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ABSTRACT Pose estimation that locates objects in a bin is necessary for a robotic bin picking system.
Although many algorithms have shown high performance in pose estimation, most algorithms estimate the
poses of objects regardless of their occlusion. This can reduce the success rate in picking up the object.
To resolve this issue, we propose a novel pipeline that estimates a pose only for occlusion-free objects
based on point pair feature-based pose estimation with multiple edge appearance model (PPF-MEAM). The
proposed method detects occlusion-free objects in the 2D image captured by a camera with a convolutional
neural network framework. Next, corresponding point clouds of occlusion-free objects need to be extracted
by using their locations in the 2D image. we propose a robust extraction method that finds the 3D points
corresponding to image pixels in the 2D image to reduce the effect of the calibration errors between the
camera and 3D sensor. The point cloud of the occlusion-free objects is finally input into a pipeline of
PPF-MEAM to estimate the pose of the object. The experiment results prove that the proposed method
is about 50% faster 30% higher in terms of pose estimation success rate compared with the original PPF.
Moreover, it increases the success rate of picking tasks compared with the original PPF-MEAM.

INDEX TERMS 6D pose estimation, multiple edge appearance model (MEAM), occlusion-free, robotic bin
picking.

I. INTRODUCTION
The last decade has seen a rapid increase in the introduction
of industrial robots to production lines to increase their pro-
ductivity and overcome labor shortages. However, some tasks
conducted in an unstructured environment are still difficult to
automate. A robotic bin-picking task is one such challenging
task. To achieve the robotic bin-picking, the robot must locate
an object placed among other objects in an unstructured
environment, where the objects change their positions and
orientations every time an object is removed from the bin.
Locating a distinct object in a bin, in other words, pose
estimation of a distinct object, has become possible with
the introduction of commercialized three-dimensional (3D)
sensors.

With rapid advances in 3D measurements [1], [2], such
as stereo vision [3]–[5], active stereo methods [6], [7], time
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of flight, a number of robotic tasks, such as positioning
tasks [8], cooperative tasks [9]–[11], and bin-picking [12],
[13], have been conducted using 3D sensors. This study
focuses on pose estimation algorithms using 3D measure-
ments. One of the major types of pose estimation algorithms
utilizes descriptors to express the shapes of the target objects.
With these algorithms, the target object is described using
some descriptors offline. The descriptors are then used to
find and estimate the poses of the objects in the scene. In
general, pose estimation algorithms using only 3D data can
be divided into two categories based on whether a global or
local descriptor is applied.

Using global descriptors necessitates the segmentation of
the individual object in the scene. The shape of the target
object is described during the offline phase using global
descriptors. Given the point cloud of a scene, the segmented
point cloud of the object is used for computing the global
descriptors. These computed global descriptors will be used
for a comparison with the description, which is trained in
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FIGURE 1. Defective point cloud of Part A. (a): photo of Part A. (b): model point cloud. (c): point cloud
captured by the sensor. The detailed point cloud of the ridges on the part cannot be captured with the
embedded 3D sensor algorithm. Thus, the appearance of the model point cloud differs from the data
captured by the 3D sensor.

advance. The correspondence is then used to estimate the
pose of the object. To shorten the time required for pose
estimation, Aldoma et al. [14] proposed a descriptor called
a clustered viewpoint feature histogram (CVFH) based on a
smooth region growth algorithm. Harada et al. [15] applied
a bin-picking task based on this method. Aldoma et al. then
improved the CVFH using interpolation and called this new
method an oriented, unique, and repeatable clustered view-
point feature histogram (OUR-CVFH) [16]. However, these
methods rely heavily on the results of the segmentation and
have shown a limited performance for use with industrial
parts.

Unlike global descriptors, local descriptors do not require
segmentation [17]–[23]. Tombari et al. proposed a local
3D descriptor for surface matching, called a signa-
ture of histograms of orientations (SHOT) [19]. Because
this descriptor’s identity is extremely high, with a total
of 352 dimensions (11 × 32), it achieves high-level per-
formances in object recognition, 3D reconstruction, and
shape retrieval. Although these descriptors have high dis-
criminative power, the descriptors need to be computed for
3D keypoints and detection of 3D keypoints required a long
time in a heavily cluttered scene. To shorten the time required
for detection of 3D keypoints, Arai et al. [24] have proposed
a fast detection method for 3D keypoints called FADA-3K.
However, FADA-3K has not been applied to robotic
bin-picking yet. Other local features [17]–[20] that use the
geometric information around the key points also require a
long time.

However, local descriptors, which utilize the relationship
between multiple points [21]–[23] show a higher computa-
tional speed. A pose estimation algorithm using the point pair
feature (PPF), proposed by Drost et al. [21], has attracted
significant attention. In this method, the authors utilize both a
PPF and a voting scheme within a Hough space, which real-
izes the pose estimation of industrial parts with the robustness
of occlusion in a cluttered scene. As stated in [22], the per-
formance of this method [21] deteriorates in the presence of
numerous outliers and incorrect estimation of the normal.

Tuzel et al. [23] proposed a max-margin learning frame-
work to identify discriminative features on the surface of the
objects. For different tasks, the features are ranked according
to their importance, which leads to improved accuracy and
reduced computational cost. Kiforenko et al. [25] conducted
a performance evaluation of PPFs. According to this study,
a four-dimensional descriptor, i.e., a PPF, is the best choice
for most datasets. In addition, it has a higher recall rate than
other local histogram features.

