
Research Article Vol. 29, No. 4 / 15 February 2021 / Optics Express 5710

Broad dual-band temporal compressive imaging
with optical calibration

JUN KE,1,2,* LINXIA ZHANG,1,2 QUN ZHOU,1,2 AND EDMUND Y.
LAM3

1School of Optics and Photonics, Beijing Institute of Technology, South Zhongguancun Street 5, Beijing
100081, China
2Key Laboratory of Photo-electronic Imaging Technology and System, Ministry of Education of China,
Beijing 100081, China
3Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong
Kong SAR, China
*jke@bit.edu.cn

Abstract: For applications such as remote sensing and bio-imaging, images from multiple bands
can provide much richer information compared to a single band. However, most multispectral
imaging systems have difficulty in acquiring images for high-speed moving objects. In this paper,
we use a DMD-based temporal compressive imaging (TCI) system to obtain high-speed images
of moving objects over a broad dual-band spectral range, in the visible and the near-infrared
(NIR) bands simultaneously. To deal with the degraded reconstruction caused by the optics,
four nonuniform calibration strategies are studied, which can also be implemented into other
compressive imaging systems. Moving objects covered by paint or through a diffuser are
reconstructed to demonstrate the superior performance of the calibrated broad dual-band TCI
system.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In applications such as astronomy [1,2], remote sensing [3], agriculture assessment and manage-
ment [4], food quality inspection [5], and bio-imaging [6], multi-band images can provide much
richer information of an object than single-band images. To obtain multispectral or hyperspectral
images, two classes of spectral imaging systems are mainly used [7], the systems with scanning
parts such as a pushbroom spectrometer or a tunable filter camera [8], and snapshot spectral
imaging systems such as a coded aperture snapshot spectral imager (CASSI) [9] or a snapshot
hyperspectral imaging Fourier transform spectrometer (SHIFT) [10,11]. Generally, both classes
have difficulty in imaging moving objects [7]. For the former, the scanning mechanism limits
its application for moving objects. For the latter, the frame rate of a detector array limits its
imaging speed. Therefore, we turn to temporal compressive imaging (TCI) system with the aim
to increase the imaging system speed.

TCI was first studied for single-band high-speed imaging. It is motivated by the need to
push the tradeoff between spatial and temporal resolutions in an imaging system, as these two
critical imaging parameters often restrict each other. For a high spatial resolution system, the
imaging speed is generally slow. For a high-speed system, the resolution is generally limited. The
reason causing such a tradeoff includes two factors, namely, a large data transmission bandwidth
requirement from the system, and the data transmission capacity defined by the integrated circuit
in a detector array and its driver. Generally, in an imaging system, more data require more
transmission time. To overcome this issue, TCI has been studied, where high-speed object frames
are modulated by a spatial light modulator (SLM), and then a low-speed sensor is used to make
measurements for reconstruction [12,13]. The idea is also called single snapshot compressive
imaging.
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In a TCI system, the SLM is a central component. An early setup uses Liquid Crystal on
Silicon (LCoS) to modulate the high-speed frames [14]. Later, binary masks on motorized
stages [12,15] and Digital Micro-mirror Devices (DMDs) [13,16] have also been used for TCI.
Comparing these light modulation devices, a system using an LCoS or a mask has a comparably
simple optical part due to the co-axis object and the imaging planes. However, an LCoS device
modulates light phase. Thus, incoherent object light will not work. For masks on a motorized
stage, the light modulation patterns are limited. Because of these limitations, we study TCI using
a DMD in this work.

As discussed in the beginning, conventional spectral imaging systems are not suitable for
moving objects. However, temporal compressive imaging is designed to deal with moving object.
Thus, combining temporal compressive imaging with snapshot compressive spectral imaging,
specifically with CASSI, a spectral imaging system for moving objects can be obtained [17]. Note
that generally, the spectral resolution and range of a spectral imaging system are restricted by each
other [18]. The spectral range of spectral or spectral-temporal compressive imaging is restricted
to a comparable narrow band such as a set of channels/very narrow bands in the visible band. To
be workable in a wide band, such as a visible plus NIR band, multiple cameras for different bands
are required. On the other hand, it should be noted that a DMD has two reflection directions. It
naturally works like a beam splitter and an SLM. Combined with two detector arrays, it functions
as an imaging system in two wide bands. Additionally, with dispersive elements in each branch,
it will become a spectral-temporal compressive imaging system in two wide bands.

The idea of using both reflection directions of DMD has not been common in compressive
imaging. In most systems, only one reflection direction is used. Several groups have used the
two reflection directions to study single-pixel dual-band spatial compressive imaging [19–21].
However, to the best of our knowledge, we are the first to work on visible plus NIR dual-band
temporal compressive imaging, which has much higher requirement in system optics design or
system optical calibration. For dual-band single pixel spatial compressive imaging, a single
detector is used to collect system measurements for one band. Thus, the optical lens between
an SLM and a detector is simple. The only requirement is to collect all light from the SLM to
the detector. For TCI, the detector resolution is the same as the resolution of an SLM. Thus,
the errors caused by lens aberration and misalignment will degrade the system performance
significantly.

