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Indoor localization on smartphones is an enabler for a number of ubiquitous and mobile computing applications attracting
worldwide attentions. Many location-based services rely on WiFi fingerprinting approaches to achieve a reasonable accuracy.
However, there is still room for improvement due to the prevalent-existing errors (e.g., 8∼12m). In this study, we devise and
implement a high-accuracy indoor localization solution leveraging the WiFi-based method and pedestrian mobility provided by
smartphones. Our basic idea is that WiFi-only localization can generate rough but absolute positions, while user motion is able to
bring accurate but relative locations. Taking both sides into account simultaneously, we design techniques to refine the raw WiFi
positions in the process of laying the precise local trajectory appropriately down to the absolute coordinate using a novel least
median of squares (LMS) fit algorithm. We develop a prototype system, named TraIL, and conduct comprehensive experiments in
a building along different shaped routes. The evaluation results show that TraIL can achieve 80% improvement on average error
with respect to WiFi-only indoor localization.

1. Introduction

In many mobile computing applications, location-based ser-
vice (LBS) has become an indispensable element. Indoor
localization on a smartphone has prospered in the past two
decades in both academia and industry. However, current
smartphone-based indoor positioning system is not satis-
factory enough to locate or navigate a user [1–3], requiring
significant accuracy improvement.

Different from GPS as a dominating solution for outdoor
localization, there is a variety of techniques when the issue
comes to the indoor environment. WiFi-based RSSI finger-
printing schemes can achieve a reasonable accuracy (e.g., 3∼
4m), but large errors (e.g. 8∼12m) still exist [4]. A plethora of
academic works seek for assistance from other means, such
as precise ranging [5, 6] and peer devices [7] to improve
accuracy.However, these extra requirementsmay result in the
loss of ubiquity held by original WiFi localization. Emerging
research on leveraging usermotion attracts growing attention
[7–12]. These works all leverage user motion and WiFi-
based technology; however, one means is usually treated as

an auxiliary to another. It still remains a research challenge to
take advantages of both sides’ strengths.

In this paper, we propose TraIL, a trajectory-oriented
indoor localization system implemented on off-the-shelf
smartphones. We reveal the rationale behind TraIL from two
basic observations: WiFi-based methods can provide coarse-
grained but absolute positions, while pedestrian mobility is
able to offer accurate but relative locations. TraIL adopts
an RSSI fingerprinting-based localization method for the
absolute coordinate generation; in relative coordinate the
user’s trajectory can be treated as a rigid graph holding
the shape feature of the route. Having both relative and
absolute coordinates, we devise a coordinate transformation
scheme converting the former to the latter. Speaking of the
coordinate transformation, we draw lessons from LMS fit [13]
and exert its strong merits of maintaining the rigid core and
immunizing against outliers to the utmost. To sum up, the
raw WiFi positions are refined, in the process of laying the
local trajectory faithfully down to the absolute coordinate, as
shown in Figure 1.
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Figure 1: An illustration with both absolute and relative trajectories.

To evaluate our design, we implement a prototype system
on Android OS using HTC One phones and execute a series
of experiments. The results demonstrate that the maximum
and mean errors are reduced to 4m and 2m, respectively.
Around 80% enhancement in indoor localization proves the
feasibility of TraIL in real world deployment [14, 15].

We summarize our contribution as follows.

(i) We identify both WiFi-based scheme and pedestrian
mobility of equal importance for indoor localization.
TraIL can work on a single smartphone without the
assistance of other peers, or additional constraints,
thus forming a self-contained system.

(ii) We develop a novel approach to generate the local
trajectory. TraIL delivers a motion state and an accel-
eration measurement to the Kalman filtering process,
thus achieving a precise velocity estimation.

(iii) We introduce the LMS fit algorithm to coordinate
transformation. It can cope with the unexpected
outliers appearing in WiFi indoor localization due to
the merit in preserving more core regions.

The rest of this paper is organized as follows. Section 2
reviews the related literature.We introduce the system design
of TraIL in Section 3. In Section 4, we propose a novel user
motion estimation scheme for local trajectory generation
and employ a WiFi-based localization technique for absolute
coordinate generation. Coordinate transformation algorithm
is detailed in Section 5. We discuss the system performance
in Section 6 and conclude this work in Section 7.