Moreover, the aforementioned methods share a common
problem, i.e., they are not robust to insufficient data cap-
tured using a 3D measurement sensor. As shown in Fig. 1,
the appearance of the captured point cloud of Part A differs
from the appearance of the model point cloud. Because this
part is made from resin with 3-mm thick ridges on its surface,
a point cloud captured around the ridges is significantly dif-
ferent compared with its appearance when applying currently
existing 3D sensors. Because the captured point cloud does
not have sufficient information near the ridges, the horizon-
tal rotation of the pose of this part cannot be computed.
To solve this problem, we proposed a point pair feature-based
pose estimation with a multiple edge appearance model
(PPF-MEAM) [33]. This method uses 3D point cloud data
and 2D image data of the scene as the input; it has shown
high performance in pose estimation experiments.

Nevertheless, after integrating it into a robotic bin picking
system, we found that it cannot help the system achieve a
high success rate because PPF-MEAM estimates the poses
of the objects regardless of their occlusion, which will likely
result in the robot picking an occluded object in the bin.
Picking an occluded object increases the grasping error or
failures in the completion of the picking-up task. If the
robot can pick up an object under other objects, during the
picking motion, the grasped object will make contact with
other objects, as shown in Fig. 2. A collision results in a
change in the pose of the object with respect to the gripper,
likely resulting in a failure of the following placement task,
particularly for heavy target objects. Even worse, the robot
may fail to grasp the object completely because of the
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FIGURE 2. Cases of the failed picking task. (a) and (b) show that the
robot fails to grasp the object up because there is no space for the gripper
to grasp the occluded object. (c) and (d) show that the robot picks up the
object under another object. During the picking motion, the grasped
object contacts another object which results in grasping error.

likelihood that there will be no space for the gripper to
grasp the occluded object, which is also a common issue for
the aforementioned methods. To improve the performance
of the robotic picking system, occlusion-free PPF-MEAM
is proposed. We first find occlusion-free objects in a 2D
image using a deep learning-based object detection method
called RetinaNet [34]. At the same time, we apply the Canny
edge detection for the 2D image to obtain the edge pixels.
Using the results of the occlusion-free and edge detections,
the edge pixels of an occlusion-free object can be obtained.
We then extract 3D boundary points of occlusion-free objects
in the point cloud using their corresponding 2D edge pixels.
RetinaNet used here has also been modified and outputs not
only the position of the objects but also the 2D feature points.
In addition, 3D feature points, corresponding to the 2D fea-
ture points, will also be extracted for computing the PPF.

As another unique proposition, to compensate for the cali-
bration error between the 2D camera and 3D sensor, a method
for extracting 3D boundary points of occlusion-free objects
in the point cloud using their corresponding 2D edge pixels is
proposed.We call this method 3D boundary point exploration
(3DBPE). To obtain the 2D image, the 3D point cloud, and the
relationship between each pixel and each 3D point, we use a
sensor set including a 2D camera and a 3D sensor. However,
owing to the calibration error between the 2D camera and 3D
sensor, we occasionally cannot find the corresponding points
in the point cloud for the edge pixels. The 3DBPE approach
is thus proposed to solve this problem. Finally, a modified
PPF-MEAM line that uses the boundary-to-boundary-using-
directional-tangent-line (B2B-DTL) PPF is utilized to esti-
mate the pose of occlusion-free objects using their boundary

point cloud. To clarify the domain of the proposed method,
we should point out that this method is designed for usual
scenes in factories. In such scenes, we have only one category
of parts that are randomly piled up.

The rest of this paper is organized as follows. As a foun-
dation of this study, Section II provides an overview of the
original PPF-MEAM. Section III introduces the details of
the occlusion-free PPF-MEAM. In this section, the pipeline
of the proposed method is first illustrated, and the method
for detecting occlusion-free objects is then described. In the
following subsection, a 3D boundary point exploration
(3DEPE) method is proposed for dealing with the problem
in which the corresponding point in the point cloud cannot be
found for the edge pixels. B2B-DTL and its improved version
are described at the end of this section. Next, in Section VI,
we present the results of the experimental evaluation of the
proposed method. Finally, in Section VII, we provide some
concluding remarks.

This paper uses the following notations. The set of real
numbers is represented byR. The set containing real numbers
and empty is written R∅. The binary number set is given by
Z2 = {0, 1}. The set of natural numbers is represented by N.
For a vector a ∈ Rn, the i-th element a are denoted by ai.
A distance function d is defined by

d(a, b) =
√
(a1 − b1)2 + (a2 − b2)2 + · · · + (an − bn)2

(1)

for arbitrary n dementional vectors a and b.

II. OVERVIEW OF PPF-MEAM
For comparison, the previous version of PPF-MEAM is
briefly introduced in this section. The original PPF-MEAM
can be divided into two parts: an offline database generation
and an online pose estimation.

