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Abstract 
Summary: Single-cell sequencing is an increasingly used technology and has promising applications 

in basic research and clinical translations. However, genotyping methods developed for bulk 

sequencing data have not been well adapted for single-cell data, in terms of both computational 

parallelization and simplified user interface. Here we introduce a software, cellsnp-lite, implemented 

in C/C++ and based on well-supported package htslib, for genotyping in single-cell sequencing data 

for both droplet and well based platforms. On various experimental data sets, it shows substantial 

improvement in computational speed and memory efficiency with retaining highly concordant results 

compared to existing methods. Cellsnp-lite, therefore, lightens the genetic analysis for increasingly 

large single-cell data. 

Availability: The source code is freely available at https://github.com/single-cell-genetics/cellsnp-lite. 
Contact: yuanhua@hku.hk 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

Single-cell sequencing has become a powerful technology for 

disentangling heterogeneity in cell populations at different levels, 

including genetics, transcriptome, and epigenetics, hence has profound 

implications in basic research and clinical translations. The cellular 

genotype was primarily studied by single-cell DNA-seq (scDNA-seq) for 

detecting somatic mutations in tumors, clustering cells into clones, and 

inferring their evolutionary dynamics (Navin, 2014). Recently, more 

evidence has been found that a subset of somatic mutations can also be 

observed in other single-cell probes, including scATAC-seq and full-

length scRNA-seq (e.g., SMART-seq2), at both nuclear (McCarthy et 

al., 2020) and mitochondrial genomes (Ludwig et al., 2019). On the 

other hand, germline variants (a.k.a., single nucleotide polymorphisms, 

SNPs) are more widely observed in single-cell sequencing data, even in 

shallow droplet-based platforms, e.g., 10x Genomics, thanks to the large 

candidate list (around 7 million SNPs in human population with 

frequency > 5% (1000 Genomes Project Consortium, 2015)). Germline 

SNPs are not only perfect natural barcodes when multiplexing cells from 

multiple individuals (Huang et al., 2019), but also important in implying 

functional regulation via cellular eQTL analysis or allele specific 

expression (Cuomo et al., 2020), and allelic imbalance caused by copy 

number variation (Fan et al., 2018; Zaccaria and Raphael, 2021). 

Genotyping methods for bulk sequencing samples are nearly mature 

with a decade of efforts and many methods remain effective when 

applying to single-cell sequencing data (Liu et al., 2019), including the 

successful BCFtools (Li et al., 2009; Li, 2011). However, there is a lack 

of good adaption of these methods for single-cell data in terms of 

computational parallelization and simplified user interface. Here, we 

develop cellsnp-lite, a htslib (Li et al., 2009) based tool for genotyping in 

single cells. Htslib is a well developed, optimized, and maintained 

package and is the core library used by BCFtools, hence we expect 

cellsnp-lite to give comparable accuracy as BCFtools in genotyping but 

higher efficiency and better convenience for single-cell data. 

The goal of cellsnp-lite is to provide a user-friendly command-line 

interface, with achieving high efficiency in both speed and memory. 

Therefore, it is designed as a light way allelic reads pileup with 

minimum filtering by keeping most data for customized downstream 

filtering and/or statistical modelling. We expect cellsnp-lite to be 

convenient in intermediate processing, e.g., for allelic ratio in copy 

number variations, 
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Fig. 1. Cellsnp-lite showed high accuracy in pileup allelic counts and substantial improvement in running speed. CellSNP is the predecessor in Python of cellsnp-lite. (A) In mode 

1a on the souporcell dataset, pileup REF and ALT allele counts of cellsnp-lite and vartrix were highly concordant (>95% SNPs with Pearson’s correlation coefficient >0.99). (B) The 

precision-recall curve for the 6239 heterozygous SNPs shared by cellsnp-lite, freebayes, and genotype array, with TGT (Translated Genotype) as labels and GQ (Genotype Quality; 

converted from PL or GL) as scores. These SNPs were called from the souporcell dataset (droplet-based) which was treated as bulk data in mode 2b, where we treated SNP arrays-based 

genotype as ground truth. The red or blue dot denoted the result when GQ equals 20 for cellsnp-lite and freebayes, respectively. The curves and GQ20 dots of the two tools almost 