2. Related Work

Indoor localization is studied extensively in pervasive and
mobile computing literature. We review the state-of-the-art
works most relevant to ours.

2.1. WiFi-Based Localization. The main stream of indoor
localization approaches leverages RSSI fingerprinting, such
as [16, 17], HORUS [4] and Landmarc [18]. However, this
technique takes effect on condition that fingerprints differ
from each other among those reference locations, which
cannot always be held ideally.

2.2. User Motion-Assisted Localization. Off-the-shelf smart-
phones, mounted on the stage as a popular mean in localiza-
tion approaches, provide a plethora of user motion informa-
tion. There are considerable literature in this area lately [8–
12, 19].

Under this context, the most relevant works to ours are
[8] and GloCal [19]. In [8], the approach is to determine
the absolute location of a pedestrian given a path of step
events describing their relative movement and a map of envi-
ronment. However, foot-mounted IMUs are less pervasively
available than smartphones, leaving system deployment dif-
ficult.

2.3. Coordinate Transformation. Coordinate transformation
using least squares (LS) methods is well known in computer
graphics. Particularly, Horn’s method is selected into the
previous work GloCal using a set of translation, scaling, and
rotation operations. For further improvement, least median
squares (LMS) fit is taken as an attractive perspective to solve
various superposition problems [13], as well as coordinate
transformation. We absorb the merits of these two means
to solve the transformation problem to our satisfaction.
To deal with more outliers in WiFi-based methods, our
approach leverages the LMS fit-based coordinate transforma-
tion explained later, tomake the system insensitive to outliers.

3. System Overview

In this section, we present the system architecture of TraIL,
with the problem statement of indoor localization assisted by
user motion.

As shown in Figure 2, the working process of TraIL con-
sists of twomain parts: coordinate generation and coordinate
transformation. The WiFi-based method collects absolute
locations and sensor readings forge a relative trajectory
representing the user motion information.

After raw inertial sensor data are transferred into relative
coordinate generation operator, forward speed and rotational
angular are first estimated by accelerometer and gyroscope,
respectively, following the algorithms explained in Section 4.
Accordingly, displacement and direction become attainable
naturally, delineating our local trajectory together. On the
other side, when treating rough locations from WiFi as
absolute positions, the TraIL fixes the user traces on the floor
plan determinately.
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Figure 2: System architecture of TraIL.

Learned from Figure 1, the relative locations from dead-
reckoning preserve a better structure of the actual trajectory
thanWiFi-based trace.Thus, our aim is to assign the absolute
positions to the local trajectory; in other words, place the
relative curve properly on the absolute coordinate. We adopt
a superposition algorithm to achieve a more precise fitting by
improving conventional LS means with robust LMS. Finally,
all absolute locations along the user trace are refined with the
transformed relative locations.

4. Trajectory Generation

We introduce two components of trajectory generationwhich
are local and absolute ones in this section.The local trajectory
is curved by the smartphone-driven dead-reckoning method
and the absolute one is depicted by the WiFi-based indoor
localization technique.

4.1. User Motion Estimation. Offset and turning are two
essential parts to local trajectory generation. They are esti-
mated using only smartphone built-in accelerometer and
gyroscope sensors. Offset and turning are characterized by
displacement and rotational angle, respectively. Our algo-
rithm regards local user motion and absolute WiFi localiza-
tion of equal importance.

4.1.1. Displacement Measurement. Ideally, displacement can
be obtained by integrating forward acceleration twice
directly. However, the accumulative error makes this method
unusable for researchers. Heuristically, we treat this as a
velocity estimation problem. Since we can easily get the
noisy acceleration of 𝑦-axis (forward direction, denoted by
acc𝑌), we can then leverage it to estimate walking velocity
using Kalman filter. The acceleration of 𝑧-axis (acc𝑍) is also
adopted for displacement measurement, not merely for step
counting as usual.

If we admit V = 𝑎𝑡 as the description of the user’s
walking pattern, Kalman filter can work well as the system is
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Figure 3: Kalman filter process and our parameters.

linear [20]. After reviewing the Kalman filter and the user
motion, we can formulate the velocity estimation problem in
Figure 3.

