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Landauer’s principle asserts that any computation has an unavoidable energy cost that grows
proportionally to its degree of logical irreversibility. But even a logically reversible operation, when
run on a physical processor that operates on different energy levels, requires energy. Here we quantify this
energy requirement, providing upper and lower bounds that coincide up to a constant factor. We derive
these bounds from a general quantum resource-theoretic argument, which implies that the initial resource
requirement for implementing a unitary operation within an error ϵ grows like 1=

ffiffiffi
ϵ

p
times the amount of

resource generated by the operation. Applying these results to quantum circuits, we find that their energy
requirement can, by an appropriate design, be made independent of their time complexity.
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I. INTRODUCTION

Landauer’s tenet “information is physical” [1] is a
powerful reminder that all information processing systems
are necessarily subject to the laws of physics. These laws
impose certain fundamental limitations. For example, the
laws of quantum theory imply that perfect universally
programmable quantum processors cannot exist [2].
Refinements of no-go results like this showed that they
can be phrased as trade-offs between the accuracy with
which the tasks can be carried out and the amount of
resources available for their implementation. For example,
the refinement of the above mentioned no-programming
theorem asserts that the size of an approximate universally
programmable quantum processor grows proportionally to
logð1=ϵÞ where ϵ quantifies the tolerated error [3–5].
Here we consider the fundamental energy requirement

for implementing quantum operations. Such requirement
consists of at least two different contributions, which are
consequences of the second law of thermodynamics and of
energy conservation in quantum mechanics, respectively.
The fact that the second law of thermodynamics has
implications for the energy cost of computation is known
as Landauer’s principle [1]. It asserts that any physical
device that carries out a logically irreversible operation
dissipates a certain minimum amount of energy as heat,
and that this amount is proportional to the degree of

irreversibility (which may be quantified in terms of entropic
quantities; see Refs. [6–9]).
In thisworkwe are concernedwith the second fundamental

contribution to the energy bill. This contribution can be
regarded as a consequence of energy conservation, when
applied to coherent transitions across states of different
energy. If a process is executed on a system with non-
degenerate energy levels, then energy must be temporarily
borrowed from a battery. For general quantum processes, this
borrowing may occur in a superposition; i.e., the system’s
quantum state may consist of one branch in which energy has
flown from the battery and another one in which energy has
flown into the battery. To ensure that this does not lead to
decoherence, the corresponding energy states of the battery
must be indistinguishable. This, in turn, is possible only if the
battery is large enough. Determining the corresponding
energy requirement is exactly the topic of this work.
Previous approaches to quantify the energy requirement

are based on the Wigner-Araki-Yanase theorem [10,11],
which states that any conservation law limits the accuracy
with which quantities that do not commute with the
conserved quantity can be measured. The theorem implies
a bound on the variance of the energy in the initial state of
the battery required to implement an operation [12–17].
However, the variance does not in general provide a good
bound on the size of the battery, nor on the average energy
that needs to be initially stored in it. As a simple example,
consider a system with d equally spaced energy levels
fE0;…; Ed−1g. A pure state in the superposition of energy
eigenstates corresponding to E0 and Ed−1 with amplitudesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=d

p
and

ffiffiffiffiffiffiffiffi
1=d

p
, respectively, has average energy

(measured relative to E0 ¼ 0) less than E1 and large energy
variance that grows as d. On the other hand, even if the
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variance is fixed the energy can still take an arbitrarily
large value.
Here we instead take a general resource-theoretic

approach. Let M be a function that quantifies the value
of the different possible states of a system with respect to a
resource. For example,MðρÞ may be the average energy of
the system when it is in state ρ. Furthermore, for a
reversible operation G on the system, we denote by
MðGÞ the maximum increase of the function M when
evaluated on an input state and on the corresponding output
state produced by G. Hence, in the case where the
considered resource is energy, MðGÞ quantifies by how
much the system’s energy can grow when executing G.
Assume now that we want to implementG up to a precision
ϵ (which we quantify in terms of the worst-case infidelity,
defined below). The implementation should consist of a
device that can merely carry out free operations, i.e.,
operations that cannot generate the resource. Such an
implementation must necessarily use a battery, as illustrated
in Fig. 1. Then the following general assertion can be made.
Theorem 1.—If the resource measure M is monotonous,

additive, and regular (see later for definitions), then every
approximation of a reversible operation G within error ϵ
using a free device UG connected to a battery in state β
must satisfy

MðβÞ ≥ (MðGÞ þMðG†Þ)2
32KS

ffiffiffi
ϵ

p − c −Oð ffiffiffi
ϵ

p Þ;

where c and KS are constants that merely depend onM and
the system on which G acts.
This theorem, whose proof we sketch in the Sec. II,

yields in particular a lower bound on the energy re-
quirement for implementing a reversible operation G.

