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Abstract: The in vitro study objectives were to investigate the effect of arginine (Arg) incorporation in
a 5% sodium fluoride (NaF) varnish on its physical and chemical properties including F/Arg release.
Six experimental formulations were prepared with L-arginine (L-Arg) and L-arginine monohydrochloride
at 2%, 4%, and 8% w/v in a 5% NaF varnish, which served as a control. The varnishes were subjected
to assessments for adhesion, viscosity, and NaF extraction. Molecular dynamics were simulated
to identify post-dynamics total energy for NaF=Arg/Arg>NaF/Arg<NaF concentrations. The Arg/F
varnish release profiles were determined in polyacrylic lactate buffer (pH-4.5; 7 days) and artificial
saliva (pH-7; 1 h, 24 h, and 12 weeks). Incorporation of L-Arg in NaF varnish significantly influences
physical properties ameliorating retention (p < 0.001). L-Arg in NaF varnish institutes the Arg-F
complex. Molecular dynamics suggests that NaF>Arg concentration denotes the stabilized environment
compared to NaF<Arg (p < 0.001). The 2% Arg-NaF exhibits periodic perennial Arg/F release and shows
significantly higher integrated mean F release than NaF (p < 0.001). Incorporating 2% L-arginine in 5%
NaF varnish improves its physical properties and renders a stable matrix with enduring higher F/Arg
release than control.

Keywords: arginine; caries; fluorides; prevention; varnish

1. Introduction

Dental caries is a biofilm-dysbiosis triggered chronic disease of dental calcified tissues. The Global
Burden of Disease Study in 2016 has estimated that 2.4 billion people worldwide suffer from untreated
caries of permanent teeth [1,2]. Globally, 486 million children are reckoned to have caries in their
primary teeth [1,2]. Dental caries is caused by persistent fermentable carbohydrates glycolysis and
pathogenic biofilm shift leading to cavitation of hard tissues by a biofilm acidic environment [3,4].
To alleviate the global burden of dental caries, strategies impeding biofilm-dysbiosis are indicated to
serve as an essential primary preventive regimen.

The long-established evidence on the role of fluorides (F) in caries prevention suggests that
non-professional intervention with regular use of fluoridated dentifrices aids in preventing caries,
which is dependent on fluoride concentrations [5]. To supplement low levels of F in oral fluids
by oral care therapies, professional application of F-containing varnishes are recommended for
high caries-risk patients as it adheres to the tooth surface for a prolonged period and serve as a
F-releasing reservoir [6]. The reservoir institutes when high concentration F-varnish forms calcium
fluoride-like complex precipitation on the enamel surface. The F-containing intervention promotes
enamel remineralization and inhibits demineralization while forming acid-resistant fluorapatite.
However, F has limited a sustained effect on pathogenic biofilms [7]. Hence, novel interventions that
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aim at preventing pathogenic biofilm formation are needed to supplement the remineralizing benefits
of F-containing interventions.

Arginine (Arg) is a semi-essential amino acid available in micromolar concentrations in saliva.
Studies have shown that Arg effectively maintains healthy oral biofilms by improving pH homeostasis
through modulation of the oral microbial community [8,9]. The amino acid is selectively metabolized
by arginine deiminase system (ADS)-positive commensals (Streptococcus sanguinis, Streptococcus
parasanguinis, and Streptococcus gordonii) to ammonia that elevates biofilm pH to counter acidic
microenvironments by cariogenic pathogen Streptococcus mutans [10]. Additionally, Arg reduces
polymicrobial S. mutans-containing biofilm biomass and water-insoluble exopolysaccharides production
by affecting biofilm-related virulence properties [8,11]. Furthermore, sodium fluoride (NaF) and Arg
synergistically have been shown to inhibit S. mutans and augment the growth of S. sanguinis in
a multispecies biofilm [12]. Thus, supplementing Arg to F-containing interventions appears as a
promising strategy to prevent biofilm-dysbiosis related to dental caries.

