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Abstract

Admittance controllers have been widely implemented in
physical human/robot interaction (pHRI). The stability
criteria and the parameter adaptation methods for admit‐
tance control have been well-studied. However, the
established methods have mainly focused on human/
manipulator interaction, and cannot be directly extended
to mobile robot-based pHRI, in which the nonlinearity
cannot be cancelled by feedback linearizations and the
measurements of the relative human/robot position and
orientation are usually lacking. In this paper, we study the
pHRI between a human user and a mobile robot under
admittance control. We develop a robotic system which can
measure the relative chest/ankle positions of the human
user with respect to the robot. Using the measured human
position, a human frame admittance controller is proposed
to remove the nonlinearity in the system dynamics. Based
on the human-frame admittance control, a stability criteri‐
on is derived. By using a human arm stiffness estimator
along with the derived stability criterion, a stiffness-based
variable admittance controller is designed. The effective‐
ness of the proposed methods in improving the pHRI

performance is tested and supported by simulations and
experimental results.

Keywords Physical Human/Robot Interaction, Admittance
Control, Mobile Robot, Stiffness Estimation

1. Introduction

In the near future, robots are expected to cooperate with
humans in the same shared workspaces in industrial and
domestic applications. Therefore, pHRI is attracting
increasing attention in robotics research [1]. Various types
of robots have been created to physically interact with
humans, including serial/parallel manipulators [2 - 8],
mobile robots [9 - 11], biped robots [12], and aerial robots
[13]. Among the robots created for pHRI, a mobile robot
(platform) has its unique advantages in its large workspace,
reliable stability during movement, and long battery life;
mobile robots have been applied in applications including
assembly assistance [14], walking support [15] and enter‐
tainment [16, 17].

1Int J Adv Robot Syst, 2015, 12:173 | doi: 10.5772/61313

http://crossmark.crossref.org/dialog/?doi=10.5772%2F61333&domain=pdf&date_stamp=2015-12-08


To enable the robot to behave compliantly with the force/
torque arising in pHRI, two control schemes—namely
impedance control and admittance control [18]—have been
introduced1. The impedance controller, which requires a
specially designed back-drivable mechanical structure, is
often used in haptic displays [20]. In contrast, the admit‐
tance controller fits the commonly-used manipulators and
mobile robots that have high gear ratios [21], and it has been
widely implemented in pHRI [4, 19, 22 - 33].

Theoretically, the coupled dynamics between a passive
human and a robot under admittance control preserve such
passivity as well as stability. However, in practice, the
dynamics of other components (e.g., a low-pass filter as in
[26]) or the time discretization [34] may give rise to insta‐
bilities. Therefore, the pHRI stability is often subject to the
human arm’s stiffness and the admittance parameters. To
find appropriate admittance parameters that stabilize the
pHRI for a given stiffness, the stability criteria for admit‐
tance controllers have been well-studied, especially in
human/manipulator interaction [26, 27, 30, 33, 35].

Besides human/manipulator interaction, admittance
controllers have also been applied in the physical interac‐
tions between humans and mobile robots [25, 32]. Howev‐
er, despite the success of their applications, the stability of
human/mobile robot interactions has been investigated less
frequently, and the established stability criteria for manip‐
ulators cannot be directly applied to mobile robots; for a
manipulator, although its dynamics are usually nonlinear,
when low-level control (e.g., using feedback linearizations)
in the joint space is implemented, the translational motions
of the end-effector have linear reponses to external forces
[36]. However, the interactions between humans and
mobile robots inevitably involve rotations that introduces
nonlinearity. Consequently, the analysis of pHRI stability
requires a non-trivial effort in formulating a Lyapunov
function. Moreover, we will show that the techniques in
formulating stability criteria for manipulators cannot be
easily extended to mobile robots.

Besides stability, another issue in designing admittance
controllers is pHRI performance. We could use very
conservative admittance parameters (e.g., a very high
virtual viscosity) to ensure pHRI stability under any
uncertain stiffness; however, this high viscosity would also
place an extra physical burden on the human user and it
thus results in poor pHRI performance. To mitigate the
trade-off between stability and performance, many re‐
searchers have proposed implementing a stiffness estima‐
tor in human/manipulator interaction and recommended
adjusting the admittance parameters online according to
the estimated human arm stiffness [19, 26, 27, 37]. Here‐
after, we refer to this method as “stiffness-dependent
variable admittance control” (SDVAC).

