into Th22 cells in vitro (85).
Ruggeri et al. also believed that serum IL-22 levels in untreated,
newly diagnosed HT patients were higher than those in healthy
controls (86). The level of Th22/IL-22 in AITD patients is
elevated,and Th22 cells may participate in the pathogenesis of
AITD by secreting IL-22, IL-6 and other proinflammatory
cytokines; however, the exact mechanism remains to be
further confirmed.

MG
MG is an autoimmune disease that produces anti-acetylcholine
receptor (ACHR) autoantibodies and neuromuscular
transmission disorders and manifests as skeletal muscle fatigue
and weakness (147). Thymectomy (TE) represents one of the
treatment methods. The frequency of Th22 cells in patients
treated with TE was not significantly different from that of the
healthy controls. After TE surgery, the frequency of Th22 cells
was significantly reduced (93). Studies have also shown that the
levels of IL-17 mRNA in PBMC and IL-17 concentrations in
serum increase while levels of IL-22 mRNA and serum IL-22
decrease in MG patients. In addition, the level of serum IL-22 is
negatively correlated with the level of serum anti-ACHR
antibody, suggesting that IL-22 plays a protective role in MG
(94). A recent study showed that the levels of IL-22 in the PBMCs
of MG patients did not differ from those in the control group
(148). Thus, further research is required to clarify the specific
role of Th22/IL-22 in MG.
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OTHER AUTOIMMUNE DISEASES

SSc is an autoimmune connective tissue disease with skin and
visceral organ fibrosis due to excessive deposition of extracellular
matrix and vascular lesions (149). The increased frequency of
circulating Th22 cells is positively associated with pulmonary
interstitial disease in SSc patients (87). Moreover, the excessive
production of IL-22 in injured skin was independent of IL-17
(88). Other studies have shown that IL-22 can enhance the
response of fibroblasts to TNF-a, promote the inflammatory
phenotype of fibroblasts, and enhance the ability of TNF-
activated keratinocytes to stimulate fibroblasts (89). Th22 cells
express massive amounts of fibroblast growth factor, suggesting
that targeting the IL-22 signaling pathway may be effective for
preventing fibrogenesis (150). Th22/IL-22 may be related to skin
and visceral fibrosis in patients with SSc. Primary Sjogren’s
syndrome (pSS) is a chronic autoimmune disease that is
characterized by lymphocyte infiltration in lacrimal and
salivary glands, and it also presents elevated IL-22 levels (43,
151, 152). IL-22 plays a proinflammatory role in pSS
pathogenesis and promotes salivary gland inflammation at an
early stage (152, 153). IL-22 is predominantly secreted by Th17
and NKp44+ NK cells in pSS patients (152). Studies have shown
that the frequency of Th22 cells in the peripheral blood of
ankylosing spondylitis (AS) patients is increased (20, 154),
while other studies have shown that there is no difference in
IL-22+CD4+ and IL-22+CD8+ T cells between AS patients and
healthy controls; however, the secretion of IL-22 by circulating
mucosal-associated invariant T (MAIT) cells is increased in AS
patients (90). A number of types of vasculitis have been
identified, and several studies have focused on Th22/IL-22 in
vasculitis. A study by Zerbini et al. showed that the levels of IL-22
and IL-22R1 were higher in giant cell arteritis (GCA) patients
who were confirmed to be positive for temporal artery biopsy
(TAB) than in TAB-negative patients and normal controls. IL-22
is expressed in spindle cells and infiltrating immune cells, while
IL-22R1 is expressed in endothelial cells; moreover, IL-22 is
involved in B cell proliferation, differentiation and arterial
remodeling of GCA (91).
THERAPEUTIC TARGETING OF IL-22

Previous investigations have shown a critical role of IL-22 during
the pathogenesis of autoimmune diseases. Preclinical studies
indicate that IL-22 may serve as a promising therapeutic target
for treating autoimmune diseases. Th22 cells promote osteoclast
differentiation while neutralization of IL-22 inhibits osteoclast
formation, suggesting that blocking IL-22 could be effective in
suppressing bone destruction in RA patients (98). Inhibition of
IL-22 by neutralization antibodies has been shown to reduce the
expression of chemotactic factors, decrease antimicrobial and
hyperproliferative responses of keratinocytes, and prevent the
development of imiquimod-induced psoriasis from skin
inflammation (111). It has been reported that treatment with
cordyceps sinensis, dexamethasone and losartan improves kidney
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functions associated with a reduction of Th22 cells in mice with IgA
nephropathy, suggesting that these drugs may exert their protective
effects through modulating Th22 cells (60, 136).

Currently,the safety, tolerability and therapeutic effects of
Fezakinumab (ILV-094), a human monoclonal antibody that
directly binds to IL-22, have been examined in atopic dermatitis
patients in severalclinical studies (155). A small scale randomized,
double-blind, phase 2a clinical trial involving 60 patients
with moderate-to-severe atopic dermatitis has shown that
Fezakinumab is well-tolerated with sustained clinical
improvements after last drug dosing. Fezakinumab treatment
has shown significant clinical improvements versus placebo in
patients with severe disease as reflected by significant reductions of
SCORing of Atopic Dermatitis (SCORAD) scores and Investigator
Global Assessment (156). Furthermore, transcriptomic and
immunohistochemistry analyses reveal that Fezakinumab has
profound effects on multiple inflammatory pathways in these
patients (157). Fezakinumab broadly decreases immune
activation in skin tissues and reduces overall inflammatory
burden and epidermal pathologic characteristics. The treatment
effects of Fezakinumab are particularly evident in patients with
high IL-22 baseline expression, suggesting that a precision
medicine-based approach might be needed for improving
therapeutic outcomes in patients with atopic dermatitis.

It has been revealed that IL-22 exerts protective roles in certain
diseases. A phase II study (NCT02406651) is undergoing to
investigate the therapeutic effects of recombinant IL-22 for
GVHD after bone marrow transplantation (158). Other potential
strategies including the modulation of chemotaxis of Th22 cells,
administration of AhR agonists to enhance IL-22 expression,and
application of IL-22BP are under investigation. Available results
suggest that Th22 cells are involved in autoimmune pathogenesis
through multiple effector functions, including the production of
various cytokines, such as IL-22, IL-13 and IL-26. Moreover, Th22
cells may have close interactions with Th1, Th2 and Th17 cells
during disease progression. Further investigations on the safety,
tolerability and therapeutic effects of agents targeting Th22/IL22
pathway are needed for the effective treatment of autoimmune diseases.
CONCLUSION

Th22 cells and IL-22play diverse roles in the development of
autoimmune diseases and have both proinflammatory and anti-
inflammatory functions. Th22/IL-22 plays a pathogenic role in
most autoimmune diseases, while IL-22 has been shown to have
a protective effect in many other diseases involving skin and
mucosal barrier. Thus, the function of IL-22 varies depending on
the cellular source, types of inflammatory response, the affected
tissue (mucosa or solid organ), and the concentration and
duration of IL-22 itself in local environment. Emerging
evidence supports the notion that Th22 cells may serve as
therapeutic targets for autoimmune diseases. However, further
studies are needed to elucidate the mechanisms of Th22 cells in
disease pathogenesis and validate the therapeutic potential of
targeting Th22 cells for the treatment of autoimmune diseases.
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