Clinical trials on commercial Arg and F-containing dentifrices have concluded a significant
caries-preventive benefit than the control F(alone)-containing dentifrices [13,14]. To date, no study
has explored the effect of incorporating Arg in F-containing varnishes on caries-preventive variables
like F-release and varnish physical–chemical properties as the interaction of Arg with F might affect
theses variables. Therefore, the study objectives were to investigate the effect of Arg incorporation in a
5% sodium fluoride (NaF) varnish on its physical and chemical properties including F/Arg release.
The null hypothesis tested in the present study was that Arg incorporation in a 5% NaF varnish has no
effect on its physical/chemical properties.

2. Materials and Methods

2.1. Varnish Preparation and Test Groups

A priori the study design was approved by the Institutional Review Board (IRB) of the University
of Hong Kong (Hospital Authority Hong Kong West Cluster Reference #UW 17-544).

A commercially available 5% NaF varnish (Duraphat®, Colgate Palmolive Company, New York,
NY, USA) was used as a control and for preparation of experimental varnishes. Two variants of Arg
were used in the present study—L-arginine (L-Arg) and L-arginine monohydrochloride (L-Arg.HCl)
as both the variants have been explored for their caries preventive potential, previously [15,16]. The Arg
variants were suspended at 2%, 4%, and 8% w/v. in a 10 mL varnish tube dispensed in a sterile container.
The suspended Arg was further vigorously mixed with the varnish matrix for 60 sec using a sterile
microbrush, which was further used for dispensing the varnish as per the experimental protocol.

The test groups were as follows:

L-arginine + 5% NaF varnish groups:

Group 1: 2% L-arginine + 5% NaF varnish (2% Arg-NaF);
Group 2: 4% L-arginine + 5% NaF varnish (4% Arg-NaF) and;
Group 3: 8% L-arginine + 5% NaF varnish (8% Arg-NaF).

L-arginine monohydrochloride + 5% NaF varnish:

Group 4: 2% L-arginine monohydrochloride + 5% NaF varnish (2% Arg.HCl-NaF);
Group 5: 4% L-arginine monohydrochloride + 5% NaF varnish (4% Arg.HCl-NaF) and;
Group 6: 8% L-arginine monohydrochloride + 5% NaF varnish (8% Arg.HCl-NaF).

Controls:

Group 7: 5% NaF varnish (NaF) and;
Group 8: No varnish.
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2.2. Physical Characterization

2.2.1. Varnish Adhesion

Varnish adhesion and viscosity were assessed using a universal testing machine (ElectroPuls
E3000, Instron, Norwood, MA, USA). The adhesion capability of the varnish was determined between
2-stainless steel discs of Φ2.5 cm to obtain pull-off force (in N) using a symmetric pull-off test [17].
The evaluated force was further calculated to obtain the pull-out strength that specifies adhesion using
the following formula:

Pull-out strength = (4 × Pull-off Force)/(π × d2)

2.2.2. Varnish Viscosity

As the varnish viscosity differed considerably following the incorporation of L-Arg, the dynamic
viscosity of the varnish was evaluated with mounted disposable syringe containing varnishes using the
universal testing machine (E3000, Instron, Norwood, MA, USA). Displacement velocity of the varnish
was set at 1 mm/sec with dislocation at height—1.5 mm over a nozzle area of 0.79 mm2 to determine
shear rate and shear stress. Viscosity was then computed based on the determined compressive load
using the following formula:

Dynamic viscosity (ηd) = Shear stress/shear rate = (Force/Area) × (Height/Velocity)

2.3. Chemical Characterization

2.3.1. Inorganic NaF and Organic F Extraction

After formulation, based on the assumption that incorporating Arg in NaF varnish will lead to
the formation of Arg-F that might not be extractable as similar to that of inorganic NaF; NaF extraction
or recovery was performed estimating F concentration as in a previous study [18]. To determine the
synergistic interaction leading to consequent organic-F genesis, organic-F (i.e., Arg-F precisely per
case) estimation was done based on Na-biphenyl reagent reduction of halogenated hydrocarbons
to inorganic-F for further analysis using the F electrode. To lead the experiment, chloroform-based
primary and secondary NaF extraction were performed; following which the organic-F was reduced
with Na-biphenyl complex for inorganic-F estimation [18].