To make it simple, we set V
0
= 1.2, and 𝑏 = 0.3 at first

according to the mean values in [21]. Thus far, the estimated
velocity is calculated through the above operations, which
borrow from Kalman filter and are adjusted to our specific
scenario.

Notice that, in the aforementioned formula, V
0
and Δ𝑡 are

set fixed, which cannot adapt to various situations. As a result,
we improve our algorithmmainly in two ways: Δ𝑡 estimation
using step counting technique and V

0
revision by exploring

walking patterns of different users. Besides, we recalculate the
𝜎

𝑎
according to the new Δ𝑡 to improve precision.
To obtain an accurate Δ𝑡, we may leverage acc𝑍 to count

steps first. We can learn from Figure 4 that acc𝑍 data after
wavelet filtering present quite stable amplitude of vibration
but may suffer from multiple lowest points when calculating
steps. Thus, two thresholds would be adopted to control
the counting process, for example, one corresponding to the
amplitude 𝑡ℎ𝑟𝑒𝑠𝐴𝑀𝑃 and the other dealing with multiple
lowest points 𝑡ℎ𝑟𝑒𝑠𝐿𝑃.These two thresholds can be estimated
from a learning based method. As can be found in Figure 4,
acceleration amplitude of different groups clustered by vari-
ous user walking patterns ranges from ±2 to ±4, according to
which we set the 𝑡ℎ𝑟𝑒𝑠𝐴𝑀𝑃 to be −2 as the guideline of the
trough selection. Although wavelet filter offers us a relatively
stable amplitude convenient for determining the 𝑡ℎ𝑟𝑒𝑠𝐴𝑀𝑃,
the multiple lowest points create unnecessary obstacles when
picking appropriate minimal value. We take advantage of
sampling frequency to determine how many points, say,
𝑡ℎ𝑟𝑒𝑠𝐿𝑃, should be skipped. As the average accelerometer
frequency of off-the-shelf smartphones is 50Hz, we come to
20 as 𝑡ℎ𝑟𝑒𝑠𝐿𝑃 after learning. From this point on, the whole
algorithm can yield accurate counting of steps, which enables
a more precise estimate of Δ𝑡 by calculating the time elapsed
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Figure 4: Step counting after wavelet filtering.
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Figure 5: Walking patterns of different users exhibit distinct
characteristics.

between troughs. Now, we have the exact Δ𝑡 between steps,
which can be used to correct 𝜎

𝑎
in previous formula. Tomake

it simple, 𝜎
𝑎
is equal to the mean value of the accelerations

among steps, instead of one of merely acc𝑌.
As mentioned above, different users exhibit different

walking patterns, for example, as shown in Figure 5, mean

and variance of acc𝑍 change with users’ velocity (character-
ized by acc𝑌). Therefore, we offer a solution to update V

0
and

𝑏mapping to the 𝑧-axis variance and 𝑦-axis acceleration. Let
V
0
= 𝜎

𝑎
⋅ Δ𝑡 first; then make 𝑏 = V

0
/variance. Note that V

0
and

𝑏 are put into further iteration; there is no need to calculate
the exact value of them, since only a reasonable trend would
be enough.

After the foregoing process, the previous algorithm with
new Δ𝑡, 𝜎

𝑎
, V
0
, and 𝑏 can offer a more accurate estimation

of walking velocity. On this basis, the displacement simply
equals the product of velocity and time. The main part of
the displacement measurement is done here. In retrospect,
however, a bunch of previous works [9, 10, 12, 19, 22] estimate
the displacement using the product of stride length and steps.
Our method, directly calculating the walking velocity, may
further compute users’ stride length as a bonus.

The cumulative errors in dead reckoning using the
accelerometer are used to be avoided in the process of velocity
estimation, but we heuristically leverage them to play a role
in updating the covariancematrix as residual in Kalman filter
process.