Specifically, in Sec. III, we show that the average energy
content hHBi of the battery supplying energy to the
processor must be at least

hHBi ≥
½ðλmax − λminÞðΔGHSÞ�2

32
ffiffiffi
ϵ

p kHSk
−Oð ffiffiffi

ϵ
p Þ; ð1Þ

where kHSk is the operator norm of the system’s
Hamiltonian, λmax (λmin) denotes the maximal (minimal)
eigenvalue, andΔGHS ¼ G†HSG −HS is the change of the
system’s Hamiltonian induced by the action of the gate G.
We have assumed, without loss of generality, that the
minimum energy is zero for both the system and the battery,
and thus kHSk is equal to the maximum energy of the
system. The bound (1) states that the average energy of the
battery should be above the ground state energy by an
amount determined by the energy change operator ΔGHS,
the system’s energy scale kHSk, and the error ϵ.
While the bound (1) depends on the particular operation

G, by maximizing over all such reversible operations we
obtain a bound on the energy requirement of a universal
quantum processor operating on a system S with a given
Hamiltonian HS,

hHBi ≥
kHSk
8

ffiffiffi
ϵ

p −Oð ffiffiffi
ϵ

p Þ: ð2Þ

This bound is tight up to a constant factor. More precisely,
assuming that the system has equally spaced energy levels,
we show by an explicit construction, described in Sec. IV,
that

hHBi ≤
πkHSk
2

ffiffiffi
ϵ

p : ð3Þ

Taking together these two bounds, we have thus established
that the fundamental energy requirement for operating on S
grows as kHSk=

ffiffiffi
ϵ

p
. Note that if the system’s Hamiltonian

is fully degenerate, i.e., kHSk ¼ 0, then energy conserva-
tion does not imply an energy requirement. Besides the
average energy, we show that the energy spread of the
battery is lower bounded by kHSk=

ffiffiffi
ϵ

p
, and the tightness of

the bound can again be achieved with the construction that
led to Eq. (3).
Finally, we determine how the energy requirement of a

quantum circuit depends on its complexity. Previous works
considered implementations of quantum circuits where
each gate is powered by an independent battery [12,14]
[see Fig. 2(a)]. The energy requirement then obviously
grows linearly with the number of nonconservative gates,
making complex computations energetically demanding. In
contrast, we show that the energy requirement of quantum
circuits is independent of their complexity. For this we
consider an implementation that uses a single battery to
power all gates in the circuit [see Fig. 2(b)]. It turns out that

FIG. 1. Implementing a reversible gate using a battery. This
figure describes a scheme that approximates a generic quantum
gate G that may not preserve a generic type of resource, e.g.,
energy, on a system. The scheme works by using a battery system
that undergoes a free unitary UG together with the system. With
the resource supplied by the battery, G is approximated on the
system.
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energy can be recycled from one gate to the next, and that
the energy requirement for a sequence of gates is exactly
equal to the energy requirement of the overall gate resulting
from their composition. Hence, the energy requirement
depends only on the size of the computational register, but
not on the time complexity of the computation. For
quantum computations with classical inputs and outputs,
such as Shor’s algorithm, we further show that our
implementation is exact and the energy requirement is just
the energy needed to write down the output of the
computation. This may be regarded as the quantum analog
of a classical result by Fredkin and Toffoli [18], who
studied the fundamental energy constraints that the
classical laws of physics impose on computation.

II. LOWER BOUND ON GENERAL
RESOURCE REQUIREMENT

In this section, we spell out the assumptions underlying
Theorem 1 and describe the main proof idea. (The full
proof is provided in the Appendix A.) For this we take a
resource-theoretic viewpoint; i.e., we start from a given set
of free operations that is closed under composition [20].
Let UG be such a free operation that acts on both a
system S and a battery B, which is initialized in state β. The
resulting operation on S is then described by the quantum
channel,

EGð·Þ ¼ TrB½UGð· ⊗ βÞU†
G�; ð4Þ

where β is the initial state of the battery and TrB denotes the
partial trace over the battery’s Hilbert space.

To quantify how well the operation EG approximates a
desired gate G, we use the worst-case fidelity Fwc between
the output of G and EG for any input, which may also be
correlated to an external reference system R. That is,
explicitly,

Fwc ≔ inf
R

inf
jΨi∈HS⊗HR

Tr½ðEG ⊗ IRÞðΨÞðG ⊗ IRÞðΨÞ�; ð5Þ

with Ψ ≔ jΨihΨj, Gð·Þ ¼ G · G†, and IR denoting the
identity map on LðHRÞ, the space of linear operators on
HR. We say that an implementation has error ϵ if
Fwc ¼ 1 − ϵ. The use of this error measure is justified
by the fact that the resource requirements, in the case of
energy as discussed in the Introduction, can be bounded
tightly in terms of ϵ (up to a constant). We also note that the
fidelity is easy to evaluate and widely used to quantify the
quality of gates in quantum computation. Moreover, it may
be related to other measures of distance, e.g., the diamond
norm [21] (see Ref. [22] for a definition) via the inequalities
1 −

ffiffiffiffiffiffiffiffi
Fwc

p
≤ 1

2
kEG − Gk⋄ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Fwc

p
. In Appendix D, we

show that the dependence of the energy requirement on the
diamond norm also scales as 1=

ffiffiffi
ϵ

p
, up to a factor that may

however depend on the system’s dimension.
Theorem 1 is a general resource-theoretic statement,

which merely depends on general properties of the measure
M used to quantify resourcefulness. Specifically, for any
given system,M is a function of the density operator of that
system such that the following holds.
(1) Monotonicity. M is nonincreasing under free oper-

ations and partial trace.
(2) Additivity on product states. Mðρ ⊗ σÞ ¼

MðρÞ þMðσÞ.
(3) Regularity. There exists a constant c ∈ R and, for

any system S, a Lipschitz constant KS ≥ 0, such that
jMðρÞ −MðσÞj ≤ KSkρ − σk1 þ c for any states ρ
and σ of system S, and such that KS is subadditive;
i.e., KAB ≤ KA þ KB for any systems A and B.