It has been recognized that calibration is an important factor that restricts the application of
compressive imaging [22]. For compressive imaging or many fields in computational imaging,
nontraditional imaging architectures or elements such as an SLM are used. These nontraditional
architectures require new or specifically designed optical lens. Even with customized lenses,
aberrations and misalignment can easily introduce errors into the system measurements. Thus,
calibration is critical for computational imaging. However, over the years, not many calibration
methods have been studied. In compressive imaging, there is an SLM in an intermediate position
of the system besides multiple lenses. It is difficult to obtain the ideal measurement at the SLM
position. Hence, traditional calibration methods [23,24] are not valid. In a compressive imaging
system, usually there are two parts: one from an object to an SLM, which is referred to as Part
1 in this paper, and the other from a DMD to a detector or a focal plane array (FPA), which is
referred to as Part 2. A uniform calibration method has been studied for Part 2 in a single band
spatial compressive imaging system [25]. In this work, we study four nonuniform calibration
strategies for visible plus NIR dual-band TCI.

Although it is not our focus in this work, reconstruction methods are very important for TCI.
Several kinds of reconstruction methods have been discussed thoroughly, such as Two-step
Iterative Shrinkage/Thresholding (TwIST) [13], Generalized Alternating Projection based Total
Variation (GAP-TV) [26], Decompress Snapshot Compressive Imaging (DeSCI) [27], and
Gaussian Mixture Model (GMM) based methods [28]. The first two methods use total variation as
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a constraint for reconstruction. The DeSCI method uses the weighted nuclear norm minimization
(WNNM) model to reformulate the penalty term in object reconstruction. These three methods
have different regularization for the reconstruction optimization problem. In the GMM-based
method, the problem is defined in another way. Each pixel value is modeled as a random variable,
whose probability density function is a summation of weighted Gaussian distributions. The
reconstruction process is to find the mean value of this GMM model. Although these methods
solve the reconstruction problem from different aspects, they all use iterative algorithms, which
is time consuming.

To shorten the reconstruction process, several deep learning networks have been studied
[29–32]. In this work, we use the GMM method for reconstruction, because the method has
nice performance with tolerable time consumption, besides that our calibration strategies are not
sensitive to different reconstruction methods. In addition to reconstruction methods, different
application fields of TCI has been explored, such as stereo imaging [33], spectral video [34],
expanded field of view [35], microscopy [36], and imaging through scattering media [37]. As
discussed before, in this work, we studied a broad dual-band TCI system [38], which uses the two
reflection directions of a DMD device to capture high-speed object frames using low frame rate
cameras in the visible and the NIR bands simultaneously. If one adds dispersive elements in both
branches, the system will become a broad dual-band spectral-temporal compressive multichannel
imaging system.

In summary, our main contributions are twofold. One is that for the first time, we show how to
build a dual-band TCI system, and demonstrate its potential applications for broad visible and
NIR dual-band fast imaging. The other is to study four calibration strategies for TCI. These
calibration strategies are simple, fast and can be easily implemented. They can also be used for
other computational imaging problems, such as block-wise spatial compressive imaging [39,40].

The paper is organized as follows. In Section 2., we discuss the broad dual-band temporal
compressive imaging idea with an ideal measurement model. Then in Section 3., we discuss
the effect of a lens point spread function (PSF) to a TCI system. We study four strategies for
calibration. The calibration process for the part from an object to a DMD (Part 1) and the part
from a DMD to a FPA (Part 2) are discussed with details. In Section 4., experimental results are
used to evaluate the four strategies. Then we use them for high-speed object reconstruction in
different visible plus NIR broad dual-band scenarios. In the end, we draw conclusions.

2. Broad dual-band temporal compressive imaging (TCI)

In Fig. 1, we present a system diagram for the visible plus NIR dual-band TCI. In such a system,
the moving object is imaged onto a DMD. Then, the DMD device modulates the image sequences
of the moving object with high speed. The two reflection directions of DMD in Fig. 1 are used
for the visible and the NIR bands, respectively. In each direction, a modulated image sequence is
refocused onto a low-speed detector array to make measurements. Notice that the resolutions of
the two detector arrays are the same as the resolution of the DMD. This is different from spatial
compressive imaging [39–41]. Based on the system diagram, a temporal compressive imaging
system is similar to a spatial compressive imaging system. Both of them use a DMD as a central
modulation device. However, spatial compressive imaging utilizes the spatial resolution of a
DMD, while TCI uses its high speed. Thus, the detector array in spatial compressive imaging has
smaller resolution than the DMD, while in TCI the resolutions of a DMD and a detector array
are the same.