During the offline phase, we create a hash table for describ-
ing the target object. This table will be utilized as a reference
for finding the object during the online phase. Normally,
the data of the target object are given in the form of a CAD.
After transforming the CADmodel into a mesh file, the point
cloud of the object can be obtained by generating random
points on the mesh. The coordinate system of the model point
cloud needs to be determined by referring to 6o, as shown
in Fig. 6. Several visible point sets of the model from
N viewpoints are then extracted. We call the N extracted
visible point sets as N multiple appearance models. We set N
to 6 based on experience. Next, we extract the boundary
points from each appearance model based on the method pro-
vided in the point cloud library [50]. Each extracted boundary
point set is called an edge appearance model, and B2B-TL
descriptors are computed for each of these models. Because
we utilize the values of the descriptors as the key for the hash
table, point pairs that have the same value of the descriptor
are inserted into the same bin.

During the online phase, a color camera and a 3D sensor
are utilized to obtain an image and the point cloud and scene.
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FIGURE 3. Pipeline of the original PPF-MEAM [33]. This method can be used to estimate the pose of industrial parts with high accuracy and short
computation time. However, it may output the pose of an occluded object, which results in a failure in object picking.

Because the later processing necessitates the correspondence
between each pixel in the image and each point in the point
cloud, we calibrate the camera and 3D sensor to obtain their
extrinsic parameters. The calibration program is provided by
the SDK of the 3D sensor. After this calibration, we can
obtain the mapping relation between each pixel in the cap-
tured image to the point in the point cloud. Because the
extrinsic parameters of the camera and 3D sensor are known,
we then extract 3D boundary points from the scene point
cloud by determining their corresponding 2D edge pixels in
the scene image. The 2D edge pixels are detected by applying
the Canny edge detector [35] to the scene image. The bound-
ary points of the occlusion-free objects are cropped from the
entire scene of the point cloud. A Hough-like voting scheme
is then conducted to obtain many coarse pose candidates,
similar to the approach described by Drost et al. [21]. Some
incorrect pose candidates are filtered out by conducting a
pose verification, as proposed by Li andHashimoto [51]. Pose
verification using MEAM is applied to remove the incorrect
pose candidates. For each model, a defined number of pose
candidates can be obtained. The remaining pose candidates
are sorted based on the pose verification score and refined
using the ICP algorithm [52]. These refined pose candidates
are sent to the next step in the bin picking system.

Although PPF-MEAM has shown a high-performance
level in the pose estimation of industrial parts, it estimates
poses of objects regardless of the occlusion of each object,
which will likely result in a failure of the robotic picking of
an occluded object in the bin.

III. PROPOSED METHOD
Occlusion-free PPF-MEAM is proposed to increase the
robustness of the PPF-MEAM algorithm, which can estimate

the pose of only occlusion-free objects. As shown in Fig. 4,
occlusion-free PPF-MEAM takes the input in the form of
an RGB image and a 3D point cloud. The position and 2D
feature points of multiple target parts that are not occluded
are detected in a 2D image by forwarding the RGB image
to a deep learning framework. The edge image is detected
using the Canny edge algorithm [35]. Using the information
of the object detection and edge image, the edge pixels of
those parts that are not occluded are obtained.We then extract
the boundary point cloud of the target parts using the edge
pixels from the last step and the point cloud of the scene.
Next, we obtain the 3D feature point using a pixel of the
2D feature point. Using the corresponding 3D feature point,
we then input the boundary point cloud of each part indi-
vidually into the PPF-MEAM, which is improved using the
descriptor B2B-DTL.

A. OCCLUSION-FREE OBJECT DETECTION
Occlusion-free object detection includes two aspects, namely,
finding occlusion-free objects and localizing them. In this
study, object detection methods based on deep learning are
considered for occlusion-free object detection for two rea-
sons. First, deep learning-based methods [36] show higher
performance than a traditional object detection method. This
can be seen from the results of the ILSVRC competition. In
particular, the recognition error rate of ResNet even exceeded
that of the human eye by 5.1% [36]. Second, it is diffi-
cult to achieve occlusion detection using a traditional object
detection method because it is challenging to define the
occlusion for different types of objects. As a consequence,
we need to develop a deep learning-based method to realize
occlusion-free object detection.
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FIGURE 4. Pipeline of Occlusion-Free PPF-MEAM. The method estimates the pose of occlusion-free objects randomly piled up in a bin. Using a 2D
process, the input RGB image of the scene is captured with a color camera. We then apply object and edge detection on this image using a modified
RetinaNet algorithm and a Canny edge algorithm, respectively. Utilizing the results of the object and edge detection, the edges of the target parts are
cropped. Please note that only those parts that can be easily grasped (occlusion-free) are detected. With a 3D process, the point cloud is taken using a 3D
sensor. Using the input point cloud and cropped edge image, the boundary point cloud of the target parts is cropped. The 3D feature point is the
corresponding point cloud of the pixel of a 2D feature point. The mapped boundary point cloud and 3D feature point are used as the input of the
framework of the PPF-MEAM, which implements the B2B-DTL descriptor described in this study.

Deep learning-based object detection methods can be
roughly divided into two categories, namely, one-stage and
two-stage detectors. One-stage detectors [37]–[39] have an
advantage of speed, although the accuracy is not as good as
that of a two-stage detector [42]–[44]. The balance between
speed and precision has always been a difficult question, and
the emergence of RetinaNet [34] has improved this situation.
RetinaNet is able to match the speed of the previous one-stage
detectors while surpassing the accuracy of all existing state-
of-the-art two-stage detectors. Lin et al. [34] compared Reti-
naNet with other previous networks. The results are shown
in Table 1. We found that RetinaNet achieves an excellent
balance between the inference time and AP. Therefore, with
our approach, we use RetinaNet as the regression network for
object detection.