4.1.2. Rotational AngleMeasurement. As direction estimation
is not ourmain contribution, we generate the rotational angle
integrating the angular velocityΔ𝛾multiplied by elapsed time
between steps Δ𝑡, as 𝜃 = Δ𝛾 ⋅ Δ𝑡. Thanks to our accurate
estimation of Δ𝑡, there is a doddle to obtain the interval of
a step. Also, we benefit from the high sampling frequency of
gyroscope, from which we can easily correspond the time of
proper angular velocity to that of relevant acceleration.

4.2. Relative Coordinate Generation. Both offset and direc-
tion suffice for sketching moving trajectory. Let 𝑇 = {𝑡

𝑖
,

𝑖 = 1, . . . , 𝑆 − 1} be the set of trajectory points, where 𝑆
is the number of steps. Assuming that the coordinates of 𝑡

𝑖

is (𝑥
𝑖
, 𝑦

𝑖
) and 𝑡

1
(0, 0), we would like to regard each step as

a point which is represented by 𝑡
𝑖
. With the offset 𝑜

𝑖
and

the rotational angle 𝜃
𝑖
of each step, we can calculate the

coordinate of every point on the trajectory shown in Figure 6,
following the formula:

𝑥

𝑖+1
= 𝑥

𝑖
+ 𝑜

𝑖
cos (𝛼 + 𝜃

𝑖+1
)

𝑦

𝑖+1
= 𝑦

𝑖
+ 𝑜

𝑖
sin (𝛼 + 𝜃

𝑖+1
)

(1)

in which 𝛼 = ∑

𝑖−1

𝑗=1
𝜃

𝑗
and 𝜃

𝑖
is positive when turning

counterclockwise and vice versa. Then, the local trajectory is
portrayed in a Cartesian coordinate.

4.3. Absolute Coordinate Generation. Absolute coordinate
consists of the spots we locate using the WiFi fingerprinting
technique during the interval. Since RSSI fingerprints acqui-
sition and matching are not our emphasis, we refer to the
approach in [11] and adjust it to ours by finding the least
distance between the experimental vector and a vector from
the WiFi fingerprint database.
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Figure 6: Relative coordinate generation using offset and turning.

We are proceeding on the supposition that there is already
a fingerprint database, by whatevermeans, crowdsourcing, or
site survey. During the time when user moves, we record the
sensor data and take RSS samples of each obtainable AP using
smartphones. Let the offline and online fingerprint sets be
𝐹 = (𝑓

1
, 𝑓

2
, . . . , 𝑓

𝑛
) and 𝐹󸀠 = (𝑓󸀠

1
, 𝑓

󸀠

2
, . . . , 𝑓

󸀠

𝑛
), respectively. As

a user moves, the location rapidly changes accordingly. This
brings about a problem that the smartphone a user holds may
not obtain thewhole RSS set of all APs it should have scanned.
So much so that we can have only a few 𝑓

󸀠

𝑖
values assigned

in 𝐹󸀠 compared with that in 𝐹 during one or two scanning
process at a spot. As generally admitted, the RSS value under
−90 dB is too fluctuant to be reliable. Besides, the higher the
RSS is, the more featured information it takes. We assign
another constraint to the𝑓󸀠

𝑖
; that is to say, in our formula, high

RSS value weighs much. We leverage the modified Euclidean
distance to calculate the dissimilarity between 𝐹 and 𝐹󸀠

𝐷 =

∑𝑤

𝑖
(𝑓

𝑖
− 𝑓

󸀠

𝑖
)

2

∑𝑤

𝑖

𝐼 (𝑓

󸀠

𝑖
> −90) ,

(2)

where 𝑤
𝑖
= (𝑅𝑆𝑆

󸀠

𝑖
+ 100)/100.

5. Coordinate Transformation

In this section, our purpose is to rectify the absolute location
generated by WiFi-based technique by means of coordinate
transformation with the help of local trajectory curved by
dead reckoning. We describe the problem as a process that
places the trajectory in local coordinate into the absolute one
perfectly fitting the origin route shown byWiFi located spots.
We adopt a robust fitting method for this problem, called
least median of squares (LMS) fit algorithm, which is helpful
dealing with outliers.