2.3.2. Molecular Interaction of Arginine with Sodium Fluoride

To further explore the molecular interaction between Arg and NaF, molecular mechanics-based
dynamics was performed using HyperChemTM Professional v. 8.0.8 (Hypercube Inc., Gainesville,
FL, USA). The dynamics was appraised based on different models understanding the concentrations
examined in the present study between NaF and Arg using the molecular mechanics framework.

2.3.3. Fluoride and Arginine Release Profiles

The F/Arg release profile of the varnishes was determined in polyacrylic lactate buffer
(pH-4.5, 7 days) and artificial saliva (pH-7, 1 h, 24 h, and 12 weeks) using different substrates
to identify the release potential in acidic and neutral environments. The acidic environment is to
simulate the cariogenic low pH condition. Semicircular polyvinyl strips simulating arches were used
to apply varnish for further analysis of F and Arg in lactate buffer as per previous study [19]. The 1 h
F/Arg release profile in artificial saliva (Phenol red, 4% NaOH, CaCl2, MgCl2.H2O, KH2PO4, KCl,
HEPES, and NaN3 in deionized water) was estimated per varnish applied on 5.5 cm polystyrene
petri dish as in a previous study [20]. The 24 h and 12 weeks F/Arg release profile were assessed
on the sound human enamel blocks coated with an acid-resistant nail varnish (Revlon®, New York,
NY, USA) exposing a window of 3 × 3 mm2 [21,22]. The substrates were randomly distributed by
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individual drawing of the specimens per group, until all the specimens were allocated. The substrates
for all the experiments were weighed prior and after varnish application. Following each time-point,
the substrates with varnish were placed in the respective solutions. The conditions as illustrated per
respective studies were followed for the experiments performed in triplicate. The F/Arg estimates were
further computed to obtain integrated mean F/Arg release profile per experiment, medium conditions,
and time points arithmetically calculated as an average.

2.3.4. Fluoride Analysis

The samples obtained for F analysis were subjected to equal volume of TISAB II (1:1). The F
analysis was done using F ion selective electrode (F-ISE; Thermo Fisher Scientific, Waltham, MA, USA)
attached to an ion benchtop meter (Orion 2700, Oakton Instruments, Vernon Hills, IL, USA) with an
auto-read facility. The F-ISE was calibrated to external standards with 0.1, 1, 10, 100, and 1000 ppm F.
To ensure stability, the calibration of the F-ISE was performed before, during, and after the experiments.
A new calibration curve was prepared each day with freshly prepared standards.

The samples were continuously stirred on a magnetic stirrer with micromagnetic bars at 250 rpm
room temperature during the analysis. To standardize the electrode orientation, the F-ISE was stationed
using a tube holder such that the electrode membrane is in contact with the samples. After each
measurement, the electrode was rinsed with deionized water and soaked with dry fibreless laboratory
napkins (Kimwipes™ Ex-L, Kimberly-Clark Professional, Roswell, GA, USA) before the next analysis.
Care was taken to avoid contact of a napkin with the membrane to prevent electrode damage.

2.3.5. Arginine Detection

Arginine detection was done using the end-point fluorescence spectrophotometric method
using a microplate reader (SpectraMax Multimode Microplate Reader, Molecular Devices LLC.,
San Jose, CA, USA) subjected to serially diluted 8-point freshly prepared Arg standards using
10-ppm L-arginine in deionized water. A working solution of o-phaldialdehyde in 100% ethanol,
β-mercaptoethanol, and sodium carbonate was prepared. The working solution and samples were
introduced in an opaque-walled fluorescence-based microplate in the ratio of 10:1. The plate was read
with excitation—OD340nm and emission—OD455nm. A calibration chart was constructed to determined
Arg concentrations (in ppm) in the samples obtained per experiment. During the experiment,
precautions were taken to keep the working solution away from the light to prevent photointerference.

2.4. Statistical Analysis

All experiments were repeated in at least triplicates. The recorded data were entered in MS Office
Excel, which was further subjected to statistical analysis using SPSS v. 25 (IBM Statistics Inc., New York,
NY, USA).

The data on dynamic viscosity, pull-out strength, molecular interaction dynamics, and integrated
mean F/Arg release were analyzed by a 1-way ANOVA with Tukey’s HSD post-hoc test.

The inorganic/organic-F extraction and F/Arg release data were analyzed using a 2-way ANOVA
with Bonferroni’s post-hoc test.