A stiffness estimator takes in two inputs: the force/torque
in pHRI and the relative position between the human and
the robot. In human/manipulator interaction, since the base
of the manipulator is fixed and the human operator is often
standing or sitting, the change of their relative position is
simply the end-effector displacement, which can easily be
obtained by the joint sensors and the forward kinematics.
However, in the mobile robot case, as both the human and
the robot are moving, their relative position and orientation
are not equal to the displacement of the robot. Although in
the previous literature laser rangefinders (LRFs) have been
used to measure the human/robot distances for fall-
prevention [32, 10], more detailed human information (i.e.,
the position and orientation of the human body) is still
lacking. Consequently, the lack of human pose information
restricts the application of SDVAC to mobile robots.

To overcome the two difficulties (i.e., formulating the
stability criterion and estimating the human arm stiffness
in the mobile robot-based pHRI), we developed a mobile
robot which is able to measure the relative human position
with respect to the robot using four on-board LRFs. Based
on the developed robotic system, the following methods
are proposed:

• The robot is controlled so as to have admittance-type
dynamics in the human frame. We show that the human
frame admittance control can avoid the nonlinearity in
the system dynamics and that the stability criterion can
be formulated using linear system techniques.

• With the human position information, the human arm
stiffness can be estimated. Based on an improved
stiffness estimator, SDVAC is implemented on the
mobile robot.

With the above methods, we can stabilize the mobile robot-
based pHRI and enhance its performance by adjusting the
admittance parameters online. The proposed methods, as
well as the developed robotic system, have the potential to
be applied to human worker assistance, rehabilitation and
robot dance partners [14 - 17].

This paper is organized as follows: Section 2 introduces the
robotic system. The admittance control in the human-frame
is discussed in Section 3. Section 4 formulates the stability
criterion for the human-frame admittance control. Section
5 presents the improved stiffness estimator and the
designed controller. Section 6 presents and discusses the
results of simulations and experiments. Conclusions are
presented in Section 8.

2. System Description

The developed robotic system (shown in Figure 1) is a test
bed for a dance partner and walking support robots. This
mobile robot has four omni-directional wheels, each

1 In some of the literature [19], admittance control may also be referred to as “impedance control”. However, in this paper we follow the naming conventions

of “admittance” and “impedance” made in [18].
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actuated by a 250W DC servo motor. The maximum
moving speed of the robot is 1.3m/s, which is approximate‐
ly equal to the normal walking speed of a human. The
control algorithm is implemented in real-time on an on-
board PC with the QNX operating system.

Theoretically, the coupled dynamics between a passive
human and a robot under admittance control preserve
the passivity and stability. However, in practice, the
dynamics of other components (e.g., a low-pass filter
as in [26]) or the time discretization [34] may give rise
to instabilities. Therefore, the pHRI stability is often
subject to the human-arm stiffness and the admittance
parameters. To find appropriate admittance parameters
that stabilize the pHRI under a given stiffness, the stability
criteria for admittance controllers have been well studied,
especially in human–manipulator interaction [26, 27, 30,
33, 35].

Besides the human–manipulator interaction, admittance
controllers have also been applied in the physical
interaction between a human and a mobile robot [25,
32]. However, despite the success in their applications,
the stability of the human–mobile-robot interaction is
less investigated, and the established stability criteria for
manipulators cannot be directly applied to mobile robots:
For a manipulator, although its dynamics are usually
nonlinear, when low-level control (e.g., using feedback
linearizations) in the joint space is implemented, the
translational motions of the end-effector can own linear
dynamics in response to external forces [36]. However,
the interaction between a human and a mobile robot
inevitably involves rotations that introduces nonlinearity.
Consequently, the analysis of the pHRI stability requires
the non-trivial effort in formulating a Lyapunov function.
Moreover, we will show that the techniques in formulating
stability criteria for manipulators cannot be easily
extended to mobile robots.

