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Equation of motion for grain boundaries in polycrystals
Luchan Zhang 1✉, Jian Han2, David J. Srolovitz 2,3✉ and Yang Xiang1

Grain boundary (GB) dynamics are largely controlled by the formation and motion of disconnections (with step and dislocation
characters) along with the GB. The dislocation character gives rise to shear coupling; i.e. the relative tangential motion of two grains
meeting at the GB during GB migration. In a polycrystal, the shear coupling is constrained by the presence of other grains and GB
junctions, which prevents large-scale sliding of one grain relative to the other. We present continuum equations of motion for GBs
that is based upon the underlying disconnection dynamics and accounts for this mechanical constraint in polycrystals. This leads to
a reduced-order (zero-shear constrained) model for GB motion that is easily implemented in a computationally efficient framework,
appropriate for the large-scale simulation of the evolution of polycrystalline microstructures. We validated the proposed reduced-
order model with direct comparisons to full multi-disconnection mode simulations.
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INTRODUCTION
Grain boundaries (interfaces between domains/grains of different
crystallographic orientations) are major components of polycrys-
talline microstructures. The dynamical properties of grain bound-
ary (GB) networks play essential roles in the mechanical response
of materials and influence a wide range of other properties (e.g.,
electrical resistance, optical transmission, thermoelectric effi-
ciency)1. Traditional models for isotropic GB dynamics are based
on capillarity-driven GB migration; i.e., the driving force for
migration is proportional to the local GB mean curvature κ2,3 such
that the normal GB velocity vn (isotropic limit) is vn=MGBγκ, where
MGB is the GB mobility and γ is the GB energy. Theoretical
predictions and experimental observations demonstrate that GB
migration, in general, is controlled by the motion of discrete line
defects constrained to the GBs known as disconnections4–13.
Motion by mean curvature-based continuum models are unable to
adequately account for many GB migration phenomena such as
stress-driven GB motion associated with disconnection dynamics.
Disconnection is a line defect that is characterised by a

dislocation Burgers vector b and a step height H; i.e., (b, H). We
recently developed a continuum model for GB migration that is
based upon disconnection migration14,15. These models naturally
include GB migration under a wide range of driving forces
(internal and applied stress, chemical potential jumps, capillarity),
as well as the effect of temperature. We also proposed a
continuum model that accounts for the concurrent migration of
GB and the junctions along which they meet in a disconnection-
based framework16,17.
One important consequence of GB migration by disconnection

motion is shear coupling18–20; the translation of one grain relative
to the other in a direction parallel to the GB plane during
migration (associated with the disconnection Burgers vector)
(Fig. 1a, b). The shear coupling has been observed in bicrystals in
both experiments and simulations21–33. On the other hand, in a
polycrystal, constraints imposed by the presence of other grains
prevents large-scale sliding of one grain relative to the other
(Fig. 1c). Grain boundary migration in such constrained systems
requires the simultaneous action of disconnections of multiple

modes such that there is zero-net-shear16. Continuum models14,15

can, in principle, incorporate this collective behaviour through the
long-range stress field generated by all of the disconnections on
all of the GBs in the microstructure16,17. However, such calcula-
tions are too complex and computationally inefficient for wide-
spread adoption in microstructure evolution simulations.
In this paper, we propose a reduced-order description of GB

migration that accounts for the constraints imposed by other
grains in the polycrystalline microstructure (Fig. 1c) that is both
disconnection-based and is sufficiently computationally tractable
to be broadly applied. The result is a disconnection migration-
based equation of motion for a mechanically constrained GB; one
for which there is zero-net-shear (see an example in Fig. 1d). To
validate our proposed approach, we compare model predictions
with a multi-disconnection migration-based approach for GB
migration in the presence of different mechanical constraints (as
appropriate for microstructural evolution in a polycrystal)15.