Pearson’s correlation coefficient test was applied to identify the statistical relationship
between Arg variants/concentrations–dynamic viscosity; Arg variants/concentration–pull out strength;
and adhesion–viscosity parameters for Arg variants.

The statistical significance for all the statistical tests was set at α = 0.05.

3. Results

3.1. Physical Characterization

A very strong significant positive correlation coefficient (r = 0.95, p < 0.001) was identified between
concentration and dynamic viscosity of Arg-NaF varnishes (Figure 1a). The dynamic viscosity of the
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Arg-NaF varnishes increased with increasing concentrations of Arg. By contrast, the Arg.HCl-NaF
varnishes only revealed weak inverse correlation (r = −0.39, p = 0.298; Figure 1a). The viscosity of the
8% Arg-NaF varnish was significantly higher than the other tested varnishes (p < 0.001; Figure 1b).
Likewise, a very strong positive significant correlation coefficient (r = 0.91, p = 0.001) was observed
between pull-out strength and concentration of the Arg-NaF varnishes (Figure 1c). Similar to viscosity,
the pull-out strength for the 8% Arg-NaF varnish was significantly higher than the other tested
varnishes (p < 0.001; Figure 1d). The physical characterization of the Arg-NaF varnishes showed that
incorporating Arg in NaF varnish increased its viscosity and promoted retention, which is beneficial
for clinical application on the enamel surface.
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Figure 1. Varnish physical characterization: (a) parametric relation between concentration and dynamic
viscosity of L-Arg and L-Arg.HCl in NaF varnish; (b) the table shows dynamic viscosity of tested
varnishes; (c) parametric relation between concentration and adhesion of L-Arg and L-Arg.HCl in NaF
varnish; and (d) the table shows pull-out strength representing adhesion of tested varnishes.

3.2. Chemical Characterization

3.2.1. Inorganic NaF and Organic F Extraction

For the Arg-NaF varnishes, the mean primary NaF extraction decreased with increasing Arg
concentration with the lowest in the 8% Arg-NaF varnish (p < 0.05; Figure 2a). However, the declining
order was reversed while secondary NaF extraction was attempted (p < 0.05). In contrast, no significant
difference in mean secondary NaF extraction was observed between the Arg.HCl-NaF and NaF varnishes
(p > 0.05). The results showed that L-Arg in NaF varnish exhibited some concentration-dependent
Arg-F interaction.
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Conversely, the primary organic-F (Arg-F) extraction from the Arg-NaF varnishes increased with
increasing concentrations of Arg (p < 0.05); while no significant difference was discerned between
the Arg.HCl-NaF and NaF varnishes (p > 0.05). The secondary organic-F extraction from the 2%
Arg-NaF varnish was significantly higher than the other varnishes (p < 0.05). The total F extracted from
the Arg-NaF varnishes was significantly lower than the Arg.HCl-NaF and NaF varnishes (p < 0.05),
suggesting a dose-dependent chemical interaction between L-Arg and NaF (Figure 2a).

3.2.2. Molecular Interaction of Arginine with Sodium Fluoride

Figure 2b shows the dynamics between the molecules NaF and Arg in different models,
i.e., NaF > Arg, NaF < Arg, and NaF = Arg using molecular mechanics configuration estimating
energy levels in kcal/mol against simulated temperature based on molecular dynamics computations.
The time-domain energy estimated at 1 ps for NaF > Arg and NaF = Arg were significantly lower than
NaF < Arg (p < 0.001; Figure 2b). Although, the energy level for NaF > Arg was higher than NaF = Arg
(p < 0.05), a few energy overlays were obvious as shown in Figure 2b. The simulations emphasize
that NaF < Arg with time-domain molecular dynamics based on mechanics (MM+) framework
suggested higher-order energy levels; whereas NaF = Arg and NaF > Arg indicated comparable
stability. Thus, NaF > Arg, similar to control NaF = Arg, denoted stabilized environs.

3.2.3. Fluoride and Arg Release Profile

The weight of varnish applied on substrates subjected to different experimental conditions validated
no significant difference between the tested varnishes and the control NaF varnish (p > 0.05; Table 1).