Besides stability, another issue in designing admittance
controllers is the pHRI performance: We could use very
conservative admittance parameters, e.g., a very high
virtual viscosity, to ensure the pHRI stability under any
uncertain stiffness. But this high viscosity would also
place an extra physical burden on the human user and
thus results in a poor pHRI performance. To mitigate
the tradeoff between stability and performance, many
researchers proposed to implement a stiffness estimator
in human–manipulator interaction and online-adjust
the admittance parameters according to the estimated
human-arm stiffness [19, 26, 27, 37]. Hereafter we
refer to this method as the stiffness-dependent variable
admittance control (SDVAC).

A stiffness estimator takes in two inputs: the force/torque
in pHRI, and the relative position between human and
robot. In human–manipulator interaction, since the base of
the manipulator is fixed and the human operator is often
standing or sitting, the change of their relative position is
simply the end-effector displacement, which can easily be
obtained by the joint sensors and the forward kinematics.
However, in the mobile-robot case, as both the human
and the robot are moving, their relative position and
orientation are not equal to the displacement of the robot.
Although in previous literature laser rangefinders (LRFs)
have been used to measure the human–robot distances for
fall prevention [10, 32], more detailed human information,
i.e., the position and orientation of the human body, is
still lacking. Consequently, the lack of the human-pose
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Figure 1. The developed robotic system; the force/torque sensor
is installed in the waist of the robot (behind the blue plate).

information restricts the application of SDVAC to mobile
robots.

To overcome the two difficulties, i.e., formulating the
stability criterion and estimating the human-arm stiffness
in the mobile-robot-based pHRI, we developed a mobile
robot which is able to measure the relative human position
with respect to the robot using four on-board LRFs. Based
on the developed robotic system, the following methods
are proposed:

• The robot is controlled to have admittance-type
dynamics in the human frame. We show that the
human-frame admittance control can avoid the
nonlinearity in system dynamics and the stability
criterion can be formulated using linear-system
techniques.

• With the human-position information, the human-arm
stiffness can be estimated. Based on an improved
stiffness estimator, the SDVAC is implemented on the
mobile robot.

With the above methods, we can stabilize the
mobile-robot-based pHRI and enhance its performance
by on-line adjusting the admittance parameters. The
proposed methods, as well as the developed robotic
system, have the potential to be applied to human-worker
assistance, rehabilitation, and robot dance partners
[14–17].

This paper is organized as follows: Section 2 introduces
the robotic system. The admittance control in the
human-frame is discussed in Section 3. Section 4
formulates the stability criterion for the human-frame
admittance control. Section 5 presents the improved
stiffness estimator and the designed controller. Section 6
presents and discusses the results of simulations and
experiments. Conclusions are presented in Section 8.

2. System Description

The developed robotic system (shown in Figure 1) is a
test bed for dance partner and walking support robots.
This mobile robot has four omni-directional wheels, each
actuated by a 250 W DC servo motor. The maximum
moving speed of the robot is 1.3 m/s, which approximately
equals to the normal walking speed of human. The control
algorithm is implemented in real-time on an on-board PC
with the QNX operating system.

Besides the encoders (installed on the motor shafts) and
the force/torque sensor (installed in the waist of the robot)
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Figure 1. The developed robotic system—the force/torque sensor is installed
in the waist of the robot (behind the blue plate)

Besides the encoders (installed on the motor shafts) and the
force/torque sensor (installed in the waist of the robot)
necessary for the admittance control, the mobile robot is
also equipped with four LRFs (Hokuyo UBG-04LX-F01),
with two upper and two lower LRFs monitoring the chest
and each ankle of the human user respectively. In our
earlier work, we implemented two LRFs to measure both
the chest and the ankles (see Figure 2).
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Figure 2. In our earlier work, the chest and ankle positions of the human
were measured using individual LRFs

However, in the current robotic system shown in Figure 1,
we use two pairs of LRFs to improve the quality of the
measurements:

• For measuring the chest, the paired LRFs have signifi‐
cantly greater coverage than a single LRF (see Figure 3).