coincided with each other while cellsnp-lite gave a marginally higher AUC (0.964 vs. 0.960). (C) Mode 1a on the souporcell dataset. Compared to vartrix, cellsnp-lite was about 6x 

speedups in wall time and could save up to ~90% memory. Limited by huge memory usage, cellSNP was slower than vartrix on this big dataset. (D) Mode 1b on the cardelino dataset. For 

either -R or -T option, cellsnp-lite was faster (in wall time about 2x ~ 11x speedups for -R and around 1.6x ~ 3x speedups for -T) than bcftools mpileup, even with a single thread. 

Compared to bcftools mpileup, cellsnp-lite used slightly less memory with -R option while no more than 2 times memory with -T option. For both tools, the -T option was much (>25x) 

faster than -R option on this small dataset. Using large memory, cellSNP could be faster than bcftools mpileup -R option with many cores. (E) Mode 2b on the souporcell dataset. 

Compared to freebayes, cellsnp-lite was about 7x ~ 13x speedups in wall time with no more than 2 times memory. The memory usage of freebayes gradually approached and eventually 

exceeded the one of cellsnp-lite as the number of threads increased. Limited by huge memory usage, cellSNP gained little increase of speed with many threads. 

and immediately useful for coarse analysis in less sensitive situations, 

e.g., for sample swap check. 

2 Implementation 

Cellsnp-lite is implemented in C/C++ and performs per cell genotyping, 

supporting both with (mode 1) and without (mode 2) given SNPs. In the 

latter case, heterozygous SNPs will be detected automatically. Cellsnp-

lite is applicable for both droplet-based (e.g., 10x Genomics data) and 

well-based platforms (e.g., SMART-seq2 data). See Table 1 for a 

summary of these four options, and example alternatives in each mode. 

Cellsnp-lite requires aligned reads as input, in bam / sam / cram file 

formats. Cell labels can be coded in the cell tag in a multiplexed bam file 

(droplet-based platforms) or specified by each per-cell bam file (well-

based platforms). This flexibility also allows cellsnp-lite to work 

seamlessly on bulk samples, e.g., bulk RNA-Seq, by simply treating it as 

a well-based “cell”. 

Table 1. Cellsnp-lite genotype options and example alternatives. Note, 

the two-step approach Mode 2b + 1a is an internal alternative to mode 

2a. 

Mode SNPs Bam files Platform Alternative 

Mode 1a Given Pooled one Droplet VarTrix 

Mode 1b Given Each per cell SMART-seq BCFtools mpileup 

Mode 2a To detect Pooled one Droplet N.A. 

Mode 2b To detect Each per cell SMART-seq Freebayes 
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The pileup is performed per genome position, either for given SNPs 

(mode 1) or the whole chromosome (i.e., mode 2). All reads covering a 

query position will be fetched. By default, we discard those reads with 

low alignment quality, including MAPQ<20, aligned length<30nt, and 

FLAG with UNMAP, SECONDARY, QCFAIL (and DUP if UMI is not 

applicable). We then assign all these reads into each cell by hashmap for 

droplet-based sample (mode 1a or 2a) or direct assignment for well-

based cells (mode 1b or 2b). Within each cell, we count the UMIs (if 

exist) or reads for all A, C, G, T, N bases. The REF and ALT alleles are 

taken from the input SNPs if given (i.e., in mode 1) otherwise by 

selecting the base with the highest count as REF and the second highest 

as ALT (mode 2). 

When SNPs are given (mode 1), cellsnp-lite will perform parallel 

computing by splitting the input SNPs in-order and equally into multiple 

threads. Otherwise, in mode 2, cellsnp-lite will compute in parallel by 

splitting the listed chromosomes, with each thread for one chromosome. 

In all the above scenarios, cellsnp-lite outputs sparse matrices for 

alternative allele, depths (i.e., REF and ALT alleles), and other alleles. If 

adding argument “--genotype”, cellsnp-lite will perform genotyping with 

the error model as presented in Table 1 in (Jun et al., 2012), and output 

in VCF format with cells as samples. 