Table 1. Varnish weight on substrates.

Varnish Weight on Substrates (g)

Groups 7-Day Demineralization
Buffer

1 h Artificial
Saliva

24 h Artificial
Saliva

12 w Artificial
Saliva

2% Arg -NaF 0.67 ± 0.08 a 0.20 ± 0.00 0.003 ± 0.001 0.003 ± 0.001
4% Arg -NaF 0.77 ± 0.20 a 0.20 ± 0.00 0.003 ± 0.001 0.003 ± 0.001
8% Arg -NaF 0.72 ± 0.14 a 0.20 ± 0.00 0.003 ± 0.001 0.003 ± 0.001

2% Arg.HCl -NaF 0.69 ± 0.17 a 0.20 ± 0.00 0.003 ± 0.001 0.003 ± 0.001
4% Arg.HCl -NaF 0.79 ± 0.10 a 0.20 ± 0.00 0.003 ± 0.001 0.003 ± 0.001
8% Arg.HCl -NaF 0.59 ± 0.08 a 0.20 ± 0.00 0.003 ± 0.001 0.003 ± 0.001

NaF 0.70 ± 0.13 a 0.20 ± 0.00 0.003 ± 0.001 0.003 ± 0.001
No varnish 0.05 ± 0.00 b - - -

One-way ANOVA with Tukey’s HSD post-hoc test; p < 0.05 is significant. Different superscripts identify significant differences
between test groups

p-value <0.001 0.174 0.654 0.490

Fluoride Release in Polyacrylic Lactate Buffer and Artificial Saliva

Fluoride release from the Arg-NaF varnishes in polyacrylic lactate buffer was significantly higher
than the Arg.HCl-NaF and the control NaF varnishes at day 1 (p < 0.001; Figure 3a). Fluoride release
from the 8% Arg-NaF varnish in artificial saliva was significantly higher than the other varnishes until
45 min (p < 0.05; Figure 3b), which continued to be higher than the other tested varnishes between 1
and 8 h (p < 0.05) with a rapid decline at 16 h, to a level similar to other varnishes (p > 0.05; Figure 3c).
At week 1, F release from the 4% and 8% Arg-NaF varnishes was significantly higher than the other
varnishes (p < 0.05), which attenuated considerably at week 2 (Figure 3d). However, at week 2, the 2%
Arg-NaF varnish showed significantly higher F release than the other tested varnishes and continued
to have higher F release than the NaF varnish until week 4 (p < 0.05). The F release profile of the 4%
and 8% Arg-NaF varnishes was not perpetual, with limiting long-lasting effects. In contrast, F release
from the 2% Arg-NaF varnish was perennial and significantly higher than the NaF varnish (p < 0.05).
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Figure 3. Mean fluoride release profiles of tested varnishes applied on: (a) polyvinyl strips to assess
release in polyacrylic lactate buffer over 7 days; (b) 5.5 cm petri-dish to assess release in artificial saliva
over 60 min; (c) facial surface of quadri-sectioned tooth with exposed window (3 × 3 mm2) to assess
release in artificial saliva over 24 h; and (d) facial surface of quadri-sectioned tooth with exposed
window (3 × 3 mm2) to assess release in artificial saliva over 12 weeks.

Arginine Release in Polyacrylic Lactate Buffer and Artificial Saliva

The 8% Arg-NaF varnish exhibited significantly higher Arg release in polyacrylic lactate buffer
than the other varnishes at day 1 (p < 0.05), which significantly decreased (p < 0.001) to a level
similar to the other varnishes at day 4 (p > 0.05; Figure 4a). Arginine release from the 8% Arg-NaF,
4% Arg.HCl-NaF, and 8% Arg.HCl-NaF varnishes in artificial saliva was significantly higher than
the other varnishes until 45 min (p > 0.05; Figure 4b). In general, Arg release from the 4% and 8%
Arg-NaF varnishes was higher than the other varnishes from 8 to 16 h (Figure 4c). The 8% Arg-NaF
varnish continued to release significantly more Arg at week 1 than the other varnishes (p < 0.05),
whereas the 2% Arg-NaF varnish released significantly higher Arg at week 2 when compared to
the other varnishes (p < 0.05; Figure 4d). Arginine release from the 2% Arg-NaF varnish was more
consistent when compared to the other varnishes, which dropped significantly at week 10 (p < 0.001).
Arginine release profile for the 4% and 8% Arg-NaF varnishes was sporadic; while the 2% Arg-NaF
varnish was more enduring. Hence, the 2% Arg-NaF varnish exhibited perennial Arg and F release.
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release in artificial saliva over 24 h; and (d) facial surface of quadri-sectioned tooth with exposed
window (3 × 3 mm2) to assess release in artificial saliva over 12 weeks.