RESULTS
Equation of motion for a constrained grain boundary
On the microscopic level, a high-angle GB may be viewed as being
composed of flat sections and disconnections (the stepped, black
curve in Fig. 2). The motion of disconnections in one direction
translates the GB while motion of a pair of disconnections such
that they meet and annihilate with each other changes the GB
curvature. Hence, both GB migration and change in GB shape can
be characterised by disconnection motion. On a continuum level,
a high-angle GB may be modelled as a smoothly varying curve
(not resolving the underlying disconnection/step structure—see
the red curve in Fig. 2).
Consider a slightly curved GB, deviating from a flat reference

parallel to x. The GB profile may be described by y= h(x, t), where
∣∂xh∣ ≪ 1. The disconnection mode is characterised by a Burgers
vector and step height (b, H), where the Burgers vectors b= (b, 0)
is, here, in x and the step height vector H in y (Fig. 2). There are
many possible Burgers vectors bn and for each a set of possible
step heights {Hnk} on each GB, as determined by the
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misorientation between the grains13. Although in principle, the
number of possible disconnection modes is infinite, the modes
likely to be found are quite limited, depending on thermodynamic
variables, bonding, disconnection core structure. The density of
disconnections of mode j (b(j), H(j)) is denoted ρ(j) and positive/
negative ρ(j) value represents the density of disconnection (b(j),
H(j))/(−b(j), −H(j)). Evolution equations for the GB profile h(x, t) and
disconnection densities ρ(j)(x, t) on the GB can be described by
disconnection fluxes J(j),

ht ¼ �
X
j

JðjÞHðjÞ; (1)

ρ
ðjÞ
t þ JðjÞx ¼ 0: (2)

In a polycrystalline microstructure, two grains meeting at a GB
cannot slide with respect to one another without limit. This is
because of the mechanical constraint from the other grains
surrounding the two grains meeting at the GB in question and/or
because of the presence of a nearby GB junction12,13. (Note that
since different GBs have different crystallographically allowed
disconnection Burgers vectors and step heights, disconnections
can rarely move across GB junctions.) These constraints give rise to
a macroscopic zero-net-shear across a GB constraint; i.e.

_ϵ ¼
X
j

bðjÞJðjÞ ¼ 0: (3)

Since disconnections have both dislocation and step character,
this implies a constrained evolution problem: the GB profile and
disconnection densities evolve as per (1) and (2) subject to the
constraint (3).
The evolution of the GB profile ht is determined by the

disconnection fluxes (1). The flux of disconnections of each mode
contributes to the change in GB profile via their step heights H(j).
The disconnection density evolution is consistent with both the
Burgers vector and step conservation. The flux J(j) of the jth
disconnection mode is

JðjÞ ¼ vðjÞðjρðjÞj þ 2cðjÞÞ; (4)

where cðjÞ ¼ 1
a e

�E�ðjÞ=ðkBTÞ is the thermal equilibrium disconnection
density on the GB (which enables the motion of an initially flat
GB), a is an atomic spacing, kB is the Boltzmann constant, T is the
temperature, E*(j) is half the disconnection pair formation
energy13, and v(j) is the disconnection glide velocity

vðjÞ ¼ MðjÞ
d ½τbðjÞ þ ΨHðjÞ � γhxxH

ðjÞ�: (5)

Here, MðjÞ
d is the disconnection mobility, τ is the total internal shear

stress, and Ψ is the chemical potential-jump across the GB. We
assume that the disconnection glide velocity (5) is overdamped,
such that it is proportional to the driving force f ðjÞd , i.e.
vðjÞ ¼ MðjÞ

d � f ðjÞd .

Fig. 1 Schematic illustration of shear coupling and constraints during GB migration. A bicrystal with free top and bottom surface a before
and b after GB migration with accompanying shear deformation. The dashed blue line is a fiducial marker (e.g., a scratch) in the bicrystal. The
shear-coupling factor β is the inverse of the slope of this line between the initial and final GB positions (red solid and dashed lines in
b, respectively). c A grain in a polycrystal with GBs 1–5 and Junctions A–E. The shear of GB ① is constrained by junctions A and B and by the
elastic interactions between Grain I and surrounding grains, III–VI. d GB migration in the bicrystal of a where the top and bottom surface do
not translate to mimic the effects of Grains IV and V on the shear of GB ①.
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With (4) and (5), the assumption of zero-net-shear across the GB
as described in (3) becomes

_ϵ ¼
X
j

AðjÞ τ þ ðΨ� γhxxÞ 1

βðjÞ

" #
¼ 0; (6)

where

βðjÞ ¼ bðjÞ=HðjÞ; (7)

AðjÞ ¼ MðjÞ
d bðjÞ

2ðjρðjÞj þ 2cðjÞÞ: (8)

Here β(j) is the shear-coupling factor associated with disconnection
mode j19. The zero-net-shear constraint (3) implies the develop-
ment of a shear stress τ on the GB induced by GB migration:

τ ¼ �ðΨ� γhxxÞ
P

j
1
βðjÞ

AðjÞP
jA

ðjÞ : (9)

With this effective shear stress, the GB profile and disconnection
density evolution, (1) and (2), can be expressed as

ht ¼ �ðΨ� γhxxÞ
P

k > j
1
βðjÞ

� 1
βðkÞ

� �2
AðjÞ � AðkÞP

kA
ðkÞ ; (10)

ρ
ðjÞ
t ¼ � ∂

∂x
ðΨ� γhxxÞ 1

bðjÞ
�
P

k
1
βðjÞ

� 1
βðkÞ

� �
AðjÞ � AðkÞP

kA
ðkÞ

0
@

1
A; (11)

where β(j) and A(j) are given in (7) and (8). This is our reduced-order
model for GB motion and disconnection density evolution subject
to the zero-net-shear constraint.
Solution of the original dynamical equations (1) and (2) requires

the determination of the total, non-local, shear stress τ. However,
with the zero-net-shear constraint, the dynamical equations (10)
and (11) are local and can be solved much more efficiently than
the original ones.
Before concluding our discussion of a GB equation of motion, it

is appropriate to note a few limitations. First, the full disconnec-
tion description of GB migration explicitly depends on the
crystallinity of the grains on either side of the GB. It will not
describe GB migration in systems where the GB is a thick
amorphous between the crystal grains. Second, the disconnection
model described here assumes that the disconnections move in a
glissile manner; disconnections with Burgers vector components
perpendicular to the GB plane may move by absorption/emission
of point defects - disconnection climb. We do not consider climb
here since the climb is typically much slower than glide (even on a
GB) and, hence, disconnection climb is expected to make a much
smaller contribution to GB migration than that associated with
glide. Third, we ignore the fact that GBs may exhibit multiple
metastable states34, in which case, disconnections may be partial
disconnections separated by stacking faults. While such effects
may be included in a discrete disconnection model, they are not
incorporated here.

Flat grain boundary dynamics
We first apply the GB evolution equations to GB migration driven
by a chemical potential-jump Ψ across the GB. Consider the simple
case of an infinitely large, initially flat GB h(x, 0)= 0 with no
disconnections ρ(j)= 0 for all j. Here, the GB profile evolves as

ht ¼ �MGBΨ; (12)

where

MGB ¼
P

k > j
1
βðjÞ

� 1
βðkÞ

� �2
MðjÞ

d bðjÞ
2
2cðjÞ �MðkÞ

d bðkÞ
2
2cðkÞPJ

j¼1 M
ðjÞ
d bðjÞ

2
2cðjÞ

: (13)

This expresses the GB velocity ht as the product of the chemical
potential-jump Ψ and an effective GB mobility which is
determined by the properties/parameters of the disconnections.
Here the GB remains flat and moves with a constant velocity and
the disconnection densities are zero ρ(j)= 0 for all j at all time (i.e.,
the equal density of positive and negative disconnections). The
internal stress τ (9) is proportional to the chemical potential-jump
Ψ with a negative factor that depends on the disconnection
properties; this exerts a back stress that opposes the chemical
potential-jump Ψ,

τ ¼ �Ψ

P
jM

ðjÞ
d bðjÞ

2
cðjÞ 1

βðjÞP
jM

ðjÞ
d bðjÞ

2
cðjÞ

: (14)

We now compare the zero-net-shear model (see (12) and (13))
with the predictions of the full continuum disconnection model15,
as represented by (1), (2), (4), and (5) for the migration of a flat GB.
More specifically, we assume a bicrystal geometry where the top
and bottom surfaces of the bicrystal (flat horizontal, centred GB)
are fixed (see Fig. 1d and ref. 15 for details) to provide no net
bicrystal shear. In the full continuum disconnection model, we
explicitly evolve two-disconnection modes and evaluate the
stresses at every point (x, y) in the bicrystal that arise from all
disconnections along the GB and the image stresses generated by
the fixed top and bottom surface of the bicrystal boundary
conditions.
We choose parameters appropriate for a nominally flat, Σ13