TABLE 1. Comparison of Performance for Object Detection Method.

1) MODIFICATION OF RetinaNet
In this section, we detail the usage and modification of
RetinaNet [34]. The architecture of RetinaNet used in the
proposed method is shown in Fig. 5.
RetinaNet is an end-to-end detection network framework.

Compared with fast R-CNN, SSD, and other detection

networks [38], [43], [44], RetinaNet has the advantages of
fast detection and high precision. It consists of a backbone
network and two subnets. The backbone network is respon-
sible for extracting the feature map from the input image.
The extracted feature maps are fed into two subnets. The first
subnet is responsible for classification. The second subnet
performs a regression of the bounding box. A feature extrac-
tor, ResNet-50 or ResNet-101, is used to initially extract
a feature map from the input image. The feature pyramid
network builds five feature maps based on the top of the
extractor. This structure achieves excellent performance in
detecting large and small-sized objects at the same time. The
classification subnet predicts the probability of the existence
of objects at each spatial location. In our case, we only
predict whether the object is occluded, that is, there are two
categories. Box regression subnet has a similar structure as
the classification network and the subnet is responsible for
outputting the offset of the bounding box relative to each
anchor box. In this study, a 2D point subnet used to regress
the position of a 2D feature point, which is applied for a 3D
boundary point exploration and calculating the B2B-DTL,
has been attached to the original architecture.

2) 2D POINT SUBNET
A 2D point subnet is a small FCN attached to each FPN level,
similar to the classification and box regression subnets. The
features extracted by an FPN are fed to the point subnet for
regressing the offset from each anchor box to a feature point
of the object. The subnet contains four 3 × 3 Conv layers,
where each layer is activated using ReLU. After the four conv
layers, the output layer is a 3× 3 Conv layer with 2A filters.
A Sigmoid is used as the activated function.

3) POINT ENCODING
Inspired by the design of a box regression, we do not directly
regress the coordinates of the point but rather the offset.
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FIGURE 5. Network architecture of RetinaNet [34]. RetinaNet consists of a backbone network and three task-specific subnetworks. The backbone is
utilized for computing a feature map over an entire input image. A feature pyramid network is built on the top of ResNet-50. The first subnet conducts
classification on the backbone output. The result of the classification is the probability of the presence of K object classes at each spatial position for
each anchor A. The second subnet applies a convolution bounding box regression. It outputs the object localization with respect to the anchor boxes if an
object exists. The third subnet conducts a convolution 2D feature point regression. It outputs the position of the 2D feature point in the image.

The offset of the feature points (two coordinates) was
designed as follows:

cx = (xc − xa)/wa, cy = (yc − ya)/ha,

c∗x = (x∗c − xa)/wa, c
∗
y = (y∗c − ya)/ha, (2)

where xa, ya,wa, ha denote the center coordinates and the
width and height of the anchor box. In addition, xc, yc are
the center coordinates, and x∗c , y

∗
c are the predicted center

coordinates. Each anchor corresponds to a point, and thus the
output of a point subnet is a 2A linear result.

4) LOSS FUNCTION OF 2D POINT SUBNET
A smooth L1 loss is used as a loss function in the point
subnet. For each anchor, the point subnet predicts two values,
c∗x and c

∗
y . Thus, the predicted point is represented as C∗ =

(c∗x , c
∗
y ), and the ground truth is denoted as C = (cx , cy). The

regression loss LP is defined as follows:

LP =
∑
i∈{x,y}

smoothL1(C∗i −Ci), (3)

where,

smoothL1(x) =

{
0.5 |x|2 if |x| < 1
|x| − 0.5 otherwise

(4)

5) TRAINING DATA
In this study, we used four objects, which are the same
industrial parts described in the previous section, i.e., parts
A, B, C, and D. We took approximately 250 images of each
object. In each scene, one type of part is piled up randomly in
a bin. The position of the objects in each image is described
by bounding boxes and labeled manually. In addition, the 2D
feature point is also labeled manually. Examples are shown
in Fig. 7 and 8.

A 2D feature point is defined using the following steps.
Here, we take the example of Part A.

1) Define the coordinate system of the model point cloud.
Please note that we are using the model point cloud as

FIGURE 6. Definition of 2D feature point. We first define an object
coordinate system 6o. 3D feature points, Pf

c and Pb
c , are the points of

intersection of the z-axis and surface of the object. A 2D feature point, pf
c ,

is defined as Pf
c in the 2D images.

an input in this step. The origin of this coordinate sys-
tem is the centroid of the model point cloud. Determin-
ing the direction of the x-, y-, and z-axes requires a PCA
analysis of the model point cloud. Three eigenvalues
obtained through a PCA analysis are sorted from largest
to smallest. Three corresponding eigenvectors of these
eigenvalues are used as directions of the x-, y-, and z-
axes. This coordinate system 6o is shown in Fig. 6.