With these definitions in place, we can now proceed
to the proof of Theorem 1. Let VGð·Þ ≔ UGð· ⊗ βÞ with
UGð·Þ ¼ UG · U†

G be the evolution defined in Eq. (4), but
before tracing out the battery B. Using techniques from
Refs. [23–25], we show (see Appendix A) that the channel
VG is close toG ⊗ β0, where β0 is a suitable battery state [26].
Because of its additivity property, it is useful to measure this
closeness in terms of the diamond norm k·k⋄ [22]:

kVG − G ⊗ β0k⋄ ≤ 2
ffiffiffi
ϵ

p
: ð6Þ

But this means that approximately there is no entanglement
between the system and the battery after the evolution, and
the battery ends up in a state close to β0. Conversely, the state
β0 may be used to approximately implement the inverse gate
G†, using the gate U†

G, i.e.,

FIG. 2. Multiple and single battery implementations of quan-
tum computation. Two different setups of energy-preserving
quantum computation are compared. Panel (a) depicts the
multiple battery implementation that has often been considered
in previous work [12–16,19], where each single gate of the circuit
is equipped with an individual battery that is discarded after the
gate is implemented. In contrast, in this work we consider the
single battery implementation as illustrated in (b), where a single
battery provides energy for the whole circuit and is reused after
the implementation of each individual gate.
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kG−1 ⊗ β − V 0
Gk⋄ ≤ 2

ffiffiffi
ϵ

p
; ð7Þ

with V 0
Gð·Þ ≔ U−1

G ð· ⊗ β0Þ.
According to Eqs. (6) and (7) we may thus implement the

gate G† after gate G, thereby returning the ancilla approx-
imately to its initial state. Repeating this procedure m (for
anym ∈ N) times, i.e., composingm implementations of G
and ofG† in alternating order as illustrated in Fig. 3, we still
approximate each of them within an error bounded by
4m

ffiffiffi
ϵ

p
. Note that the circuit in the lower half of the figure

increases the resource value M by virtue of G and G†. To
approximate this increase of resource, the circuit in the upper
half of the figure must use the battery, because all the other
operations in the circuit are free and therefore resource
nongenerating. Hence, the amount of resource generated by
m uses of G and G†, i.e., m timesMðGÞ þMðG†Þ, must be
matched by the battery. Evaluating this amount leads to the
bound stated in Theorem 1.

III. LOWER BOUND ON
ENERGY REQUIREMENT

To obtain Eq. (1) we apply Theorem 1 to the resource
theory where the free operations are energy-preserving
channels [27,28]. For any system, the resource function M
is defined by MðρÞ ¼ Tr½Hρ�, where H is the system’s
Hamiltonian (with the minimum energy set to zero) and ρ is
the system’s density operator. This resource function is
additive on product states and it is nonincreasing
under energy-preserving channels and partial trace.
Moreover, the inequality jTrðρ − σÞHj ≤ kρ − σk1 · kHk
shows that the function M is Lipschitz continuous with
Lipschitz constant KS ¼ kHk, equal to the energy scale
of the system under consideration, and c ¼ 0. Finally, we
note that MðGÞ ¼ maxjψi∈HS

hψ jG†HSGjψi − hψ jHSjψi ¼
λmaxðΔGHSÞ and MðG†Þ¼maxjψi∈HS

hψ jGHSG†jψi−
hψ jHSjψi¼−λminðΔGHSÞ, where λmax (λmin) denotes
the maximal (minimal) eigenvalue. Inserting all this
into Theorem 1, we immediately obtain the desired

bound (1) on the average energy content hHBi ¼
Tr½HBβ� of the battery B required to implement G.
In a similar way we can also derive a lower bound on

the required total capacity kHBk of the battery. For this we
first apply Theorem 1 to the resource function M0ðρÞ ≔
TrρðkHk · I −HÞ to obtain the bound,

kHBk − hHBi ≥
½ðλmax − λminÞðΔGHSÞ�2

32
ffiffiffi
ϵ

p kHSk
−Oð ffiffiffi

ϵ
p Þ: ð8Þ

Taking the worst case G, which satisfies λmaxðΔGHSÞ ¼
−λminðΔGHSÞ ¼ kHSk, and combining this with bound (1),
we find a bound on the maximum energy (or the capacity)
of the battery,

kHBk ≥
kHSk
4

ffiffiffi
ϵ

p −Oð ffiffiffi
ϵ

p Þ: ð9Þ

This and Eq. (2) are lower bounds on the energy require-
ment of a universal processor, able to implement arbitrary
gates on system S with error ϵ or less. While Eq. (2)
quantifies the energy requirement in terms of the average
energy that a battery must contain, Eq. (9) refers to the
battery’s total capacity.
Theorem 1 also provides bounds on other types

of resources, such as coherence [29–32]. A concrete
example is the relative entropy of coherence [29] CðρÞ ≔
SðρdiagÞ − SðρÞ, with S denoting the von Neumann entropy
and ρdiag the diagonal part of ρ in the energy eigenbasis.
Here the theorem yields the bound (see Appendix B),

CðβÞ ≥ (CðGÞ þ CðG†Þ)2
32

ffiffiffi
ϵ

p
log dS

−Oð1Þ; ð10Þ

on the initial coherence that the battery must provide, where
dS is the dimension of the system on which G acts, and
CðGÞ is the amount of coherence generated by the gate G.
For gates like the generalized Hadamard gate, this quantity
can be as large as log dS. Therefore, the minimum amount
of coherence required to operate a universal quantum
processor scales like log dS=

ffiffiffi
ϵ

p
.

We have shown that the requirement for energy and
coherence both follow an 1=

ffiffiffi
ϵ

p
scaling. The same scaling

also characterizes the standard deviation of the energy, as
observed in previous works [12–17].