[100](015) symmetric tilt GB in Cu driven by a chemical potential-
jump of Ψ=−1meV ⋅Å−3. More specifically, we consider the two
lowest formation energy disconnections modes (b(1), H(1)) and
(b(2), H(2)); i.e. bð1Þ ¼ bð2Þ ¼ a0=

ffiffiffiffiffi
26

p
, Hð1Þ ¼ 4a0=

ffiffiffiffiffi
26

p
;Hð2Þ ¼

�2:5a0=
ffiffiffiffiffi
26

p
, where the lattice constant a0= 3.615Å13,15,35. When

T= 800 K, the nucleation rate of these disconnections are
estimated to be 2c(1)= 0.2188/L0 and 2c(2)= 0.6930/L0, where
L0= 100Å is the length of the GB13,15,36,37. In these simulations,
we set the distance between the top and bottom surfaces as 2L0
and the GB is initially located in the centre of the simulation cell.
These are consistent with a grain size of ~L0.
The migration velocity of this flat GB (see (12) and (13)) is

independent of time, as seen in Fig. 3a for T= 800 K (red line). This
constant velocity agrees well with that found at a late time from
the simulation based upon the full multi-mode disconnection
model15 (the blue curve). In the full multi-mode disconnection

Fig. 2 Continuum representation of GB with disconnections. A GB with disconnections (black curve) and its continuum representation y= h
(x, t) (red curve). The GB velocity v (in direction y) results from the glide of disconnections in x, characterised by (b, H) and (−b, −H).
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simulation, the velocity starts at a large value but relaxes quickly to
the steady-state solution founding the zero-shear model.
This transient in the full multi-mode disconnection simulation

can be understood as follows: (i) the GB starts to migrate by the
motion of the lowest formation energy disconnection mode, (ii)
shear coupling and the constraint set up a back stress that
counteracts the chemical jump driving force12, (iii) continued
motion requires the formation of disconnection of opposite shear-
coupling factor with higher formation energy and (iv) continued
migration is limited by the rate of formation of the more difficult
to form secondary (or higher order) disconnections. The concerted
motion of these different modes is required for steady-state
migration.
This ‘back stress’ picture is confirmed by a consideration of the

internal stress during GB migration τ as described by (14) and the
full continuum model15 (Fig. 3b). While the zero-shear model
accurately predicts the steady-state internal stress, the full multi-
mode disconnection simulation shows the transient development
of the internal stress which asymptotically approaches the
reduced-order model steady-state stress. Figure 3c, d show the
T-dependence of the GB mobility and the internal stress from the
zero-shear model and the full multi-mode disconnection simula-
tions. The agreement is excellent. The duration of the transient,
not captured by the zero-shear model, depends on both the GB
bicrystallography as well as the microstructure (e.g. large grain
sizes imply longer transients). It is important to note that since the
full multi-mode continuum disconnection model successfully
reproduces atomistic simulation results15 and the reduced-order
model agrees with the steady-state of that model, the reduced-

order model too is consistent with the steady-state obtained from
atomistic simulations12.
While the flat GB velocity in the zero-shear model is explicitly

given by (12), in the full multi-disconnection mode model15 it
depends on the shear stress τ which evolves during disconnec-
tion/GB migration during migration (must be determined via
elasticity calculations with the appropriate boundary conditions).
Calculation of the stress generated by disconnections in the full
model has computational complexity O ðmþ 1ÞN2

� �
, wherem and

N are the number of disconnection modes and points in the GB
mesh. Calculation of the image stress arising from the boundary
conditions in a general full multi-disconnection model is
calculated over the entire domain via, for example, the finite
element method. (For the simulation geometries/domain con-
sidered in the full multi-disconnection mode model, we employ
the Airy stress function and Fourier analysis methods.) Elimination
of the stress field calculation makes the reduced-order model local
and efficient.

Curved grain boundary dynamics
We now consider the dynamics of the capillarity-driven migration
of a curved GB. The geometric constraint that connects the
disconnection densities with the GB profile isXm
j¼1

ρðjÞHðjÞ ¼ hx: (15)