2) Define the 3D feature point. Here, we use a cylinder to
represent the point cloud of Part A, as shown in Fig. 6.
When we extend the z-axis of 6o, the cylinder’s upper
and lower surfaces will then intersect the z-axis, result-
ing in points Pfc and Pbc . Because the actual point cloud
is sparse, we will use the point in the point cloud closest
to the two points Pfc and Pbc as the 3D feature point.

3) Define a 2D feature point. On the grounds that we have
obtained 3D feature points, 2D feature points can then
be obtained by mapping to the 2D space. Specifically,
we project the point cloud of the upper and lower
surfaces onto the xy-plane, and the pixel corresponding
to the 3D feature point as a 2D feature point.
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FIGURE 7. Training data. These data are made by labeling the bounding box and 2D feature point (green dots) of objects that are not occluded.

FIGURE 8. 2D feature point of each type of part. Because flat objects such as parts A, B, C, and D tend to show either a front side or
back side in a randomly piled up stack, we only define the feature point for these two sides.

A definition of the 2D feature point of each part is shown
in Fig. 8.

The position of the 2D feature points can be defined manu-
ally as well because the variation in the shapes of the different
objects is extremely large. The aforementioned definition can
be referenced as a way to find this position. Here, 2D feature
points are used directly in the 3D boundary point exploration.
In addition, mapping to a 3D point will be applied to obtain
a 3D feature point in the scene, which is used for calculating
the B2B-DTL. Because flat objects such as Parts A, B, C,
and D, tend to show either a front or backside in a randomly
piled up stack, we only define the feature points for these two
sides. In this research, we focused on flat objects; cube-like
and curvy objects are not considered.

As a unique proposition, we only label the objects that
are not occluded (occlusion-free) in the scene. As mentioned
earlier, only the pose of the objects that are not occluded
is desired for the robotic bin-picking system. There are two
reasons for this. First, there is likely no space for the gripper
to grasp the occluded object. Second, even if the robot can
pick up an object under other objects, during the picking
motion, the grasped object will collide with other objects.
Such collision results in changes in the pose of the object
with respect to the gripper, which probably results in a failure

of the following placement task, particularly for heavy target
objects.

We use 200 images as the training set and 50 images as the
test set. To conquer the problem of a small number of training
images, data augmentation, i.e., horizontal/vertical flipping
and shifting, has been utilized. We trained each part of our
model for 30 epochs, and each epoch has 1000 steps with a
batch size of 1. We implemented our code under the Keras
framework using TensorFlow as the back end. This takes
approximately 5 h using an Nvidia GeForce GTX 1080 GPU.
The Resnet-50 model pre-trained on COCO data [47] is
implemented to decrease the training time to reach the con-
vergence point.

6) VALIDATION EXPERIMENT
To evaluate the performance of RetinaNet, we conducted
several validation experiments. Some representative infer-
ence results are shown in Fig. 9. The accuracy of the object
detection is shown in Table 2. The confidence threshold is
used here. For each type of object, the accuracies of the
top-1 through top-3 results are calculated. If the confidence
of the result is lower than the threshold, the result will not
be output. Please note that, for the test set, we only labeled
the objects without an occlusion. Even if the object detection
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FIGURE 9. Result of occlusion-free detection. Inference results are shown in red; the ground truth is shown in green. Please note that
only objects without an occlusion are detected.

TABLE 2. Accuracy of Occlusion-Free Object Detection.

is correct when an occlusion is present, it would not be
considered a correct detection.

In addition, we computed the average 2D feature point
error, as shown in Table 3.

TABLE 3. Error of Feature Point [Pixels].

The AP rate in each scene is shown in Table 4.

TABLE 4. AP Rate.

According to the result of the validation experiment,
we consider the performance of this network to be sufficiently
high to be used in occlusion-free PPF-MEAM.

B. 3D BOUNDARY POINT EXPLORATION (3DEPE)
Owing to the calibration error between the camera and
3D sensor, the corresponding point in the point cloud

occasionally cannot be found for the edge pixel, as shown
in Fig. 10. A lack of boundary points results in an incorrect
pose estimation result.

To solve this problem, a 3D boundary point exploration
is proposed. If the corresponding 3D edge points cannot be
found, neighbor pixels of the edge pixels will be considered
as candidates for finding 3D edge points. Neighboring pixels
along the line connecting from the edge pixel to the feature
point are explored, as shown in Fig. 11. The pseudocode is
shown in Algorithm 1. Here, Iedge ∈ Zm×n2 is the binary
edge image of the scene, which is cropped for one part.
Ixyz ∈ Rm×n×3 is a 3-channel image consisting of the point
cloud of the same part of Iedge. The (i, j, 1), (i, j, 2), (i, j, 3)-
th elements of Ixyz represent x, y, and z coordinates of the
3D point corresponding to the (i, j)-th element in Iedge. If the
calibration error between the camera and 3D sensor is large,
the corresponding pixel in Ixyz will be empty. Lstep is a param-
eter that determines the length of the exploration.