5.1. Problem Analysis. We can see in our case a curve fitting
problem instead of coordinate transformation. Suppose that
L = (𝑚

1
, 𝑚

2
, . . . , 𝑚

𝑁
) andA = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑁
) are two sets of

local and absolute spots, respectively, where𝑁 is the number
of points. Our aim is to find an optimal transformation
V composed of translation, scaling, and rotation, which
minimizes the median distance if the residuals defined as
follows:

min
V

median
𝑖

󵄩

󵄩

󵄩

󵄩

V𝑚
𝑖
− 𝑢

𝑖

󵄩

󵄩

󵄩

󵄩

, 1 ≤ 𝑖 ≤ 𝑁. (3)

5.2. Method Details. In this subsection, we explain the
solution in detail which consists of LS fit, random sampling
algorithm (RANSAC), and forward search.

5.2.1. Least Squares Fit Algorithm. LS fit is an ordinary solu-
tion to our problem at the beginning, and it is able to deliver
a reasonable report to our problem. LS fit is classical for
its robustness to noise, but unfortunately, not immune to
outliers which are quite often in this specific scenario where
indoor absolute coordinate is generated by untrustworthy
WiFi-based technique.

We adopt Horn’s method [19] to solve LS fit and get the
rotation matrix V for each step. Our problem here is to find
the transformation

m𝑎 = 𝑠𝑅 (m𝑙) + 𝑡, (4)

where m𝑙 ∈ L, m𝑎 is the transformed point in absolute
coordinate system, 𝑠 is a scale factor, 𝑡 is the translational
offset, 𝑅(m𝑙) is the rotated vector, and m

𝑖
= 𝑚

𝑥,𝑖
+ 𝑖𝑚

𝑦,𝑖
,

u
𝑖
= 𝑢

𝑥,𝑖
+ 𝑖𝑢

𝑦,𝑖
are the complex number form of each point.

Our aim in this paragraph is to minimize the sum of squares
of the residual errors

𝑁

∑
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where 𝑢𝑎
𝑖
∈ A and 𝑒

𝑖
is the difference between 𝑢𝑎

𝑖
and𝑚𝑎

𝑖
.

We first deal with the translation, then scaling, and
rotation at last, with respect to the sum of residual errors for
each process following the method in [19].

5.2.2. Random Sampling Algorithm. RANSAC is an effective
way to solve (3). The first step is to select 𝑘 point pairs
randomly in both point sets, computing the initial transfor-
mation V using LS algorithm to the 𝑘 pairs. Next, we can
calculate the median of the residuals of the remaining𝑁 − 𝑘

point pairs. Then the above steps are repeated 𝑀 times to
generate 𝑀 transformation candidates, in which we specify
the transformationV with minimal median value as the final
transformation V.

5.2.3. Forward Search Algorithm. Noting that the RANSAC
is not that satisfactory due to its usage of fixed 𝑘 and𝑀, we
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adopt the forward search algorithm to avoid fixed variables.
The key point of this algorithm is to search a small subset
using LMS first and iteratively update it by adding an eligible
point at a time. It is in contrast to the backward algorithms,
dealing with the whole set and then deleting ill points.
Forward search algorithm is more efficient than the above for
our real-time demand.

5.3. LMS Fit Algorithm. Now, putting all these means togeth-
er, we explain our LMSfit algorithm step by step. For the point
sets L and A, we have the following.

(1) Generate the small subset 𝑆
𝑙
and 𝑆
𝑎
, using RANSAC.

(2) Compute the transformation V for 𝑆
𝑙
and 𝑆

𝑎
, using

Horn’s method.

(3) Add the pair of points with the minimal residual in
the remaining sets into 𝑆

𝑙
and 𝑆
𝑎
, respectively.

(4) Repeat (2) and (3) until the minimal residual is larger
than a threshold and the iterative times are larger
than another threshold. At last, we have the optimal
transformation V, which correspond to the desired
minimal residual.

With the help of the robustness of LMS fit in preserving
the rigid core [13], we can have the transformation process
less sensitive to outliers, thus achieving a better localization
result.

6. Evaluation

We evaluate the proposed approach above, by implementing
a prototype system of TraIL on the Android platform.We first
explain the experiment settings and methodology, and then
we present the performance of the integrated system after the
detailed evaluation of each parts.