The GB profile and disconnection density evolution equations (1)
and (2) imply that ðPm

j¼1 ρ
ðjÞHðjÞ � hxÞt ¼ 0. Thus, the geometric

Fig. 3 Migration of a flat GB. Migration of a nominally flat, Σ13[100](015) symmetric tilt GB in Cu driven by a chemical potential-jump across
the GB of Ψ=−1meV ⋅Å−3 using the zero-shear, reduced-order model and the full multi-disconnection mode model15. The GB migration
velocity in a and internal stress in b at T= 800 K predicted by the reduced-order model (red lines) and the full multi-disconnection mode
model with fixed boundary conditions (blue curves). The predicted steady state GB migration velocity in c and internal stress in d are shown
as a function of T (blue points: full multi-disconnection mode model). Stress is normalised by τ0=−ΨH(2)/b(2), GB velocity by the T= 1300 K
velocity v0, and t0= L0/v0.
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constraint (15) applies at all times. The disconnection density
evolution and the zero-net-shear constraints, (2) and (3), imply
that

Pm
j¼1ðρðjÞbðjÞÞt ¼ 0; i.e.Xm

j¼1

ρðjÞbðjÞ ¼ 0: (16)

This means that the net Burgers vector vanishes at every point on
the GB.
We first consider the two-disconnection mode cases: (b(1), H(1))

and (b(2), H(2)), with initial disconnection densities chosen to satisfy
constraints (15) and (16):

ρð1ÞHð1Þ þ ρð2ÞHð2Þ ¼ hx ; (17)

ρð1Þbð1Þ þ ρð2Þbð2Þ ¼ 0: (18)

This yields an explicit expression for the disconnection densities,

ρð1Þ ¼ bð2Þ

bð2ÞHð1Þ � bð1ÞHð2Þ hx ; ρð2Þ ¼ bð1Þ

bð1ÞHð2Þ � bð2ÞHð1Þ hx : (19)

Substituting these into the GB profile evolution equation (10), we
obtain an explicit expression for the GB evolution:

ht ¼ �BðΨ� γhxxÞ jhxj þ Dð Þ; (20)

where

B ¼ 1
βð1Þ

� 1
βð2Þ

� �2 Mð1Þ
d Mð2Þ

d bð1Þ
2
bð2Þ

2

Mð1Þ
d jbð1ÞjþMð2Þ

d jbð2Þ j
1

jbð2ÞHð1Þ�bð1ÞHð2Þ j ;

D ¼ 2 Mð2Þ
d cð1ÞþMð1Þ

d cð2Þð Þ
Mð1Þ

d jbð1ÞjþMð2Þ
d jbð2Þj jb

ð2ÞHð1Þ � bð1ÞHð2Þj:

Note, we assumed that the equilibrium disconnection densities c(1)

and c(2) are small and only keep their leading order terms.
We performed a series of numerical simulations to study the

evolution of a curved GB with two-disconnection modes using the

reduced-order (20) and full continuum models15. We again focus on
the Σ13[100](015) (near) symmetric tilt GB in Cu (shear modulus μ=
45 GPa and Poisson ratio ν= 0.36) in the two-mode limit (parameters
above); the symmetric GB has energy γ= 0.878 J ⋅m−2 19. The GB has
an initially sinusoidal profile h ¼ 0:03L0 sinð2πx=L0Þ with period
L0= 100Å. While the initial disconnection densities in the full multi-
disconnection mode model are arbitrary chosen (we examine two
cases below), in the reduced-order model these satisfy (19).
First, we examine the case where the initial disconnection

densities in the reduced-order and full model are identical (19)
(Fig. 4a–c). As shown in Fig. 4a, b, the reduced-order model
predictions for the evolution of both the GB profile and densities
of the two-disconnection modes are in excellent agreement with
the predictions from the full continuum model with the same
number of modes. To provide a more quantitatively comparison
of the two sets of predictions, we also calculated the differences of
the GB migration velocities and the differences in the rates of
changes of the disconnection densities between the reduced-
order model and the full model, as shown in Fig. 4c. The
differences between the two models decay rapidly to zero;
indicating again that the errors intrinsic to the reduced-order
model are associated with small, short-lived transients.
In the second comparison, we choose the initial disconnection

densities in the full multi-disconnection mode model to be
different from those in (19) in the reduced-order model; i.e. the
initial disconnection densities in the full multi-disconnection
mode model was ρ(1)= hxc

(1)/(c(1)H(1)− c(2)H(2)), ρ(2)= hxc
(2)/

(c(2)H(2)− c(1)H(1)). The comparisons, shown in Fig. 4d–f, indicate
that the GB profiles evolution are well-predicted by the reduced-
order model and the full multi-disconnection mode model
disconnection densities rapidly decay to those predicted from
the reduced-order model. While the differences decay rapidly, the
magnitude of the initial differences in the evolution rates (Fig. 4f)
is an order of magnitude larger than when the initial