IV. ATTAINING THE BOUND

We now show that the bound (2) can be attained with a
suitable choice of battery state and interaction between the
system and the battery. In this section, we assume that the
system has equally spaced energy levels, which is the case,
for example, if it consists of n identical individual qubits.
We denote the spacing by ℏω.

FIG. 3. Approximating m uses of a gate and its inverse. If a
unitary gate G can be implemented with small error, then the
battery can be reused 2m times, approximately implementing m
uses of the gates G and G†. As a consequence, the state of the
battery should be able to provide m times the maximum resource
generation of G and G† up to a correction.
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The implementation uses a battery with equally spaced
energy levels with spacing ℏω, ranging from 0 to kHBk ¼
RkHSk, where R is an integer, assumed to be larger than 2
for later convenience. At the beginning, the battery is
initialized in a superposition of energy eigenstates with
sine-shaped amplitudes [33],

jβi ¼
ffiffiffiffi
2

L

r XðR−1ÞkHSk

EB¼kHSk
sin

�ðEB − kHSk þ ℏωÞπ
ℏωL

�
jEBi; ð11Þ

where the summation runs in steps of ℏω, and L ¼
ðR − 2ÞkHSk=ðℏωÞ þ 2. Note that the lowest and highest
energy levels are unoccupied. This allows the battery to
both supply and absorb energy from the system.
For the interaction between the system and the battery

we adopt a construction from Refs. [34–36], suitably
adapted to unitary gates on finite-dimensional systems.
Denote by ES;x the energy of jψxi. For a given value E of
the total energy, and for every x satisfying the condition

E − kHBk ≤ ES;x ≤ E; ð12Þ
we define the eigenstates,

jx; Ei ≔ jψxi ⊗ jE − ES;xi: ð13Þ
Then, we denote by Eok the set of values of the total energy
such that condition (12) is satisfied for every x ¼ 1;…; dS,
or equivalently, the set of values E satisfying the condition
kHSk ≤ E ≤ kHBk. For every E ∈ Eok, define the partial
isometry,

UðEÞ
G ≔

XdS−1
x;y¼0

hψxjGjψyijx; Eihy; Ej; ð14Þ

which acts as the unitary gateG in the eigenspace with total
energy E. To make the computation reversible on the whole
system SB, we set UG to be the unitary gate,

UG ≔
X
E∈Eok

UðEÞ
G þ

X
E∉Eok

PE; ð15Þ

where PE is the projector on the subspace with total
energy E.
In Appendix C, we show that the worst-case fidelity of

the above implementation is lower bounded as

Fwc ≥ 1 −
�
πðλmax − λminÞðΔGHSÞ

4hHBi
�

2
�
1þO

�kHSk
hHBi

��
;

ð16Þ
and therefore the energy requirement is upper bounded as

hHBi ≤
πðλmax − λminÞðΔGHSÞ

4
ffiffiffi
ϵ

p
�
1þO

�kHSk
hHBi

��
: ð17Þ

In the worst case over all possible gates, one has
ðλmax − λminÞðΔGHSÞ ¼ 2kHSk, matching the lower
bound (2) up to a constant factor of 4π.
The error ϵ depends on the parameter R that characterizes

the battery state (11). Observing that the energy of the sine
state is hHBi ¼ RkHSk=2, we obtain the dependency
R ≈ πðλmax − λminÞðΔGHSÞ=ð2

ffiffiffi
ϵ

p kHSkÞ. Therefore, the
battery capacity of this implementation is kHBk ¼
RkHSk ≈ πðλmax − λminÞðΔGHSÞ=ð2

ffiffiffi
ϵ

p Þ. Taking the worst
case G, the capacity of the battery is approximately

kHBk ≈
πkHSkffiffiffi

ϵ
p ; ð18Þ

matching the lower bound (9) up to a constant of 4π.

V. ENERGY-EFFICIENT
QUANTUM COMPUTATION

We established the minimum energy requirement of one
single quantum operation. But what about a computation
that consists of many individual steps? One way to imple-
ment the computation is to assign an individual battery to
each gate and to replace the gate by its conservative
approximation. However, this approach leads to a heavy
energy toll. If each gate is powered by an individual battery
of energy hHBi, then bound (2) implies that the error cannot
decrease faster than 1=hHBi2. The error (infidelity) is a
lower bound on the trace distance, which in the worst case
increases linearly with the number of gates. The linear
increase implies that at most OðhHBi2Þ gates can be
combined together with tolerable error. For a circuit of
N nonconservative gates, this means that the energy of each
individual battery should grow at least as

ffiffiffiffi
N

p
, with a total

energy requirement scaling at least as N3=2. In other words,
the energy requirement depends on the number of non-
conservative gates, just as in traditional models of dis-
sipative computation.
We now show that, in fact, quantum computation can be

implemented with an amount of energy that is independent
of the circuit depth. To do so, we propose a scheme of
computation where energy is recycled from one computa-
tional step to the next. The computation is performed on n

identical qubits, each with Hamiltonian Hð1Þ
S and energy

gap kHð1Þ
S k ¼ ℏω, and uses a single battery of capacity

CB ¼ RnkHð1Þ
S k, where R is an integer depending on the

desired level of accuracy. For an elementary gate G acting
on a subset of k qubits, we let the battery and the k qubits
interact through the energy-preserving gate UG in
Eq. (15). The energy subspaces on which the gate UG

acts nontrivially correspond to the energy values EðkÞ
ok ¼

fEjkkHð1Þ
S k ≤ E ≤ kHBkg. Now, consider the total energy

of the n qubits and the battery. For every two gates G1 and
G2, one has the property,
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UG1
UG2

PðnÞ
ok ¼ UG1G2

PðnÞ
ok ; ð19Þ

where PðnÞ
ok is the projector on the eigenspaces of the total

energy in EðnÞ
ok . The above relation means that the local

interactions of the batterywith subsets of qubits are enough to
generate every global interaction between the battery and all
the qubits involved in the computation. Hence, the compu-
tation can be realized bypreparing the battery in the state (11),

with kHSk ¼ nkHð1Þ
S k. For a computation consisting of N

gates ðGiÞNi¼1, the energy requirement does not depend onN,
but only on the unitary G ¼ GN � � �G2G1 that describes the
overall computation. Since the gateG acts on atmostn qubits,
the energy requirement for implementing any computation
with accuracy ϵ is at most πnℏω=ð2 ffiffiffi

ϵ
p Þ.