C. BOUNDARY-TO-BOUNDARY-USING-DIRECTIONAL-
TANGENT-LINE (B2B-DTL)
In this study, a descriptor called B2B-DTL [48], [49] was
improved and utilized in the PPF-MEAM pipeline instead
of B2B-TL. B2B-DTL [48] is an improved PPF based
on B2B-TL [33]. The definition of B2B-DTL is shown
in Fig. 12, and the descriptor was designed to find the cor-
responding point pairs between the scene and model. Using
these corresponding point pairs, a 6D pose can be computed.
As mentioned by Liu et al. [33], for some industrial parts,
points along the boundary of the objects have more essential
information than those on the surface, as shown in Fig. 1.
In addition, the number of boundary points of an object
is much less than the number of surface points. Therefore,
the boundary points of an object are preferred for a pose
estimation while pursuing a short computation time. When
we use points on the boundary, we use the direction of the
tangent line that passes through these points as the orientation
instead of the normal direction because one boundary point
has an infinite number in this direction.

Computing the tangent line among the boundary points
is easy when using the method proposed for the original
PPF-MEAM pipeline [33] although choosing which direc-
tion to use along the tangent line is difficult because each
tangent line can represent two opposite directions. For the
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FIGURE 10. Result of 3DBPE. (a): edge image, (b): captured point cloud. (c): captured point cloud. (d): point cloud refined by 3DBPE. Using
(a) and (b), (c) is obtained by mapping edge pixels to a point cloud. As an error of the calibration, the boundary point cloud in the red box is not
completely obtained. (d): Boundary point cloud obtained by mapping edge pixels to point cloud with 3DBPE. Compared with (c), the boundary
point cloud in a red box has been sufficiently obtained.

FIGURE 11. Finding corresponding points in 3DBPE. (a): the deviation
between the detected edge (blue) and point cloud (red) owing to the
calibration error between the camera and 3D sensor. If the corresponding
3D boundary point cannot be found for a point P2D−E along the 2D edge,
a neighbor point P′2D−E in the image will be searched along the
line (black) from the point along the 2D edge to the 2D feature point
(green). (b): the 3D point P3D−B corresponding to P′2D−E is extracted as
the corresponding 3D point of P2D−E . This process will be conducted for
those points along the 2D edge that do not have corresponding 3D
points.

corresponding point in the model and scene, it is difficult
to guarantee that the same direction will be chosen. For
example, the point Pi in Fig. 13 (a) can use the direction of n̄i,
whereas the Pi in Fig. 13 (b) uses the direction of −n̄i. This
leads to an incorrect matching and results in an incorrect pose
candidate. This problem can be solved using the clockwise
direction, as mentioned in [48], which guarantees that the
direction is chosen, as shown in Fig. 13. The point Pc in
the aforementioned study is obtained based on the center of
the bounding box, which brings about a certain disadvantage,
i.e., with a change in the size of the detected bounding box,
the position of Pc also changes. During the off-line phase, Pc
is determined using an ideal bounding box. Therefore, we can
imagine that if the detected bounding box is slightly smaller
than the ideal bounding box, Pc in Fig. 13 (a) and 13 (b) is at

FIGURE 12. Definition of B2B-DTL. The mr is the reference point and mi
is the referred point. The n̄r and n̄i represents the clockwise direction of
the tangent line that passes through these two points. Here, pc is a 3D
feature point. Because the range of the angular component is from [0, π2 ]
to [0, π] (where f2 and f4 are obtuse angles), the success rate and speed
of the computation of the pose estimation can be increased.

a different position with respect to the part. A small bounding
box will likely be detected if the tilted part is occluded.

As an important improvement in this study, the 3D feature
point Pc, i.e., the corresponding 3D point of the 2D feature
point in the image, is used to find the clockwise direction of
the tangent line. If there is no corresponding 3D point in the
scene for the 2D feature point, the nearest pixel that has a
corresponding 3D point is searched, and the 3D point is used
as the 3D feature point. During the process of creating a hash
table, we can use the defined 3D feature point for calculating
the features.

After we obtain the 3D feature point, we compute the
angles from PiPfeature to the n̄i and−n̄i. If this angle is larger
than a threshold, it is labeled as the counterclockwise angle;
otherwise, it is the clockwise angle. The direction vectors that
yield the clockwise angle are used as the orientation of points
for computing the B2B-DTL. The B2B-DTL is defined by the
following:

FB2B−DTL = (f1, f2, f3, f4)>

= (‖d‖2 , 6 (n̄r ,d), 6 (n̄i,d), 6 (n̄i, n̄r )
> , (5)

where we use the same notation as that applied for describ-
ing B2B-TL. Unlike using the sharp angle for the angular
elements in B2B-TL, the range of the angular component
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Algorithm 1 3D Boundary Point Exploration
Data:
Iedge ∈ Zm×n2 : A binary edge image of the scene which is
mainly cropped for one part. If the edge exists,
the corresponding pixel equals one.
Ixyz ∈ Rm×n×3

∅
: A three-channel image, where the

(i, j, 1), (i, j, 2), and (i, j, 3)-th elements of Ixyz represent
x, y and z coordinates of the 3D point in (i, j)-th pixel in
the corresponding image, respectively. If the edge does
not exist, the corresponding elements equal to empty.
Pfeature ∈ N2: A coordinate of a Feature Point in Iedge.
Result: 3D points set Spts which consists of the

boundary point cloud of one part
Spts← ∅;
ptmp = [0, 0, 0]>;
for i← 1 to m do

for j← 1 to n do
if Iedge(i, j) 6= 0 ∩ Ixyz(i, j, 1) 6= ∅ then

ptmp,1← Ixyz(i, j, 1);
ptmp,2← Ixyz(i, j, 2);
ptmp,3← Ixyz(i, j, 3);
Spts← Spts ∪ {ptmp};

end
if Iedge(i, j) 6= 0 ∩ Ixyz(i, j, 1) = ∅ then

1y← Round
(

Pfeature,1−i
d(Pfeature,[i,j]>)