• A single LRF can measure both ankles when the human
user is performing simple tasks (e.g., maintaining a static
posture, as in Figure 2). However, when the tasks are
complicated (e.g., when the human is rotating around
the vertical axis or when the second through to the fifth

sub-tasks in Figure 13 are being performed), the crossing
of the ankles may occur (as shown in Figure 4), leading
to occlusion problems (see Figure 5(a)). In this case, the
positions of the ankles cannot be measured by a single
LRF. Therefore, we implement a pair of LRFs to over‐
come this occlusion problem, as shown in Figure 5(b).
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Figure 2. In our earlier work, the chest and ankle positions of
human were measured using individual LRFs.
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Figure 3. When measuring the chest of the human user, the
paired LRFs (b) have significantly larger coverage than the single
LRF (a).
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Figure 4. Ankle occlusions may occur when performing relatively
complicated tasks.

necessary for the the admittance control, the mobile robot
is also equipped with four LRFs (Hokuyo UBG-04LX-F01),
with two upper and two lower LRFs monitoring the chest
and the two ankles of the human user, respectively. In our
earlier work, we had implemented two LRFs to measure
both the chest and the ankles (see Figure 2). However, in
the current robotic system shown in Figure 1, we use two
pairs of LRFs to improve the quality of measurements:

• For measuring the chest, the paired LRFs have
significantly larger coverage than the single LRF (see
Figure 3).

• A single LRF can measure both ankles when the human
user is performing simple tasks (e.g., maintaining a
static posture as in Figure 2). However, when the tasks
are complicated (e.g., when human is rotating around
the vertical axis, or when the second to fifth sub-tasks
in Figure 13 are being performed), the crossings of the
left and right ankles might occur (as shown in Figure 4),
leading to occlusion problems (see Figure 5(a)). In this
case, the positions of two ankles cannot be measured
by a single LRF. Therefore, we implement a pair of
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Figure 5. When measuring the ankles of human, the use of paired
LRFs can eliminate occlusion, as illustrated in (a).
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Figure 6. A range image of the chest and the two ankles. The
black “+” and “×” markers denote the raw range data from the
two lower LRFs. The red “+” and “×” markers stand for the range
data from the two upper LRFs. The “o” and “�” mark the calculated
positions of the ankles and the chest, respectively.

LRFs to overcome this occlusion problem, as shown in
Figure 5(b).

With the two pairs of LRFs, we can obtain range images of
the chest and the two ankles (shown in Figure 6). Using
the range data, positions of the chest and the ankles are
calculated following the steps listed below:

1. The chest and the ankles appeared in the range
image are considered as an ellipse and two circles,
respectively. At the beginning of each pHRI, the human
user is required to stand near the robot for a few
seconds, until the geometric parameters (i.e., lengths of
the major and minor axes of the ellipse, and the radius
of the circles) are extracted.

2. Given a specific range image obtained during the pHRI,
we first remove the spurious range image data that are
significantly detached from the chest/ankle patterns.

3. Using the ellipse and circle parameters obtained in step
1, the chest center and its orientation are calculated by
the ellipse fitting, and the ankle centers are obtained by
circle fittings.

The calculated chest/ankle positions in a range image is
shown in Figure 6. Using the calculated human-chest
position, a stiffness estimator is introduced (Figure 7).
The estimated stiffness is used to adjust the parameters
of the admittance controller, whose output (the desired
robot trajectory) is tracked by a low-level PD controller.
The block diagram of the SDVAC-based system is given
in Figure 7.

Besides estimating stiffness, the measured human position
is also utilized to determine the human coordinate frame,
in which we can define the admittance-type dynamics
of the mobile robot. In the next section, we discuss
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necessary for the the admittance control, the mobile robot
is also equipped with four LRFs (Hokuyo UBG-04LX-F01),
with two upper and two lower LRFs monitoring the chest
and the two ankles of the human user, respectively. In our
earlier work, we had implemented two LRFs to measure
both the chest and the ankles (see Figure 2). However, in
the current robotic system shown in Figure 1, we use two
pairs of LRFs to improve the quality of measurements:

• For measuring the chest, the paired LRFs have
significantly larger coverage than the single LRF (see
Figure 3).

• A single LRF can measure both ankles when the human
user is performing simple tasks (e.g., maintaining a
static posture as in Figure 2). However, when the tasks
are complicated (e.g., when human is rotating around
the vertical axis, or when the second to fifth sub-tasks
in Figure 13 are being performed), the crossings of the
left and right ankles might occur (as shown in Figure 4),
leading to occlusion problems (see Figure 5(a)). In this
case, the positions of two ankles cannot be measured
by a single LRF. Therefore, we implement a pair of
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LRFs to overcome this occlusion problem, as shown in
Figure 5(b).