Integrated Fluoride/Arginine Release

The 8% Arg-NaF varnish showed significantly higher integrated mean F release than the other
varnishes in polyacrylic lactate buffer (for 7 days), 60 min, and 24 h in artificial saliva (p < 0.05)
(Figure 5a–c). However, the integrated mean F release in saliva over 12 weeks for 2% Arg-NaF,
2% Arg.HCl-NaF, and 4% Arg.HCl-NaF varnishes was significantly higher than the other varnishes
(p < 0.05; Figure 5c). The integrated mean Arg release for the 8% Arg-NaF varnish in polyacrylic lactate
buffer was significantly higher than the other varnishes (p < 0.05; Figure 5d). Conversely, the integrated
mean Arg release for the 4% Arg.HCl-NaF varnish was significantly higher than the other varnishes
in artificial saliva for 60 min (p < 0.05; Figure 5e). The 8% Arg-NaF varnish exhibited the highest
integrated mean Arg release in artificial saliva (24 h/12 weeks) when compared to the other varnishes
(p < 0.05; Figure 5f).

The integrated mean F/Arg release profile showed that the 2% Arg-NaF varnish presented with
a higher F release than NaF varnish over a prolonged period of 12 weeks (p < 0.05), whereas the
8% Arg-NaF varnish showed a higher Arg release throughout, irrespective of the pH, environment,
and duration.
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4. Discussion

The present study examined the effect of Arg incorporation in a 5% NaF varnish on its
physical–chemical properties and discerned that incorporating L-Arg in NaF varnish affected the
variables like varnish adhesion, viscosity, inorganic F content, and F release with a simultaneous
potential to release Arg from the varnish matrix. Conversely, the incorporation of L-Arg.HCl in NaF
varnish has no significant effect on the varnish physical and chemical properties. Thus, based on the
results of the study, the null hypothesis that Arg incorporation in a 5% NaF varnish had no effect on its
physical/chemical properties had to be partially rejected.

Previous clinical studies have reported the promising role of Arg in caries prevention [13,23].
Thus, incorporating Arg in F-containing varnish appears to be a good strategy for establishing
oral ecological homeostasis and preventing microbial dysbiosis contributory to the development of
dental caries. As an enduring preventive measure, Arg-F varnish (2% Arg-NaF) aids to target both
the pathogenic biofilms and the remineralization–demineralization dynamics of teeth [24,25] by its
prolonged retention on the tooth surface. Therefore, the Arg-F varnish counters the long-existing
limitations of F with enhanced physical–chemical properties of the current 5% NaF varnish formulations.

The viscosities of the Arg-F varnish differed considerably when compared to the control
NaF varnish per concentration increase of L-Arg. The 8% Arg-NaF demonstrated the highest
viscosity; whereas the viscosity with Arg.HCl-NaF was not affected, which might be due to the
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limited/non-interaction of Arg.HCl with the components of NaF varnish. It is postulated that L-Arg
might act as a filler for NaF, which positively affects the viscosity of NaF varnish, increasing its retention
on tooth surface. Further chemical evaluation is necessary to identify whether the change in physical
properties was due to the interaction dynamics or its physical annexure to the varnish components.

The molecular dynamics also identified that the reactivity of the interactive elements was based on
the energy dependent phase, which would need further investigations. However, it was quite lucid that
Arg in lower concentrations than NaF would provide a stabilized environment for functionalization
when compared to Arg at higher concentrations. All the data showed that the incorporation of 2%
L-Arg in a 5% NaF varnish exhibited synergism, enhancing its physical–chemical properties with
stabilized matrix.