To model the measurement collection process, we define the moving object sequence as
O(x, y, t, λ) and the DMD modulation pattern as W(x, y, t, λ). Here, x and y indicate the spatial
coordinates. The parameter t indicates the time. The parameter λ = {1, 2} indicates the visible
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Fig. 1. A system diagram for broad dual-band temporal compressive imaging (TCI).

and the NIR bands, respectively. The measurements at a detector array can be written as

D(x, y, λ) =
∫ t2

t1
O(x, y, t, λ)W(x, y, t, λ) dt. (1)

In a discrete format, the measurements become D(m, n, λ) =
K∑︁

ti=1
O(m, n, ti, λ)W(m, n, ti, λ)

with 1 ≤ m ≤ M and 1 ≤ n ≤ N. In a matrix form, we can rewrite the measurements as

dλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1,λ

d2,λ
...

dMN,λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[︂
W1,λ W2,λ · · · WK,λ

]︂ ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

o1,λ

o2,λ
...

oK,λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

K∑︂
k=1

Wk,λok,λ = Wλoλ, (2)

where matrix Wk,λ ∈ RMN×MN is a diagonal matrix for the kth modulation pattern in the λth band,
k = (1, . . . , K) and λ = {1, 2}. Its diagonal elements are the modulation pattern values. The
vector ok,λ ∈ RMN×1 is for the kth frame of an object. Notice that in a dual-band TCI system,
the measurement matrices in the two bands are complementary. Thus, the measurement matrix
W1 in the visible band is equal to 1 − W2, where W2 is the matrix in the NIR band. Although
there is the connection between these two measurement matrices, we focus on the difference of
a moving object in the two bands. Thus, we formulate the dual-band measurement processes
separately. The reconstruction processes are also implemented independently for the two bands.
Because the calibration strategies are the same for both bands, to simplify notations we eliminate
the subscript λ for the rest of the paper. To reconstruct the original high-speed moving object
sequences, we use the GMM algorithms [13].

3. Optical calibration in broad dual-band TCI

Based on our previous study, the two main factors to restrict a compressive imaging system
reconstruction performance are truncation error and noise [42]. The truncation error comes from
the fewer number of measurements than the dimension of an object. In TCI, it means fewer
measurement frames than the reconstructed frames. The noise can be detector additive noise
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such as thermal noise, or nonadditive noise such as shot noise, when the light level is very low.
Besides these two factors, another important factor limiting reconstruction performance is the
system calibration error. It is also a main factor that restricts the applications of compressive
imaging to different fields [22]. To calibrate the system error, the first thing is to reformulate
the measurement model more carefully. Most of previous works on compressive imaging use
a mathematical model similar to Eq. (2), which does not consider the influence of optics in a
system. On the other hand, an imaging system never has a perfect impulse response function.
Thus, an inherent system error is in the model, which degrades system performance.

To reduce this inherent error, we remodel a system as

D(x, y) =
∫ t2

t1
H2(x, y) ∗ [W(x, y, t) (H1(x, y) ∗ O(x, y, t))] dt. (3)

The function H1(x, y) represents the point spread function (PSF) of the lens L1 between an
object and a DMD. H2(x, y) is for the PSF of the lens L2 or L3 between a DMD and an FPA. If we
digitize the equation, then it becomes

d =
K∑︂

k=1
H2WkH1ok, (4)

with H1 ∈ RMN×MN and H2 ∈ RMN×MN . Notice that in broad dual-band TCI, the imaging part
from a moving object through a lens L1 to a DMD is similar to a conventional imaging system.
However, a dual-band TCI works in two bands. This increases the requirement to lens L1.
Additionally, in the part from a DMD to a detector array, neither the DMD nor the detector array
is perpendicular to the optical axis. Thus, it is easy to introduce more aberration. Therefore, in
this work, we first focus on the second part, Part 2, which is from a DMD to a detector array.

3.1. From a DMD to an FPA (Part 2)

To focus on the calibration of Part 2, we first simplify the dual-band TCI measurement process as

d =
K∑︂

k=1
H2Wkok. (5)

Because H2 is time invariant, the measurement process can be written as

d = H2

K∑︂
k=1

Wkok = H2dideal, (6)

where dideal represents the ideal measurements, or the measurements with a perfect lens PSF.
Note that with Eq. (6) and a set of samples of d and dideal, we could estimate H2, and then use
the estimation and Eq. (5) to reconstruct a moving object. Another way for reconstruction is to
pre-process the system raw measurements d to obtain dideal, and then use Eq. (2).

To estimate H2, a conventional method is to use a pinhole scanning over the object field of
view. Here, it is equivalent to making a single DMD pixel value as 1. However, such a calibration
process is time-consuming. Thus in the rest of the paper, instead of using a single DMD pixel
one time, we use a set of random binary patterns for optical calibration. Additionally, we study
nonuniform PSFs for lens L2 or lens L3 in this work, which is different from the uniform PSF
assumption as discussed in literature [25]. Thus, the columns of H2, which represent the PSF at
different pixel positions, are not the same with each other.