)
;

1x ← Round
(

Pfeature,2−j
d(Pfeature,[i,j]>)

)
;

for k ← 1 to Lstep do
i′← i+ k1y;
j′← j+ k1x;
if Ixyz(i′, j′, 1) 6= ∅ then

ptmp,1← Ixyz(i′, j′, 1);
ptmp,2← Ixyz(i′, j′, 2);
ptmp,3← Ixyz(i′, j′, 3);
Spts← Spts ∪ {ptmp};

end
end

end
end

end

changes from [0, π2 ] to [0, π]. As mentioned in [48], this
leads to a shorter computation time and fewer incorrect pose
candidates.

Because flat objects such as Parts A, B, C, and D,
tend to show either the front or backside in a randomly
piled-up stack, we only define the 2D and 3D feature
points for these two sides for each type of object. Dur-
ing the offline phase, we compute the B2B-DTL for the
point pairs in each MEAM, as mentioned previously. For
some MEAMs, there are no corresponding feature points
defined. In this case, the 3D centroid of the point cloud
will be used as the feature point for the MEAM to compute
the B2B-DTL.

FIGURE 13. Clockwise direction among the two directions along the
tangent line is utilized. Point Pi in the figure has two directions n̄i and
−n̄i along its tangent line. Its 3D feature point Pc is also known. Two
angles θccw and θcw from PiPc to n̄i and −n̄i can be obtained. These two
angles are utilized to determine which direction is clockwise. Because
θcw is less than 180◦, n̄i is used as the orientation of Pi for computing the
B2B-DTL. The clockwise direction along the tangent line is found for both
the model (a) and the scene (b).

IV. EVALUATION EXPERIMENT
A. REAL SCENE DATA
We evaluated an occlusion-free PPF-MEAM using data of
real scenes, the results of which are described herein. To val-
idate this method in a practical application, a robotic picking
experiment is also conducted. The original PPF [21] and the
original PPF-MEAMwith the B2B-TL are compared to show
the advantages of the proposed method.

Python was implemented for object detection, and C++
was used for pose estimation. The programs were run on a
single computer with an Intel Core i7 6950X CPU, 32 GB of
RAM, and a GTX1080 GPU. To determine the best perfor-
mance of the proposed method for a real application, the pose
estimation programs used in this experiment were accelerated
by applying the OpenMP frame.We used an Ensenso N35 3D
sensor and an iDS USB 3 uEye 2D camera. Two LEDs were
set near the bin to provide a stable lighting environment.

We tested 20 scenes for each of the four types of parts.
For each scene, Parts A, B, C, and D were randomly piled up
inside a bin. During the 2D process, τt was set to 0.5. The
maximum number of outputs was set to 4. This means that
the cropped point cloud of four parts at most was input to the
PPF-MEAM framework. The maximum number was defined
through experience. In a 3D boundary point exploration, Lstep
was set to 3 for part D and zero for the other parts. During
the 3D process, we used the same notations as in the original
PPF-MEAM [33]. Here, τd resulting in ddist = τd × D was
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FIGURE 14. Robotic bin picking system utilized to validate the proposed method. A color camera and 3D
sensor were fixed on the frame above the parts. To provide a stable lighting condition, two light-emitting
diodes (LEDs) were installed on both sides of the box. The gripper used for the picking task is shown in (b).

FIGURE 15. (a)–(d): images of real example parts. (e)–(h): scene cloud containing only boundary points.

equal to 0.07, where D is the maximum distance between
two points on the object. We set dangle to 3.6◦ based on our
experience. To balance between the recognition rate and the
computation time, Pref and Preferred determined the percent-
age of scene boundary points used as reference and referred
points, respectively. We set Preferred to 20% and Pref to 10%,
10%, 10%, and 20% for Parts A, B, C, and D, respectively.
For the other parameters, we used the same value as shown
in the original study on PPF-MEAM.

1) QUANTITATIVE EVALUATION
We output three pose results in each scene for Parts A, B, and
D and two pose results for Part C. The reason for setting the

output number in such a way is based on the average number
of parts without occlusion in each scene. The correctness
of the resulting pose is manually determined. We counted
the number of true positives, and the recognition rate is the
number of true positives over the number of output poses.

The speed and recognition rate of the proposed method
for each type are presented in Tables 5 and 6, respectively.
The occlusion-free rate is presented in Table 7. This is the
number of true positives of parts that are not occluded over
the number of all true positives. Some examples are shown
in Figs. 15 and 16. We rendered the top pose results using
red, green, and blue in order. We compared our method with
the original PPF [21] and original PPF-MEAM.
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TABLE 5. Speed of the algorithms for real scenes (ms/scene).

TABLE 6. Recognition rate of the algorithms for real scenes.

TABLE 7. Occlusion-Free rate of the algorithms for real scenes.