It is worth noting that, if the computation is only required
to work on a subset of input states, the energy requirement
can be lower. For example, suppose that a computation has
classical input and classical output, as in Shor’s algorithm
and in many other quantum algorithms. In this case, every
computation can be implemented exactly by setting the
battery in the initial state with energy nℏω, and then using
the interaction (15) for every gate (see Appendix E).

VI. CONCLUSIONS

We derived a bound on the resources that are required to
approximately implement a reversible quantum operation.
We found that, for a general class of resources, which include
energy as a special case, the resource requirement grows as
1=

ffiffiffi
ϵ

p
, where ϵ is the approximation error (Theorem 1).

Furthermore, in the case where the resource is energy, the
bound is attainable within a constant factor, provided that the
target system has equally spaced energy levels. A typical
example for such a situation is a quantum processor acting on
n identical qubits. For a computation, this minimum energy
requirement is, remarkably, achievable even if the computa-
tion is carried out by a complex quantum circuit with many
individual unitary gates. In this case, we showed that the
battery state can be recycled from one computational step to
the next, making the energy requirement independent of how
the computation is decomposed.
Our bound on the energy requirement is unrelated to the

second law of thermodynamics: it follows from the con-
servation of energy, and it is present even if the evolution is
entirely reversible. Nonetheless, our energy requirement
can be compared quantitatively with the thermodynamical
work requirement associated to Landauer’s principle,
which is present when the evolution is irreversible.
Landauer’s principle sets the work cost of erasing infor-
mation from a single qubit to KBT, where KB is
Boltzmann’s constant and T is the system’s temperature.
For superconducting qubits, assuming an operation temper-
ature of the order of 1 K, the Landauer cost is of the order of
10−23 J. Our bounds (2) and (3), on the other hand,

introduce a new energy requirement that depends on the
Hamiltonian of the qubit system and the desired imple-
mentation accuracy. For transmon superconducting qubits,
the energy gap between j0i and j1i is around the order of
10 GHz [37,38], implying an energy requirement of
∼10−24 × ϵ−1=2 J. The energy requirement is thus compa-
rable to the energy cost predicted by Landauer’s principle.
Like Landauer’s principle, our results must be under-

stood as fundamental limitations imposed by the laws of
physics. At least for today’s few-qubit devices, which
require large cooling and control machinery external to
the actual quantum processors, the fundamental energy
requirement as given by Eqs. (2) and (3) merely represents
a minor part of the overall energy consumption. However,
as quantum technology is being developed further, the
energy required, e.g., for cooling, will most likely scale less
than linearly with the number of qubits, and its contribution
to the overall energy bill thus becomes less dominant.
Analogously to how the fundamental bounds of classical
thermodynamics have helped us optimizing engines, a
theory of the thermodynamics of computation can guide
the optimization of computations with respect to their
energy consumption. The bounds presented here may be
regarded as a contribution to such a theory.
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APPENDIX A: PROOF OF THEOREM 1

We assume that the resource function M satisfies
monotonicity and regularity (properties 1 and 3 in the
main text). In addition, additivity (Property 2 in the main
text) can be relaxed to
(2) Subadditivity on product states. Mðρ ⊗ σÞ ≤

MðρÞ þMðσÞ.
Under these properties, we prove a more general result on
the resource requirement, which reduces to Theorem 1
(which we prove as Corollary 3) when property 2 is
substituted by additivity.
Theorem 2.—Every approximation of the gate G within

error ϵ using a free gateUG and a battery in the state β must
satisfy the inequality,

MðβÞ ≥ mM̄mðG ⊗ G†Þ − 8
ffiffiffi
ϵ

p
KSm2 − c; ðA1Þ
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for everym ∈ N�, where M̄mðUÞ is the regularized resource
generation [39,40] ofm uses of a quantum gate U acting on
a system S. Explicitly, M̄mðUÞ is defined as

M̄mðUÞ ≔ max
ρm

1

m
f(MðU⊗mðρmÞÞ −MðρmÞ); ðA2Þ

where Uð·Þ ≔ Uð·ÞU† and the maximum is taken over all
m-partite states.
We remark that Eq. (A1) is the general formula that

can be used to further derive resource inequalities with
simpler forms: M̄m can scale differently, e. g., M̄m ¼ Oð1Þ
or M̄m ¼ OðmÞ, for different resource theories. One can
then optimize over all m ∈ N� to get the scaling of the
resource requirement with respect to the error, which
depends on the resource theory under consideration.
The proof of Theorem 2 is based on the following

lemma, in which we use the notation FwcðC;DÞ≔
infR inf jΨi∈HS⊗HR

F½ðC⊗IRÞðjΨihΨjÞ;ðD⊗IRÞðjΨihΨjÞ�.
Lemma 1.—Let G be a gate acting on system S, UG a

gate acting on system SB, β be a state of system B, let VG
be the channel from S to SB defined by VGðρÞ ≔
UGðρ ⊗ βÞU†

G, and let EG be the channel from S to S
defined by EGðρÞ ≔ TrB½VGðρÞ�. Then, there exists a
state β0 of system B, such that kVG − G ⊗ β0k⋄ ≤
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðEG;GÞ

p
.