We study four dual-band TCI calibration strategies using random binary patterns. In the first
one M1, we assume that the detector measurements in a small area of size (m × n) are from its
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corresponding (m × n) DMD pixels. Figure 2(a) presents the imaging model between DMD
pixels and detector pixels. We define the measurements as

Y = Ĥ2Wcali. (7)

In the equation, the columns of Wcali ∈ Rmn×L and Y ∈ Rmn×L represent the random binary
patterns in DMD and their images collected by the detector array, respectively. Each column of
Ĥ2 ∈ Rmn×mn represents the PSF from a DMD pixel to the set of detector pixels. To estimate Ĥ2,
we use the Least Square (LS) method. Then, using the estimation Ĥ2,est = YWT

cali
(︁
WcaliWT

cali
)︁−1

and Eq. (5), we can obtain object reconstructions.

Fig. 2. The imaging model between a DMD and a detector array in calibration strategy (a)
M1 or M2, (b) M3, and (c) M4.

It should be noted that using the imaging model in Fig. 2, we can also calculate a matrix
Ĥ(inv)

2 , which is the solution to Ĥ(inv)
2 Y = Wcali. Then, we can pre-process broad dual-band TCI

measurements using Ĥ(inv)
2 = WcaliYT (︁

YYT )︁−1 to have Ĥ(inv)
2 d before reconstructing the moving

object frames. We name this as the second strategy M2.
In the third strategy M3, we use the measurements of a detector and a set of DMD pixel

values of size (m × n). Figure 2(b) presents the imaging model for M2. We model the detector
measurements as

yT = hT
2 Wcali. (8)

Here, a row vector yT ∈ R1×L represents the multiple measurements of a detector. Each
column of Wcali ∈ Rmn×L represents a set of DMD pixel values. These DMD pixels are centered
at the conjugate position of the detector. The row vector hT

2 ∈ R1×mn represents the convolution
kernel from the set of DMD pixels to the detector. We use the pseudo-inverse of Wcali to estimate
hT

2 = yTWT
cali

(︁
WcaliWT

cali
)︁−1. Repeating this process for different detector pixels, we can obtain a

set of hT
2 vectors, and then form a matrix Ĥ2,est. Notice that this method is similar to calculating

each row of H2 in M1. However, we can see that this method may have a larger error, because it
does not include other rows of H2 in the calibration process.
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In the last method M4, we use the measurements of a set of detectors with size (m × n).
We assume that these measurements come from a single DMD pixel. Figure 2(c) presents the
imaging model in M4. The following equation is used to estimate a filter for system measurement
preprocessing, where

Y = h2wT
cali. (9)

In this equation, each column of Y ∈ Rmn×L represents one set of detector measurements
corresponding to one DMD pixel value. The row vector wT

cali ∈ R1×L represents the L values of
the DMD pixel. The vector h ∈ Rmn×1 indicates the PSF from a DMD pixel to detector pixels.
From Eq. (9), we can obtain a vector h(inv)

2 = wT
caliY

T (︁
YYT )︁−1 to preprocess TCI measurements.

The result h(inv)
2 Y is an estimation of wT

cali. For TCI measurements d, the preprocessing result
becomes Ĥ(inv)

2 d. Notice that the mathematical model represents the imaging process accurately
if we use individual DMD pixel to calibrate the system. However, random binary patterns are
used as discussed before. On first sight, Eq. (9) does not match with the imaging process very
well, because the measurements in Y include light from DMD pixels which are not defined in
wT

cali. The idea is to consider them as error or noise. Thus, using method M4, we expect that
h(inv)

2 is more tolerant to system errors.
As a summary, with two of the four calibration strategies, we process measurements d of binary

patterns, making the results close to the ideal patterns dideal. Then we use the obtained Ĥ(inv)
2 or

h(inv)
2 to preprocess system measurement for high-speed object reconstruction. With the other

two strategies, we estimate H2,est to make H2,estdideal close to the binary pattern measurements d.
Then H2,est and system raw measurements are used for reconstruction.

3.2. From an object to a DMD (Part 1)

In the calibration for Part 2, we assume an all-white object. Thus, the results do not include the
calibration from an object to a DMD, or the calibration of Part 1. Comparing to Part 2, there are
three difficulties in Part 1. First, the system measurements are collected at an FPA, instead of at a
DMD. Thus, we do not have the raw measurements at the DMD plane. Second, it is hard to know
the ideal measurement or image of an object at the DMD, which is critical for optical calibration.
Third, it is hard to generate multiple objects for calibration. In Part 2, we do not have the last two
difficulties, because we use a DMD, which is a programmable device, as an object. Thus, we
know the objects exactly. In Part 1, we are short of such kind of a device. Hence, it is hard to
generate ideal objects for calibration.