The inorganic–organic F extraction for Arg-NaF varnishes affirmed a concentration-dependent
trend with each extraction level; whereas little but insignificant change was evident in Arg.HCl-NaF
varnishes compared to NaF varnish. While primary NaF extraction was the least with the 8% Arg-NaF
varnish, the secondary NaF extraction was significantly higher than the 2% and 4% Arg-NaF varnishes,
similar to the primary organic F extraction with Arg-NaF varnishes. This could be due to the reaction
between the insoluble NaF in varnish with L-Arg forming the Arg-F complex; whereas the soluble
NaF content remains intact with release. The Arg-F formed further increases its solubility during
subsequent media exposure, being organic thereby increasing reactivity with the enamel surface over
time as seen with NaF varnish [26].

The formation of Arg-F complex-containing NaF may also lead to the delay in NaF extraction due
to the trapping of NaF intermediary immixture, which was eventually released in the aqueous segment.
Although little, significant higher secondary organic-F was extracted from the 2% Arg-NaF varnish
than the other groups, suggestive of a stable matrix with enmeshed organic-F despite the reduction
dynamism. Overall, the analysis identified that the incorporation of Arg in NaF varnish significantly
influenced its physical–chemical properties; with 2% Arg-NaF being a constructive variable of Arg-F
complex that enhanced functional potential of NaF varnish.

The 8% Arg-NaF varnish demonstrated a significantly higher initial Arg and F release than the
other groups. The F release profile of the 8% Arg-NaF varnish contradicted the known concept that
low-viscosity resins favored F diffusion [21], which rejected the explanation for the results of molecular
dynamics with Arg > NaF concentrations. Hence, the modified physical properties of the Arg-NaF
varnishes did not influence the F and Arg release profiles of the tested varnishes, rather it was the
chemical interplay that led to the present results.

Arginine alone is capable of maintaining the alkaline pH that favors the growth of alkalogenic
commensals and makes the environment less conducive for the growth of acidogenic/aciduric bacteria.
However, with higher concentrations of L-Arg (i.e., 8% w/v) a higher order pH shift might pose concern of
biofilm over alkalization and possibly supporting the growth of periodontal pathogens—Porphyromonas
gingivalis [12]. Hence, one needs to be cautious with higher L-Arg concentrations as it might do more
harm than benefit to the microflora. Additionally, it is known that with a decreasing pH environment,
there is an increase in F reactivity with enamel [27]. However, studies have shown in the past that Arg
improves F uptake in enamel incipient caries-like lesion [28]. Therefore, there could be a potential for
Arg to increase F uptake given that its presence is independent of environmental pH.

The F release potential of 5% NaF varnish has been examined by several studies [18,29],
which demonstrated that the release potential is steady and stable. However, with the incorporation
of L-arginine, the dynamics of F release changed with higher concentrations (4% and 8%)
demonstrating higher F release. Additionally, previous studies incorporated different compounds
(Na-trimetaphosphate, Ca-glycerophosphate, titanium-F, etc.) in NaF varnish and examined its F release
potential [30–32]. With higher F release, the remineralization effect was not enhanced. Thus, a stable
matrix with durable F release for a prolonged period is desirable, which was quite evident in the 2%
Arg-NaF group.
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The present study comprehensively exhibited the potential of L-arginine to affect changes in the
physical and chemical properties of a 5% NaF varnish. The study limits itself to investigate the varnish
properties while the effect of a potential Arg-F varnish combination (2% Arg-NaF) for caries prevention
still needs to be discerned on dental hard tissues like enamel. Therefore, future studies are needed to
examine the caries-preventive effect of the assessed combinations (in the present study) on artificial
incipient enamel caries-like lesions demonstrating the remineralization potential of the interventions.
Following which, studies are needed to identify the cytotoxic effects of the combinations as an unstable
matrix with higher F release might be contributory to toxicity.

5. Conclusions

Under the conditions of the present study, we conclude that:

1. L-arginine in 5% NaF varnish affected varnish physical and chemical properties; while L-arginine
monohydrochloride in 5% NaF varnish had a non-contributory effect on varnish properties.

2. Incorporating 2% L-arginine in 5% NaF varnish improved its physical properties and renders a
stable matrix with enduring higher F/Arg release than control.
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