Proof.—Let β̃ be a purification of β with purifying
system E. Then, the channel ṼGð·Þ ≔ ðUG ⊗ IEÞð· ⊗ β̃Þ is
a Stinespring dilation of the channel EG [41].
The Uhlmann’s theorem for gates [23,42] guarantees that

there exists a Stinespring dilation of the gate G, say G ⊗ β̃0

for some pure state β̃0, such that the fidelity between ṼG and
G ⊗ β̃0 is equal to the fidelity between EG and G, namely,

FwcðG ⊗ β̃0; ṼGÞ ¼ FwcðG; EGÞ: ðA3Þ

Tracing out E, we obtain

FwcðG ⊗ β0;VGÞ ≥ FwcðG; EGÞ; ðA4Þ

where VGð·Þ ≔ UGð· ⊗ βÞ. Since VG and G ⊗ β0 are
extensions of the original channels, the converse inequality
also holds, namely, FwcðG ⊗ β0;VGÞ ≥ FwcðG; EGÞ. Hence,
the inequality is in fact an equality.
Then, the Fuchs–Van de Graph inequality [43] yields the

relation,

kVG − G ⊗ β0k⋄ ≤ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FwcðG; EGÞ

p
: ðA5Þ

▪
Corollary 1.—Let V 0

G be the channel from S to
SB defined by V 0

GðρÞ ≔ U†
Gðρ ⊗ β0ÞUG. Then, one has

kV 0
G − G† ⊗ βk⋄ ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðEG;GÞ

p
.

Proof.—The inequality follows from the unitary invari-
ance of the diamond norm:

kV 0
G − G† ⊗ βk⋄ ¼ kUG∘V 0

G∘G − UG∘ðG† ⊗ βÞ∘Gk⋄
¼ kG ⊗ β − VGk⋄
≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FwcðG; EGÞ

p
: ðA6Þ

▪
Corollary 2.—Let CG be the multipartite channel

corresponding to the circuit in Fig. 3 of the main text.
Then, one has the bound kCG − ðG ⊗ G−1Þ⊗m ⊗ βk⋄ ≤
4m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FwcðG; EGÞ

p
.

Proof.—It follows from the unitary invariance and
triangle inequality of the diamond norm, combined with
the bounds in Lemma 1 and Corollary 1. ▪
Proof of Theorem 2.—Consider the input state ρin ≔

ρð2mÞ
in ⊗ β, where ρð2mÞ

in is an arbitrary input state on 2m
identical copies of the system. Let ρout be the output state
resulting from the approximate circuit in Fig. 3 of the main
text. Using the monotonicity of the function M, we obtain
the relation,

MðTrB½ρout�Þ ≤ MðρoutÞ ≤ MðρinÞ: ðA7Þ

By property 2 (subadditivity), we have MðρinÞ ≤
MðβÞ þMðρð2mÞ

in Þ. Then, we have the bound,

MðβÞ ≥ MðTrB½ρout�Þ −Mðρð2mÞ
in Þ: ðA8Þ

Now, we apply property 3 (regularity) to the ideal output
and to its approximation, whose difference has trace norm
at most 4m

ffiffiffi
ϵ

p
from the actual output state ρout, due to

Corollary 2. Noticing that the Lipschitz constant for the
system ðS ⊗ SÞ⊗m is upper bounded by 2mKS, the bound
(A8) becomes

MðβÞ ≥ M(ðG ⊗ G−1Þ⊗mðρð2mÞ
in Þ) −Mðρð2mÞ

in Þ
− 8

ffiffiffi
ϵ

p
KSm2 − c; ðA9Þ

which holds for any m ∈ N� and for any input state ρð2mÞ
in .

Maximizing over all inputs fixing m, we have

MðβÞ ≥ mM̄mðG ⊗ G†Þ − 8
ffiffiffi
ϵ

p
KSm2 − c;

where M̄mðUÞ is defined by Eq. (A2). ▪
When M is additive on product states, i.e.,

Mðρ ⊗ σÞ ¼ MðρÞ þMðσÞ, the general bound (A1) can
be simplified by finding an m-independent lower bound
on M̄m.
Corollary 3 (Theorem 1 in the main text).—When M is

additive, the resource requirement in the battery becomes
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MðβÞ ≥ (MðGÞ þMðG†Þ)2
32KS

ffiffiffi
ϵ

p − c − 2KS
ffiffiffi
ϵ

p
; ðA10Þ

where MðGÞ ≔ maxρMðGρG†Þ −MðρÞ is the amount of
resource generated by the gate G.
For additive M the function M̄m is monotonically

increasing with m. Since MðGÞ ¼ M̄1ðGÞ, it is obviously
upper bounded by M̄mðGÞ.
Proof.—Let us consider a product form input ρð2mÞ

in ¼
ðρ ⊗ σÞ⊗m to the circuit. Since M satisfies additivity, we
have

M̄mðG ⊗ G†Þ

≥
1

m
ðMððGðρÞ ⊗ G−1ðσÞÞ⊗mÞ −Mððρ ⊗ σÞ⊗mÞÞ

¼ ðMðGðρÞÞ −MðρÞÞ þ ðMðG−1ðσÞÞ −MðσÞÞ; ðA11Þ

for every m ∈ N�. Choosing ρ and σ to be the maximal
resource generating inputs for G and G−1, respectively, we
have