To deal with these issues, we have the following solutions. For the first difficulty, the
measurement at DMD is the image of an object, or the reconstruction without considering the PSF
of Part 1. Thus we use the system reconstructions with calibration of Part 2 as the acquired raw
measurements at the DMD. For the second difficulty, a pre-defined object such as a checkerboard
is used for the calibration. We reconstruct an image of the checkerboard at DMD. Although
this image is not very sharp, we can estimate its basic parameters, such as the edges, height and
width. From these parameters, we can generate the ideal image of the checkerboard. For the
third difficulty, we still only use one checkerboard for calibration. To have more, we assume a
locally uniform PSF for the lens L1. We divide a reconstructed image into several parts, such
as in a 3 × 3 array. In each part, we assume a uniform PSF. A sliding window is used in each
sub-image for calibration. Then, for each sub-area, the same M1 ∼ M4 strategies as for Part 2 are
used for the calibration of Part 1.

4. Experimental results

Figure 3(a) presents our experimental system. A visible plus NIR light source is used to illuminate
a rotating object. In the experiment, the spatial resolution of the object is 120 × 120. Figure 3(b)
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and (c) present a binary pattern and its image in the visible band detector array. It can be seen
that aberration causes the image to be blurred. The detector array speed is set as 50fps. The
temporal compression ratio is 10. Thus from one frame system measurement, we reconstruct 10
object frames. In other words, the system imaging speed is 500fps.

Fig. 3. (a) The experimental setup for broad dual-band TCI; (b) a binary pattern displayed
on the DMD; (c) the measurement of the pattern collected by the visible band detector array.

4.1. Reconstruction of broad dual-band TCI without calibration

In the first set of experimental results, we reconstruct moving objects from system measurements
using the GMM method without optical calibration. This is a baseline method. Figures 4(a), (b),
and (c) present three raw TCI measurements in the visible band. The three objects are a moving
number 7, a moving number 0 covered by paint, and a moving checkerboard. Figures 4(d), (e),
and (f) show the raw measurements in the NIR band. Because of the paint, we cannot see the
number 0 in the visible band as shown in (b). However, in the NIR band, it can be observed
clearly.

Fig. 4. The raw measurements of (a) a rotating number 7, (b) a rotating number 0 covered
by paint, and (c) a rotating check board in the visible band; (d∼f) the raw measurements of
the same objects as in (a∼c) in the NIR band.

We use the raw measurements with the ideal binary sensing matrix W as presented in Fig. 3(b)
for reconstruction. Figure 5(a) presents the frames 1, 3, 5, 7, and 9 among the 10 reconstructed
frames using the baseline method. It is clear that, without calibration, the reconstruction is not
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good. In Fig. 5(b), we present the 5 reconstructed frames using a measured sensing matrix
Wmeas as shown in Fig. 3(c). Note that no calibration is used in the reconstruction of these
frames. Even without PSF calibration, the reconstructions in Fig. 5(b) are much better than the
reconstructions using the ideal sensing matrix W. However, for an object with more details such
as the checkerboard, the reconstructed frames can be improved further.

Fig. 5. The frames 1, 3, 5, 7, and 9 in the 10 reconstructed frames in the visible band, using
(a) W and (b) Wmeas with raw measurements without PSF calibration.

To observe the reconstruction quality more clearly, we plot the pixel values along two lines in
the 4th reconstructed checkerboard frame. The two lines are shown in Fig. 6. The pixel values at
the two lines are plotted in Figs. 7(a) and (b), respectively. It is clear that the blue curves with
diamond markers for the reconstructions using Wmeas have better contrast and less noise. The
shapes are also closer to square curves.

Fig. 6. The positions of lines 1 and 2 in the reconstructed frame 4 for the checkerboard
object.

Fig. 7. The pixel values at lines 1 (a) and 2 (b) in the reconstructed frame 4 for the
checkerboard object in the visible band without calibration.
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We repeated the reconstruction for the NIR band measurements. The results are shown in
Fig. 8. Once again, we can observe that the object covered by paint can be reconstructed clearly.
The reconstructions obtained using Wmeas are much better than the reconstructions using the
ideal matrix W. Compared with the rotating numbers, the reconstructed checkerboard frames can
be improved. In Fig. 9, we also plot the pixel values at the two lines as shown in Fig. 6. Once
again, we can observe that the curves for the reconstructions using Wmeas have less noise. The
shapes are closer to square curves.

Fig. 8. The frames 1, 3, 5, 7, and 9 in the 10 reconstructed frames in the NIR band, using
(a) W and (b) Wmeas with raw measurements without PSF calibration.

Fig. 9. The pixel values at lines 1 (a) and 2 (b) in the reconstructed frame 4 for the
checkerboard object in the NIR band without calibration.

4.2. Optical calibration

To improve system reconstruction performance, we study 4 optical calibration strategies. As
discussed in Section 3., we calibrate the system as two parts. Part 1 is from an object to a DMD.
Part 2 is from a DMD to an FPA. In this subsection, we discuss the calibration methods for Part 2
first, then for Part 1.