Fig. 4 Comparison of the reduced-order model and the full multi-disconnection mode model. The temporal evolution of the GB profile in
a, d and density in b, e of each disconnection mode using the reduced-order model (solid lines) and the full multi-disconnection mode model
(dashed lines with circles) for two-disconnection modes. The arrows indicate the direction of the evolving curves. c, f The difference between
the predictions of the reduced-order model and the full multi-disconnection mode model for the GB velocity and rates of change of the
disconnection densities during the evolution of the initially sinusoidal profile GB. These data are calculated at the positions of the arrows in a,
b, d and e. Panels a–c correspond to the case where the initial disconnection densities in both models are the same (19), and d–f correspond
to a case where the initial densities are different—as described in the text.

L. Zhang et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)    64 



disconnection densities are the same, as expected. These results
demonstrate that there are two sources of error associated with
the reduced-order model. The first is associated with the zero-
shear assumption (the heart of the reduced-order formalism) and
the second is associated with the initial disconnection densities
which are inevitably unknown (in most applications). Fortunately,
both of these only affect transient behaviour, such that the
reduced-order and full multi-disconnection mode models match
after a short-time transient.
In the present two-disconnection-mode examples, the con-

straints (17) and (18) in the reduced-order model uniquely
determine the densities of the two modes of disconnections
(19) and the GB evolution equation (20) is an explicit expression
for the GB profile evolution, without requiring the tracking of the
evolution of the disconnection densities. However, in the general
m-disconnection modes (m ≥ 3) case, the two constraints (15) and
(16) are not sufficient to uniquely determine the disconnection
densities, i.e. there is an infinite set of possible disconnection
densities for any given GB profile h. In this case, we must solve
both the equations for the GB motion (10) and the evolution of
the disconnection densities (11) in the reduced-order model; here
the disconnection density and GB profile evolution are coupled;
see Supplementary Fig. 1 for simulation results for GB evolution
with three disconnection modes.
While the results presented above demonstrated that the

reduced-order model provides accurate predictions for the
evolutions of arbitrarily curved GBs and the disconnection
densities on them, a major advantage of the reduced-order
model (as compared with the full continuum multi-disconnection
mode model) is computational efficiency. As discussed in the
previous section, the reduced-order model avoids the time-
consuming OðN2Þ calculation (N is the number of numerical grid/
mesh points on GBs) of singular integrals for the stress generated
by disconnections and the auxiliary elasticity problem over the
entire computational domain associated with elastic boundary
conditions. Hence, the reduced-order model provides a simple,
efficient and accurate method to track GB motion based upon a
mechanistically accurate disconnection mechanism.

DISCUSSION
We presented a reduced-order, local continuum model for GB
migration appropriate for microstructure evolution in polycrystals
that accounts for mechanical constraints through the zero-net-shear
condition. Our reduced-order model is based on the underlying
microscopic mechanism of GB dynamics, in which GB migration and
shear are associated with disconnection migration along with a GB.
Our model leads to explicit evolution equations for the GB profile
and disconnection densities. The strong zero-net-shear constraint

implies that the reduced-order model does not capture short-time,
transient effects but accurately describes long-time (steady-state)
GB dynamics. The zero-net-shear assumption implies that the
reduced-order model does not capture GB sliding or grain rotation.
When the GB is flat, Eq. (12) implies that the GB migration

velocity is proportional to the driving force (chemical potential-
jump Ψ). The migration of a general curved GB is described by
ht=− B(Ψ− γhxx)(∣hx∣+ D), where B and D are functions of
disconnection parameters (20). D is associated with the equili-
brium disconnection densities c(j) and is small at low T. At high T,
with large equilibrium disconnection densities c(j), D is large and
∣hx∣ ≪ D. In this limit, the GB equation of motion reduces to
classical curvature flow ht=−MGB(Ψ− γhxx) (MGB= BD).
The reduced-order model implies that two or more disconnec-

tion modes must be active on a GB to satisfy the zero-net-shear
constraint (unless the lowest formation energy disconnection is a
pure step). If there is only one disconnection mode active on a GB,
the constraint (3) reduces to _ϵ ¼ bJ ¼ 0. This constraint directly
implies that GB motion is described by ht ¼ �HJ ¼ � 1