For parts similar to Part A, occlusion-free PPF-MEAM
shows an estimation with a high recognition rate, whereas the
original PPF does not. This is due to the insufficient data cap-
tured by the 3D measurement sensor, as shown in Fig. 1. The
original PPF can estimate the position of Part A. However,
the original PPF cannot estimate the rotation around z axis in
the coordinate system of Part A because the captured point
cloud does not have sufficient information near the ridges in
Part A.

Compared with the original PPF-MEAM, the proposed
method is faster while maintaining almost the same recog-
nition rate. The small difference in the success rate between
the original PPF-MEAMand the proposedmethod for Parts C
and D is caused by the different numbers of total output. For
the proposed method, if RetinaNet detects only one object
in the scene without an occlusion, there is one final pose
estimation result. However, the number of outputs of the orig-
inal PPF-MEAM is the defined number regardless of whether
the parts are occluded. Considering the occlusion-free rate,
the proposed method outperforms the other two methods.
A high occlusion-free rate is considered to improve the suc-
cess rate of a grasping task over the use of the other two
methods.

2) CONTRIBUTION OF 3D BOUNDARY POINT EXPLORATION
To show the effectiveness of the 3D boundary point explo-
ration, an experiment taking Part D as the example is con-
ducted. During this experiment, the same image and a point
cloud of the scene is used for the proposed method with and
without 3DBPE. As shown in Table 8, we can increase the
success rate by approximately 8%whilemaintaining a similar
computation time.

B. BIN-PICKING SYSTEM PERFORMANCE
To validate the ability of the occlusion-free PPF-MEAM
based on a practical application, a robotic picking experiment

TABLE 8. Contribution of 3D Boundary Point Exploration.

TABLE 9. Pickup success rate for Part A.

was conducted. The manipulator used in this experiment
was a VS-068 from DENSO. An Ensenso N35 and an iDS
USB 3 uEye were utilized as the 3D sensor and 2D camera,
respectively. The gripper applied was an ESG 2 Series from
Taiyo Co. Two LEDs were set near the bin to provide a stable
lighting environment.

As shown in Fig. 15, multiple versions of Part A were
piled up randomly in the bin. In addition, Pref and Preferred
were set to 10% and 20%, respectively. Six edge appearance
models were extracted and used to construct the hash table.
RetinaNet output four object positions in the image at most.
After applying PPF-MEAM, there were three output poses
at most. The top-three pose candidates were output for each
scene. Twelve parts were randomly piled up in the bin. The
robot picked up these parts until no parts remained. Once
the picking task failed, the pose estimation and picking task
were conducted again. If there were no results for the grasp
planning section, the objects were randomly shuffled. We
tested five bins with parts, as shown in Table 9, and achieved
a success rate of 93.8% for 64 trials, with an average com-
putation time of approximately 860 ms for pose estimation.
During this experiment, if the grasped part was occluded by
other parts, we considered the trial as having failed.

Although 60 parts were successfully picked up during
63 trials using PPF-MEAM, and during the picking motion,
the grasped object collided with another object 11 times.
During this experiment, we considered this as a failed trial,
which differs from the approach used in [33]. This means that
we set a higher requirement for a successful picking task. For
example, if the object is heavy, a collision will change the
pose of the object with respect to the robot hand, resulting
in a failure of a high-precision placement task. When we
applied the occlusion-free PPF-MEAMduring a picking task,
it achieved a success rate of 100% in grasping objects with-
out occlusions. However, because the entire system has no
function in avoiding a collision, the opening gripper touched
the other parts before grasping the target part four times.
Because those parts were under the target, touching those
parts changed the position of the target part, which led to the
failed picking task. In the future, if collision avoidance can
be integrated into this picking system, the success rate of the
occlusion-free PPF-MEAM can be improved.
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FIGURE 16. (a)–(d): cropped point cloud of objects without occlusion. (e)–(h): pose estimation results. The point could of the model is transformed
into the scene space utilizing the pose results and rendered with different colors. These colors indicate the recommended picking order of the parts
after considering the occlusion. Models are rendered as red, green, and blue.

V. CONCLUSION
In this study, a new pose estimation pipeline for robotic
bin-picking called occlusion-free PPF-MEAMwas proposed,
in which a 3D pose estimation of occlusion-free objects is
achieved by applying PPF-MEAM to a 2D image.

Occlusion-free PPF-MEAM uses deep learning-based 2D
object detection and a non-machine learning-based 3D
pose estimation method to estimate the pose of randomly
piled industrial parts. The deep learning framework imple-
mented on the proposed pipeline was modified for detecting
occlusion-free objects and outputting 2D feature points. An
algorithm called a 3D boundary point exploration (3DBPE)
was also proposed for extracting sufficient boundary points in
the point cloud using the edge pixels of the image in the scene.
In addition, the descriptor, a B2B-DTL PPF, was improved to
overcome some of the shortcomings of the previous version.

The main advantage of our method is that it increases
the success rate of bin-picking owing to the recognition of
occluded-free objects. More importantly, the 3DBPE algo-
rithm and the improved B2B-DTL descriptor make the
method more robust to a defective boundary point cloud and
shorten the computation time. In the future, we will focus on
those cases in which multiple types of parts are present for
handling of more complex scenes.
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