4.2.1. Optical calibration for Part 2 (the part between a DMD and an FPA)

To calibrate part 2, we use 200 random binary patterns and four strategies M1, M2, M3, and M4.
Here we only present the calibration results in the visible band. The process for the NIR band is
the same. We obtain similar results and the same conclusions for the NIR band.
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In M1, we set the block size as (12 × 12). Using Eq. (7), we obtain the estimated matrix Ĥ2,est
for each block. The matrices Ĥ2,est for all blocks are stitched together to have a (1440 × 1440)
matrix Ĥ(total)

2,est . In the first column of Fig. 10(a), we present the three estimated PSFs at the
positions of (20, 20), (60, 60), and (100, 100) in the (120 × 120) area. It is clear that the three
PSFs are different from each other. The center column of Fig. 10(a) is an enlarged part of the
matrix Ĥ(total)

2,est . The right column is the estimated detector measurements using Eq. (7) and H(total)
2,est .

Although there are some blocking issues in the estimated PSF, the measurement estimate in the
right column is close to the raw detector measurements as presented in Fig. 3(c).

Fig. 10. The PSFs at (20, 20), (60, 60), and (100, 100), an enlarged part of H2,est, and the
estimated binary pattern measurements or the estimated patterns using (a) M1; (b) M3 ; (c)
M2; and (d) M4 for Part 2.

Another method which we use to obtain Ĥ2,est is M3. In a (9 × 9) DMD pixel block area, every
DMD pixel contributes some light to the detector. The estimated results using M3 is presented
in Fig. 10(b). The figure on the left is for the PSFs at the same 3 positions as in Fig. 10(a).
The central figure in Fig. 10(b) is for the enlarged matrix Ĥ(total)

2,est , while the right one is for the
estimated measurements. Comparing the estimated measurements in (a) and (b), they are not
different from each other much.

We repeat the calibration process using M2 and M4. The estimated results are presented in
Figs. 10(c) and (d). Once again, the estimated PSFs at (20, 20), (60, 60), and (100, 100) are
different from each other. The estimated vectors hinv are stitched together. An enlarged part
of these matrices are presented. The block size used in M2 and M4 are (12 × 12) and (9 × 9),
respectively. We observe more blocking issue in M2. Using hinv, we pre-process the detector
measurements. The results in (c) and (d) are close to the original binary DMD pattern as shown
in Fig. 3(b).

To evaluate the performance of the four strategies, we summarize the PSNR values in Table 1
for the estimated measurements using M1&M3 and the preprocessed results using M2&M4.
From the table, the highest PSNR value appears in M1. Generally M1 and M3 work better than
M2 and M4. However, these PSNR values are for the calibration process evaluation. It might be
different from object reconstructions.
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Table 1. PSNR for the four calibration strategies
with Part 2

M1 M2 M3 M4

PSNR 32.72 dB 27.57 dB 29.23 dB 23.69 dB

4.2.2. Optical calibration for Part 1 (the part between an object and a DMD)

To calibrate Part 1, we use a checkerboard. The raw measurement is shown in Fig. 11(a).
Figure 11(b) presents the estimated ideal image. Using the same strategies M1 ∼ M4, we obtain
the calibration results as shown in Fig. 12. Once again, in each sub-figure, there are three
columns. In the left, three PSFs at locations (20,20), (60,60), and (100,100) are presented. It
can be observed that these PSFs are different from each other. In the center column, we present
the estimated H matrices. In the right column, the estimated measurements or the estimated
ideal images are shown. We can observe that the estimates are close to the measurements or
the ideal object. However, comparing to the results for Part 2, we can still see the difference
between the estimates and the ideal results, due to the three difficulties discussed in Section 3.2.
We also calculate the PSNR for the four strategies. The results are summarized in Table 2. Once
again, we can see that the PSNR values for M1 and M3 are higher. However, we care about the
reconstruction quality for TCI systems more.

Fig. 11. (a) The raw measurements and (b) the estimated ideal image of a check board at
the DMD plane in the visible band.

Table 2. PSNR for the four calibration strategies
with Part 1

M1 M2 M3 M4

PSNR 28.38 dB 13.42 dB 28.00 dB 14.38 dB

4.3. Reconstruction in dual-band TCI with calibration

After studying the optical calibration strategies, we use them for object reconstruction in broad
dual-band TCI. In this sub-section, we first use the calibration for Part 2 in object reconstruction.
Then, the calibration process for Part 1 is also discussed. In the end, we also study object
reconstruction in scattering media.