3 Performance 

3.1 High accuracy in pileup allelic counts 

As discussed above, we aim for a light way pileup of allelic counts in 

large single-cell sequencing data. Hence, we mainly compared the pileup 

allelic counts between cellsnp-lite, cellsnp-Python, bcftools, vartrix 

(available at https://github.com/10XGenomics/vartrix; release version 

1.1.16) and freebayes (Garrison and Marth, 2012). Unsurprisingly, we 

found cellsnp-lite gives identical allelic read counts compared to both its 

Python version and bcftools, as all use htslib for reads fetching (see 

settings in Section 4.3 and 6.2.3 in Supplementary file for mode 1b and 

2b on well-based cells, respectively). 

In addition, for mode 1a with given SNPs on droplet-based data, we 

compared cellsnp-lite with vartrix, and found they are highly concordant 

(~97% SNPs with Pearson’s correlation coefficient >0.99, and >99.9% 

SNPs with mean absolute error < 0.01; Fig. 1A and Supplementary 

Table S2-S3, S5-S6). When there are no candidate SNPs given (mode 

2), cellsnp-lite could call heterozygous SNPs directly. We found that in 

this setting, cellsnp-lite gives identical allelic counts compared to its 

mode 1 with given SNPs. Comparing to a commonly used alternative 

method, freebayes, for calling heterozygous SNPs from droplet-based 

scRNA-seq data, we found cellsnp-lite gives marginally higher accuracy 

(area under the precision-recall curve, AUPRC: 0.964 vs 0.960; Fig. 1B 

and Supplementary Fig. S2), where we treat the SNP arrays-based 

genotype as ground truth. 

3.2 Substantial improvement on running speed 

Thanks to well-supported parallel computing, cellsnp-lite substantially 

outperforms existing methods in all the above settings, with achieving 

around 6x to 13x speedups in droplet-based data (with large size: 10 to 

100 GB per sample). When SNPs are given in mode 1a, cellsnp-lite is 

around 6x speedups in wall time and could save up to ~90% peak 

memory compared to vartrix (Fig. 1C and Fig. S1; see CPU time in 

Table S1 and S4). When lack of known SNPs in mode 2b, where we 

treat droplet-based data as bulk data, cellsnp-lite is about 7x ~ 13x 

speedups in wall time with no more than 2 times memory than freebayes 

in calling heterogynous SNPs (Fig. 1E; see CPU time in Table S9). 

Interestingly, cellsnp-lite also clearly outperforms bcftools mpileup on 

speed (with around 1.6x ~ 11x speedups in wall time) for well-based 

samples thanks to its better use of multi-threading, as bcftools only uses 

multiple threads for writing file (Fig. 1D for given SNPs and Fig. S3 for 

de-novo genotyping; see CPU time in Table S7 and S10). We also 

noticed that since the bam files are small in well-based cells (50 to 

500MB per cell), the bcftools “-T” option is more efficient to stream the 

whole bam file instead of to fetch each SNP through index file. In this 

particular setting with much less computing demand, cellsnp-lite (also 

with “-T” option) is still about 1.6x ~ 3x speedups in wall time than 

bcftools with using no more than 2 times memory (Fig. 1D; see CPU 

time in Table S7). 

Though cellsnp-lite is able to do joint calling and genotyping in mode 

2a, it is substantially (>30x; Table S8) slower than calling first in a bulk 

manner by mode 2b followed by genotyping in mode 1a. On the other 

hand, the joint strategy could be particularly useful for small 

chromosomes and mitochondrial genome. 

4 Conclusion 

Cellsnp-lite aims to pileup the detected alleles in single-cell or bulk 

sequencing data with simple filtering. It has highly concordant results, 

but substantially higher speed and less memory usage compared to other 

methods. Cellsnp-lite also provides a simplified user interface and better 

convenience that supports parallel computing, cell barcode and UMI 

tags. On the other hand, cellsnp-lite does not aim to address the technical 

issues caused by sequencing platforms, e.g., uneven amplification in 

scDNA-seq and low coverage in scRNA-seq, but rather leaves them to 

downstream statistical modelling. Taken together, cellsnp-lite is 

expected to largely boost single-cell genetics analysis, especially 

considering the increasingly large size of single-cell data. 
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