6.1. Experiment Environment and Methodology. We imple-
mented the TraIL on Android OS on HTC One phones,
supporting acceleration, angular velocity, and RSS data
collection. The accelerometer and gyroscope are of 50Hz
and 800Hz frequency, respectively, and the WiFi signals
are scanned twice per second. In our TraIL prototype, the
sampling rate is set to follow the WiFi signal receiving
module for the consideration of energy cost and computation
complexity.

We evaluated the performance of TraIL in the East
Main Building at Tsinghua University as shown in Figure 1.
The experiment area is 50m × 50m in size, including
hallways, classrooms, stairs, and laboratories. All areas are
covered by deployed APs. When users are walking and using
their smartphones for localization, the data are meanwhile
collected automatically, including RSS and sensor readings.
Accordingly, we form absolute and local trajectories for
further use.

We collected data from 3 users with diverse heights,
different walking paces, and stride lengths. In the mean time,
our experiment is tested on 21 traces. In realistic scenarios,
users can walk naturally and casually instead of addicting to
the predicted routes.

6.2. Performance Evaluation. We first validate the walking
speed estimation, along with step counting, velocity, and
stride length accuracy. Then we come to the trajectory
generation analysis, including the local one and the absolute
one. Finally, we can evaluate the localizing accuracy by
examining the coordinate transforming method.

6.2.1. Walking Speed Estimation Accuracy. To validate the
estimation algorithm, we analyze 21 traces with various
velocities. One user’s actual walking speed is measured as
the quotients of the path length to the time duration. The
accuracy of velocity estimation is enhanced by 38% in average
under different circumstances. There follows the velocity
error of 21 traces in Figure 7(a), wherewe can get amean error
of 0.21m/s.

6.2.2. Step Counting and Stride Length Estimation Accuracy.
In the process, we calculate the user’s stride length using
the equation Stride Length = Velocity × Duration Time/
Step Count. The mean stride length error is less than
7 cm and the maximum error is around 10 cm shown in
Figure 7(b). It should be pointed out that our system has the
ability to achieve a relative high accuracy of stride length by
means of estimating thewalking speed. In return, the accurate
stride length proves the speed estimation effective.

6.2.3. Localization Accuracy. Now we turn to the localization
accuracy of the raw WiFi method and the coordinate trans-
formation algorithm. The positioning errors are analyzed in
Figure 7(c). As shown in the graph, Horn’s method reduces
the average and maximum errors by around 6m and 10m,
respectively, while LMS reduces the average and maximum
errors by around by 8m and 12m.That is to say, by appropri-
ately placing local trajectories on absolute coordinate, we can
achieve an impressive improvement of 80.8%.

TraIL can achieve a submeter accuracywith smartphones.
In Figure 8, we can see that the TraILmethodworks better for
indoor localization compared to other four systems, Horus
[4], Zee [23], UnLoc [7, 22]. Besides, [8, 12] have competitive
reported accuracy of 0.73m and 0.67m. In [8], Woodmans
work leveraged an extra device, foot-mounted inertial unit, to
enhance the performance, while ours do not need additional
equipment. As for [12], the authors focus on the fingerprint
ambiguity, while we emphasize maintaining the shape of the
trace to achieve a better accuracy. Also, [12] and ours both
mention the stride length estimation. At this point, their
offset measurements have a median and maximum error of
0.13m and 0.46m, respectively, while ours are 0.068m and
0.17m.
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Figure 7: Errors in different traces: (a) the velocity error; (b) the stride length error; (c) the localization error.
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Figure 8: Experiment areas in the 10th district of the East Main
Building.

7. Conclusion

In this paper, we have developed a novel architecture to
provide a seamless indoor localization leveraging trajectories
from RSSI fingerprinting and pedestrian mobility for coordi-
nate transformation. On this basis, the WiFi-based positions
are refined by the well-shaped local trajectory through
the LMS fit. To explore the feasibility of our approach,
we implemented a prototype of TraIL in a building. The
experiment results suggest that TraIL can achieve an 80%
accuracy improvement on average, manifesting its promising
utilization in reality.
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