4.3.1. Reconstruction with calibration of Part 2

In this part, the reconstruction results are obtained only using calibration for Part 2. In Figs. 13(a)
and (b), we present the reconstructions using the calibration strategies M1 and M3, respectively.
The figure in (a) is for M1, while (b) is for M3. It can be observed that the two sets of
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Fig. 12. The PSFs at (20, 20), (60, 60), and (100, 100), an enlarged part of H2,est, and the
estimated binary pattern measurements or the estimated patterns using (a) M1; (b) M3 ; (c)
M2; and (d) M4 for Part 1.

reconstructions are not different from each other much. Compared with the results in Fig. 5(b),
the reconstructions have slightly better contrast. In Figs. 13(c) and (d), we present the results with
preprocessed measurements using M2 and M4, respectively. Notice that here we also preprocess
the TCI system raw measured sensing matrix Wmeas. It is clear that the reconstructions in (d) is
the best in all of the six sets of results in Fig. 5 and Fig. 13. Compared to the PSNR values in

Fig. 13. The frames 1, 3, 5, 7, and 9 in the 10 reconstructed frames in the visible band,
using the calibration strategies (a) M1 and (b) M3 with W; using the calibrated Wmeas and
the calibrated measurements with (c)M2 and (d)M4.
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Table 1, this conclusion is different. In M4, the measurements used for calibrations are parts of
random binary pattern images. Thus in each (9 × 9) area, the measurements are from at least
(9 × 9) DMD pixels. However, the calibration model only uses the central pixel values. Thus,
when evaluating the calibration performance as shown in Table 1 only, method M4 is not the
best. On the other hand, because the model does not match to a PSF exactly, it is more tolerant to
errors and noise in a system. Hence, for object reconstruction, it works best.

As in Section 4.1, we also plot the pixel values in the two lines as shown in Fig. 6. We have
the curves as shown in Fig. 14. For comparison, we also plot the curve for the reconstruction
without calibration but using Wmeas. We can see that the results for using M1 and M3 are not
very different from the reconstruction without calibration but using Wmeas. The results for M2
and M4 are better than the others in the sense of better contrast and more regular shape.

Fig. 14. The pixel values at lines 1 (a) and 2 (b) in the reconstructed frame 4 for the
checkerboard object in the visible band using different calibration strategies.

We repeat the experiment for the NIR band. The results are presented in Fig. 15. In (a)–(d),
M1 − M4 are used respectively. Once again, the improvement using M1 and M2 is limited. The
reconstruction using M4 is the best. Compared to the visible band results, the NIR band results
are a bit more blurred, but the object covered by paint can be reconstructed clearly. Again, Fig. 16
shows the curves at the two lines in Fig. 6. M2 and M4 show better results.

4.3.2. Reconstructions with calibration of Part 1 and Part 2

In this part, we add the calibration process for Part 1 into the reconstruction process. Note that in
the last sub-section, the reconstructions using M1 and M3 show limited improvement in both the
visible and the NIR bands. Thus, here we only use M2 and M4 for reconstruction in dual-band
TCI.

In Figs. 17(a) and (b), we present the frames 1, 3, 5, 7, and 9 out of the 10 reconstructed
frames in the visible band using M2 and M4 for Part 1 on top of the calibration of Part 2. The
calibration strategy used for Part 2 is M4. We can see that the two sets of reconstructions are not
different from each other much. Compared to the results only including the calibration for Part 2
in Fig. 13, the frames in Fig. 17 have sharper edges, especially for the checkerboard object. In
Fig. 18, the pixel values at the two lines as in Fig. 6 are presented. For comparison, we also plot
the best reconstruction using only Part 2 calibration with M4. It is clear that the calibration of
Part 1 helps the reconstruction much. We repeat the experiment for the NIR band. The results are
shown in Fig. 19 and Fig. 20. M2 is used in Fig. 19(a) and Fig. 20(a), while M4 is for Fig. 19(b)
and Fig. 20(b). The resolution improvement in the NIR band is more obvious than in the visible
band. In addition, if we compare these results with the reconstructions in Fig. 5 and Fig. 8,
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Fig. 15. The frames 1, 3, 5, 7, and 9 in the 10 reconstructed frames in the NIR band, using
the calibration strategies (a) M1 and (b) M3 with W; using the calibrated Wmeas and the
calibrated measurements with (c)M2 and (d)M4.

Fig. 16. The pixel values at lines 1 (a) and 2 (b) in the reconstructed frame 4 for the
checkerboard object in the NIR band using different calibration strategies.
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which do not include optical calibration, we can conclude that the broad dual-band TCI system
reconstruction performance has been improved greatly.

Fig. 17. The frames 1, 3, 5, 7, and 9 in the 10 reconstructed frames in the visible band,
using the calibrated Wmeas, the calibrated measurements, and the calibration for PSF1 with
(a) M2 and (b) M4.

Fig. 18. The pixel values at lines 1 (a) and 2 (b) in the reconstructed frame 4 for the
checkerboard object in the visible band using different calibration strategies.