M̄mðG ⊗ G†Þ ≥ MðGÞ þMðG†Þ: ðA12Þ

Substituting into Eq. (A1), we get

MðβÞ ≥ m(MðGÞ þMðG†Þ) − 8
ffiffiffi
ϵ

p
KSm2 − c: ðA13Þ

Finally, we obtain the lower bound (A10) on the amount of
resource in the battery by maximizing the bound over all
possible m ∈ N. The optimal choice m� ∈ N satisfies
jm�−(MðGÞþMðG†Þ)=16 ffiffiffi

ϵ
p

KSj≤1=2. Substituting into
Eq. (A13) we get (A10). ▪
We conclude by mentioning a further extension of

Theorem 2 that takes into account the possibility of
applying the gate G on part of a composite system.
Corollary 4.—Every approximation of the gate G within

error ϵ using a free gateUG and a battery in the state β must
satisfy the inequality,

MðβÞ ≥ mM̄mðG ⊗ IR ⊗ G† ⊗ IRÞ − 8
ffiffiffi
ϵ

p
KSRm2 − c;

ðA14Þ

for every m ∈ N�, where R is a reference system.
Proof.—The result follows from the application of

Theorem 2 to the gate G ⊗ IR, observing that, by defi-
nition, the diamond norm and the worst-case fidelity are
invariant under addition of a reference system. ▪

APPENDIX B: APPLICATION TO THE
RESOURCE THEORY OF COHERENCE

The resource of quantum coherence [29–31,44–46] can
be characterized operationally in terms of different sets of
free operations, such as strictly incoherent operations [44],

maximally incoherent operations [47,48], dephasing covar-
iant operations [31,45,46], phase covariant operations [31],
and physically incoherent operations [45,46]. These oper-
ations are defined relative to a fixed basis fjiig, and
preserve the set of incoherent states, of the form
ρ ¼ P

i pijiihij. For composite systems, it is understood
that the fixed basis of the composite system is the product
of the fixed bases for the components.
For the purpose of our bound, the choice of the set of free

operations is not critical. As a measure of resource, we
consider the relative entropy of coherence [29],

CðρÞ ≔ SðρdiagÞ − SðρÞ; ðB1Þ
S denoting the von Neumann entropy of quantum states and
ρdiag being the diagonal part of ρ in the energy basis. This
measure of coherence satisfies the properties 1 (monoto-
nicity) and 2 (additivity on product states). It also satisfies
property 3, as shown by the following.
Proposition 1.—The function C∶LðCdÞ → R; CðρÞ ¼

SðρdiagÞ − SðρÞ satisfies the inequality jCðρÞ − CðσÞj ≤
logdkρ − σk1 þ 2.
Proof.—For any two states ρ and σ in a d-dimensional

Hilbert space, the difference of their entropies is bounded
by the Fannes-Audenaert inequality [49,50],

jSðρÞ − SðσÞj ≤ log d
2

kρ − σk1 þ h2ðkρ − σk1=2Þ; ðB2Þ

where h2ðpÞ≔−plogp−ð1−pÞlogð1−pÞ is the binary
entropy, upper bounded by one for any p. For our purpose,
it is enough to use the relaxed version of the above
inequality:

jSðρÞ − SðσÞj ≤ log d
2

kρ − σk1 þ 1: ðB3Þ

Now, let us consider the difference of the relative
entropies of coherence (B1) between ρ and σ. We have

jCðρÞ−CðσÞj≤ jSðρÞ−SðσÞjþ jSðρdiagÞ−SðσdiagÞj: ðB4Þ

Applying Eq. (B3) to both terms on the right-hand side of
the above inequality and noticing that kρdiag − σdiagk1 ≤
kρ − σk1 (monotonicity of trace distance under data
processing), we have

jCðρÞ − CðσÞj ≤ log dkρ − σk1 þ 2: ðB5Þ

Therefore, we have K ¼ logd and c ¼ 2. ▪
Using the above proposition and Theorem 1 of the main

text, we obtain a lower bound on the initial coherence in the
battery:

CðβÞ ≥ (CðGÞ þ CðG†Þ)2
32

ffiffiffi
ϵ

p
logdS

− 2: ðB6Þ
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Gates like the generalized Hadamard gate have coherence
generation up to log dS. Therefore, the minimum amount of
required coherence in a quantum processor is lower
bounded as

CðjβihβjÞ ≥ log dS
8

ffiffiffi
ϵ

p − 2: ðB7Þ

APPENDIX C: LOWER BOUND ON
THE ACCURACY

In the following we determine the lower bound (16)
on Fwc. Notice that Fwc can be rewritten as Fwc ¼
infR inf jΨi∈HS⊗HR

FΨ, where

FΨ ≔ Tr½ðEG ⊗ IRÞðΨÞðG ⊗ IRÞðΨÞ�: ðC1Þ
To evaluate the this fidelity, we observe that the gate UG,

defined in Eq. (15), can be expressed as UG¼UðokÞ
G þPðokÞ

⊥ ,

where PðokÞ
⊥ is the projector on the eigenstates of the total

energy outside the set Eok, and U
ðokÞ
G is the partial isometry,

UðokÞ
G ≔

X
x;y

Gxyjψxihψyj ⊗ SðxyÞ; ðC2Þ

SðxyÞ ≔
X
E∈Eok

jE − ES;xihE − ES;yj; ðC3Þ

where we use the shorthand Axy ¼ hψxjAjψyi for a generic
operator A ∈ LðHSÞ. Observe that the battery state (11) is
defined so that the joint state of the system and the battery
has full support in energy subspaces with E ∈ Eok.
Substituting Eq. (C2) into Eq. (C1), one has the expression,