β bJ ¼ 0; in
other words, GBs in polycrystals cannot migrate with a single
disconnection mode. This conclusion is consistent with the
observation of GB stagnation in bicrystal atomistic simulations12

and the observations that most GBs do not move at low
temperature, where only one disconnection mode is activated.
The internal stress on the GB can be obtained from the constraint,

_ϵ ¼ Mdb
2 τ þ ðΨ� γhxxÞ 1

β

� �
ðjρj þ 2cÞ ¼ 0; (21)

which is satisfied only when βτ+ (Ψ− γhxx)= 0. When the GB is
flat, we have hxx= 0 and τ=−Ψ/β, which implies that if a
chemical potential-jump Ψ is applied to the GB, its migration will
generate a back stress τ. Their relationship τ=−Ψ/β is in
agreement with molecular dynamics simulations12.
The character of different disconnection modes active on a GB

influences GB dynamics. Figure 5 compares the GB evolution
when there are two and three disconnection modes active. At T=
800 K, the GB profiles evolve almost identically (Fig. 5a). On the
other hand, at the relatively high temperature of T= 1200 K, the
GB profile evolves more quickly when three modes are included
(relatively to the two-mode case) (Fig. 5b). The disconnection
formation energies increase and formation rates decrease with
increasing mode number13,15,36,37. The thermally nucleated
disconnections have a non-negligible effect at high T, while
disconnection migration dominates GB evolution at low T.
We also compare the evolution of the GB profile and

disconnection densities in the two and three disconnection mode
cases for arbitrary initial disconnection densities (see Fig. 5c and
the Supplementary Information for details). Again, we see that the
observation that GB migration is faster when more disconnections

Fig. 5 Comparison of the GB evolution with different active disconnection modes. Comparison of the GB profile evolution in the case of
two and three disconnection modes. The arrows indicate the direction of the evolving curves. The three disconnections modes share the
same Burgers vector bðiÞ ¼ b ¼ a0=

ffiffiffiffiffi
26

p
, and H(1)= 4b, H(2)=−2.5b, H(3)=− 9b. The initial disconnection densities for the first two modes are

as per (19), while in the three mode calculations in a, b, we also set the initial values of ρ(3)= 0. In c, the initial disconnection densities are as
per (15) and (16) with ρ(1):ρ(2):ρ(3)= 1:−0.65:−0.35.
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modes are included at high temperature is a general phenom-
enon. We reiterate that with a single disconnection mode GB
migration does not occur, at low T GB migration with two or three
(or more) modes are nearly identical and adding more modes
increases the migration rate at high T.
The present paper presents a reduced-order model for GB

motion in a two-dimensional continuum dynamics framework
based upon the underlying (discrete) disconnection dynamics
mechanism; our formulation is computationally efficient and
appropriate for large-scale simulations. Here, we described the
model and showed examples specifically for the case of GB
migration in a two-dimensional system. This two-dimensional
model can be extended to three dimensions, appropriate for
application to polycrystalline microstructures in typical materials.
While the main ideas and model present here easily translate to
three dimensions, there are some important differences. First and
foremost, disconnections in three dimensions are lines rather than
points and hence the model must include disconnection topology
and its evolution. Second, disconnection nucleation in three
dimensions includes a wider range of option than considered here
in two dimensions; including disconnection bowing, disconnec-
tion loop formation, etc. The three-dimensional continuum
framework for the dynamics of low angle grain boundaries
incorporating dislocation structures38,39 can be adopted. Alter-
natively, the three-dimensional model can also be implemented in
a discrete dislocation dynamics-type of framework, albeit con-
strained to a plane (similar to dislocation dynamics where
dislocations are constrained to a slip plane; see e.g. refs. 40–44).
The constraint of disconnections lines to a GB plane rather than
dislocation lines in three dimensions means that such calculations
need only be codimension 1 rather than 2 in the three-
dimensional dislocation dynamics case; hence such three-
dimensional simulations are much easier to implement than full,
three-dimensional dislocation dynamics simulations. Such discrete
dislocation-dynamic like calculations may be implemented in
either sharp or diffuse dislocation/disconnection dynamics
formulations.