Fig. 19. The frames 1, 3, 5, 7, and 9 in the 10 reconstructed frames in the NIR band, using
the calibrated Wmeas, the calibrated measurements, and the calibration for PSF1 with (a) M2
and (b) M4

To further quantify the reconstruction quality, we also calculated the correlation of a recon-
structed frame, frame 4, using different calibration strategies and the ideal checkerboard as shown
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Fig. 20. The pixel values at lines 1 (a) and 2 (b) in the reconstructed frame 4 for the
checkerboard object in the NIR band using different calibration strategies.

in Fig. 11(b). Figure 21 shows one of the correlation results. The maximum of the correlation
can be used to represent the similarity between a reconstructed object and the ideal object. We
summarized the maxima for different calibration strategies in Table 3. To make it more readable,
we normalized the values using the maximum of the ideal object auto-correlation. Thus, the
values in the table are between 0 and 1. If the value is closer to 1, the reconstruction is more
similar to the ideal object. For either the visible band or the NIR band, there are 8 different
reconstruction methods. Two are for the reconstructions using W and Wmeas but without optical
calibration. Four values are for the reconstructions using M1 ∼ M4 for Part 2 calibration only.
The last two are for the reconstructions using M2 and M4 for Part 1 and M4 for Part 2 calibration.
It is clear that for both bands, using optical calibration will help the reconstruction much. With
the calibration for both Part 2 and Part 1, the reconstructions present the best results.

Fig. 21. The correlation results of a reconstructed frame and the ideal checkerboard object.

4.3.3. Reconstruction in scattering media

In the last experiment, we also test the system in a scattering environment. We put a diffuser
between the moving object and the lens L1 to simulate imaging through scattering media.
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Table 3. The maximum of the correlation results using different calibration strategies for
the visible and NIR bands

No Cali, No Cali, PSF2, PSF2, PSF2, PSF2, PSF2+1, PSF2+1,

W Wmeas M1 M3 M2 M4 M2 M4

Visible band 0.644 0.705 0.706 0.701 0.737 0.754 0.882 0.851

NIR band 0.685 0.687 0.686 0.684 0.725 0.741 0.832 0.815

Figures 22(a) and (b) present two sets of raw visible band TCI measurements and their calibrated
measurements using M4 only for Part 2. One set is for a moving number 7. The other is for a
moving number 9. In each sub-figure, the left is the raw measurement, while the right is the
calibrated result. It can be observed that, using the calibration method, the modulation pattern
shows up. In (c) and (d), we present the raw measurements and the calibrated measurements in
the NIR band.

Fig. 22. (a&b) The raw (left) and the calibrated (right) measurements of TCI in the visible
band; (c&d) the raw (left) and the calibrated (right) measurements of TCI in the NIR band.

In Fig. 23, we present two reconstructed frames without and with optical calibration. In
(a)∼(d), the results using Wmeas but without optical calibration are presented. The frames in
(a) and (b) are for the visible band, while (c) and (d) are for the NIR band. The reconstruction
frames with optical calibrations for Part 2 and Part 1 are presented in (e)∼(h). The top row is for
M2 with Part 1. The bottom row is for M4 with Part 1. The calibration strategy for Part 2 is

Fig. 23. Two reconstructed frames for an object imaged through a diffuser in the visible
(a&b) and NIR (c&d) bands using Wmeas without PSF calibration. The reconstructed frames
obtained using PSF calibration in the visible (e&f) and NIR (g&h) bands. The calibration
strategy used for Part1 in the top row of (e∼h) is M2, while M4 is used for the bottom row.
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M4. Similarly as in (a)∼(d), the frames in (e) and (f) are for the visible band, while (g) and (h)
are for the NIR band. It is clear that the reconstruction quality with optical calibration is much
better. It can also be observed that the NIR band reconstructions have better visual quality than
the reconstructions in the visible band.

5. Conclusion

In this work, for the first time a broad dual-band temporal compressive imaging (TCI) system is
studied. The two reflection directions of a DMD device are used to collect system measurements
in the visible and the NIR band simultaneously. Because in both bands the DMD plane and the
sensor plane are not perpendicular to the optical axis in the imaging system, it is likely to have
aberration error in system measurements. To deal with the issue, we study four nonuniform,
or spatially variant, calibration strategies for the part from a DMD to an FPA, or Part 2, using
random binary patterns. We also study the calibration for the part from an object to a DMD, or
Part 1. In this part, the optics needs to work for both bands. Thus, it is hard to be optimized in
both the visible and the NIR bands. For Part 1, we study the same four nonuniform calibration
strategies as for Part 2.

Using the calibrated broad dual-band TCI system, we reconstructed moving numbers, and a
moving checkerboard. We cover the number 0 with paint. It can be observed clearly in the NIR
band, but is not observable in the visible band. Comparing among the reconstruction without and
with different calibration strategies, we can conclude that the reconstructions with calibrations
of Part 1 and Part 2 are better than the results with calibration of Part 2 only and much better
than the results without calibration. For Part 2, the strategy M4 works best. For Part 1, the
calibration strategies M2 and M4 present nice results. We also use the system to reconstruct
moving objects through a diffuser. With calibration, we obtain much better reconstructions.
The reconstruction quality in the NIR band is also better than in the visible band. By these
experiments, we demonstrate the superior performance of broad dual-band TCI over a single
band system.
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