FΨ ¼
XdS−1

x;y;z;t¼0

CxyztðρG†ÞxyGyxG
†
ztðGρÞtz; ðC4Þ

where ρ is the marginal state ρ ¼ TrR½jΨihΨj� and
Cxyzt ¼ hβjS†ztSxyjβi.
The quantity Cxyzt can be explicitly evaluated as

Cxyzt ¼
XðR−1ÞkHSk−x

k¼kHSkþy

2

L
sin

�ðk − zþ t − 2kHSk þ 1Þπ
L

�

× sin

�ðkþ x − y − 2kHSk þ 1Þπ
L

�

¼ ðL − x − y − 1Þ cosððx−y−zþtÞπ
L Þ

L

þ sinððxþyþ1Þπ
L Þ cosðð2kHSk−tþzÞπ

L Þ
L sinðπLÞ

¼ 1 −
ðx − y − zþ tÞ2π2

8hHBi2
�
1þO

�kHSk
hHBi

��
; ðC5Þ

where the last step follows from the definition of L.
Inserting the above expression into Eq. (C4) and rearrang-
ing the different terms, we obtain

FΨ ¼ 1 −
π2VarðΔGHSÞ

4hHBi2
�
1þO

�kHSk
hHBi

��
; ðC6Þ

where VarðΔGHSÞ denotes the variance of the operator
ΔGHS on the state jΨi. Noting that VarðΔGHSÞ ≤
ððλmax − λminÞðΔGHSÞ=2Þ2, Eq. (C6) implies the following
bound on the worst-case fidelity:

Fwc ≥ 1 −
�
πðλmax − λminÞðΔGHSÞ

4hHBi
�

2
�
1þO

�kHSk
hHBi

��
:

ðC7Þ

APPENDIX D: ENERGY REQUIREMENT IN
TERMS OF THE DIAMOND NORM ERROR

Here we show that the energy requirement still scales as
1=

ffiffiffi
ϵ

p
, when the error ϵ is measured by the diamond norm

error [22] instead of 1 − Fwc.
On one hand, since the diamond norm error upper

bounds the worst-case infidelity via the inequality
1−

ffiffiffiffiffiffiffiffi
Fwc

p
≤ 1

2
kEG−Gk⋄, we have 1−Fwc≤2ϵ when the

diamond norm error is at most ϵ. The proof of the lower
bound [cf. Eq. (2)] goes through and we get

hHBi ≥
kHSk
8

ffiffiffiffiffi
2ϵ

p −Oð ffiffiffi
ϵ

p Þ: ðD1Þ

On the other hand, the output state of the construction
(15) can be expressed as

EG ⊗ IRðΨÞ

¼
XdS−1

x;y;z;t¼0

CxyztGxyjψxihψyjΨjψ tihψ zjG�
zt; ðD2Þ

where Cxyzt is given by Eq. (C5). The diamond norm error
can be obtained by taking the worst case over Ψ of the
following quantity:

1

2

����
XdS−1

x;y;z;t¼0

ðCxyzt − 1ÞGxyjψxihψyjΨjψ tihψ zjG�
zt

����
1

: ðD3Þ

The quantity 1 − Cxyzt can be upper bounded as

1−Cxyzt≤
π2ðdS−1Þ2
2hHBi2

�
1þO

�kHSk
hHBi

��
∀ x;y;z;t; ðD4Þ

since x; y; z; t ∈ f0;…; dS − 1g. Substituting into Eq. (D3),
the diamond norm error ϵ can be upper bounded as
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ϵ ≤
π2ðdS − 1Þ2
2hHBi2

�
1þO

�kHSk
hHBi

��
max
Ψ

kGΨG†k1

¼ π2ðdS − 1Þ2
2hHBi2

�
1þO

�kHSk
hHBi

��
: ðD5Þ

Finally, we have

hHBi ≤
πðdS − 1Þffiffiffiffiffi

2ϵ
p

�
1þO

�kHSk
hHBi

��
: ðD6Þ

In summary, we derived both upper and lower bounds on
hHBi in terms of the diamond norm error. Since the two
bounds have matching scaling, we conclude that the energy
requirement scales as 1=

ffiffiffi
ϵ

p
, independently of whether one

measures the error in terms of the worst-case infidelity or in
terms of the diamond norm error.

APPENDIX E: PERFECT IMPLEMENTATION
OF QUANTUM COMPUTATION

Here we consider a generic quantum algorithm that starts
by preparing an energy eigenstate state jψxi and ends by
measuring the energy eigenbasis. The overall action of the
algorithm can be described by a unitary gateG. We observe
that the input-output relation induced by gate G can be
reproduced without errors using the interaction (15). For an
initial state jψxi of the system, one prepares the battery in
the state jE − ES;xi, so that the joint state is

jx; Ei ¼ jψxi ⊗ jE − ES;xi; ðE1Þ

where the total energy E ∈ Eok. Then the initial state of
the system and the battery can be expressed as jx; Ei. The
effect of the interaction (15) can be expressed as
UGjx; Ei ¼

P
y gy;xjy; Ei, where gx;y ¼ hψyjGjψxi is the

matrix element of G. The system ends up in the stateP
y jgy;xj2jψyihψyj. Therefore, when measuring in the

energy eigenbasis in the end, the probability of getting
the outcome y is exactly jgy;xj2, which is the same as for the
original algorithm G.
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