METHODS
Derivation of disconnection velocity
The disconnection glide velocity expression (5) is applicable to the case
where the motion is overdamped; i.e. the velocity is proportional to the
driving force f ðjÞd , i.e., vðjÞ ¼ MðjÞ

d � f ðjÞd , where MðjÞ
d is the disconnection

mobility. The driving force on a jth mode disconnection is

f ðjÞd ¼ τbðjÞ þ ΨHðjÞ � γhxxH
ðjÞ; (22)

which has contributions from the stress τ (both applied stress and that
originating from all other disconnections), the jump in the energy/
chemical potential across the GB Ψ, and capillarity where γ is the GB
energy density. Positive/negative disconnection density ρ(j) implies
disconnections of type (b(j), H(j))/(−b(j), −H(j)) with velocities v(j)/− v(j). The
disconnection flux is J(j)= v(j)(∣ρ(j)∣+ c(j)), as per (4).

Numerical methods of the grain boundary evolution
In the numerical simulations, we employ a forward Euler and finite
difference methods in time and space. The GB length L0 is discretised into
N equally spaced intervals [xi−1, xi], where xi= x0+ iΔx, Δx= L0/N, i= 0, 1,
… , N. h(x) and ρ(x) are evaluated at spatial discrete points and hx is
calculated using a backward difference scheme and hxx using a centre
difference scheme. ∣ρ(j)∣ in AðjÞ ¼ MðjÞ

d bðjÞ
2ðjρðjÞj þ 2cðjÞÞ is calculated using

an upwind scheme. The discretised temporal points are tn= nΔt, n= 0, 1,
2,…. The numerical value of a function g(x, t) at the discrete spacial point xi
and temporal point tn is denoted as gni .

Specifically, the GB evolution in Eq. (20) is numerically implemented as

hnþ1
i ¼

hni � Δt � B Ψ� γ
hniþ1�hni þhni�1

ðΔxÞ2
� �

hni �hni�1
Δx

			 			þ D
� �

; if B Ψ� γ
hniþ1�hni þhni�1

ðΔxÞ2
� �

hniþ1�hni�1
2Δx

� �
> 0

hni � Δt � B Ψ� γ
hniþ1�hni þhni�1

ðΔxÞ2
� �

hniþ1�hni
Δx

			 			þ D
� �

; if B Ψ� γ
hniþ1�hni þhni�1

ðΔxÞ2
� �

hniþ1�hni�1
2Δx

� �
< 0

:

8><
>:

(23)

The GB profile and disconnection density evolution equations (10) and (11)
are numerically implemented as

hnþ1
i ¼ hni � Δt Ψ� γ

hniþ1 � hni þ hni�1

ðΔxÞ2
 !P

k > j
1
βðjÞ

� 1
βðkÞ

� �2
AðjÞjni � AðkÞjniP

kA
ðkÞjni

;

(24)

ρ
ðjÞ
backjnþ1

i ¼ ρ
ðjÞ
backjni � Δt

JðjÞjni � JðjÞjni�1

ðΔxÞ2 ; (25)

ρ
ðjÞ
forwjnþ1

i ¼ ρ
ðjÞ
forwjni � Δt

JðjÞjniþ1 � JðjÞjni
ðΔxÞ2 ; (26)

τnþ1
i ¼ � Ψ� γ

hniþ1 � hni þ hni�1

ðΔxÞ2
 !P

j
1
βðjÞ

AðjÞjniP
jA

ðjÞjni
; (27)

where

JðjÞjni ¼ Ψ� γ
hniþ1 � hni þ hni�1

ðΔxÞ2
 !

1

bðjÞ
�
P

k
1
βðjÞ

� 1
βðkÞ

� �
AðjÞjni � AðkÞjniP

kA
ðkÞjni

; (28)

AðjÞjni ¼
MðjÞ

d bðjÞ
2ðjρðjÞbackjni þ 2cðjÞÞ; if vðjÞjni ðρðjÞbackjni þ ρ

ðjÞ
forwjni Þ> 0

MðjÞ
d bðjÞ

2ðjρðjÞforwjni þ 2cðjÞÞ; if vðjÞjni ðρðjÞbackjni þ ρ
ðjÞ
forwjni Þ< 0

;

8<
: (29)

vðjÞjni ¼ MðjÞ
d τni b

ðjÞ þ ΨHðjÞ � γ
hniþ1 � hni þ hni�1

ðΔxÞ2 HðjÞ
" #

: (30)

Periodic boundary conditions are applied at the endpoints of the GB.
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