With the two pairs of LRFs, we can obtain range images of
the chest and the two ankles (shown in Figure 6). Using
the range data, positions of the chest and the ankles are
calculated following the steps listed below:

1. The chest and the ankles appeared in the range
image are considered as an ellipse and two circles,
respectively. At the beginning of each pHRI, the human
user is required to stand near the robot for a few
seconds, until the geometric parameters (i.e., lengths of
the major and minor axes of the ellipse, and the radius
of the circles) are extracted.

2. Given a specific range image obtained during the pHRI,
we first remove the spurious range image data that are
significantly detached from the chest/ankle patterns.

3. Using the ellipse and circle parameters obtained in step
1, the chest center and its orientation are calculated by
the ellipse fitting, and the ankle centers are obtained by
circle fittings.

The calculated chest/ankle positions in a range image is
shown in Figure 6. Using the calculated human-chest
position, a stiffness estimator is introduced (Figure 7).
The estimated stiffness is used to adjust the parameters
of the admittance controller, whose output (the desired
robot trajectory) is tracked by a low-level PD controller.
The block diagram of the SDVAC-based system is given
in Figure 7.

Besides estimating stiffness, the measured human position
is also utilized to determine the human coordinate frame,
in which we can define the admittance-type dynamics
of the mobile robot. In the next section, we discuss
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necessary for the the admittance control, the mobile robot
is also equipped with four LRFs (Hokuyo UBG-04LX-F01),
with two upper and two lower LRFs monitoring the chest
and the two ankles of the human user, respectively. In our
earlier work, we had implemented two LRFs to measure
both the chest and the ankles (see Figure 2). However, in
the current robotic system shown in Figure 1, we use two
pairs of LRFs to improve the quality of measurements:

• For measuring the chest, the paired LRFs have
significantly larger coverage than the single LRF (see
Figure 3).

• A single LRF can measure both ankles when the human
user is performing simple tasks (e.g., maintaining a
static posture as in Figure 2). However, when the tasks
are complicated (e.g., when human is rotating around
the vertical axis, or when the second to fifth sub-tasks
in Figure 13 are being performed), the crossings of the
left and right ankles might occur (as shown in Figure 4),
leading to occlusion problems (see Figure 5(a)). In this
case, the positions of two ankles cannot be measured
by a single LRF. Therefore, we implement a pair of
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With the two pairs of LRFs, we can obtain range images of
the chest and the two ankles (shown in Figure 6). Using
the range data, positions of the chest and the ankles are
calculated following the steps listed below:

1. The chest and the ankles appeared in the range
image are considered as an ellipse and two circles,
respectively. At the beginning of each pHRI, the human
user is required to stand near the robot for a few
seconds, until the geometric parameters (i.e., lengths of
the major and minor axes of the ellipse, and the radius
of the circles) are extracted.

2. Given a specific range image obtained during the pHRI,
we first remove the spurious range image data that are
significantly detached from the chest/ankle patterns.

3. Using the ellipse and circle parameters obtained in step
1, the chest center and its orientation are calculated by
the ellipse fitting, and the ankle centers are obtained by
circle fittings.

The calculated chest/ankle positions in a range image is
shown in Figure 6. Using the calculated human-chest
position, a stiffness estimator is introduced (Figure 7).
The estimated stiffness is used to adjust the parameters
of the admittance controller, whose output (the desired
robot trajectory) is tracked by a low-level PD controller.
The block diagram of the SDVAC-based system is given
in Figure 7.

Besides estimating stiffness, the measured human position
is also utilized to determine the human coordinate frame,
in which we can define the admittance-type dynamics
of the mobile robot. In the next section, we discuss
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is also equipped with four LRFs (Hokuyo UBG-04LX-F01),
with two upper and two lower LRFs monitoring the chest
and the two ankles of the human user, respectively. In our
earlier work, we had implemented two LRFs to measure
both the chest and the ankles (see Figure 2). However, in
the current robotic system shown in Figure 1, we use two
pairs of LRFs to improve the quality of measurements:

• For measuring the chest, the paired LRFs have
significantly larger coverage than the single LRF (see
Figure 3).

• A single LRF can measure both ankles when the human
user is performing simple tasks (e.g., maintaining a
static posture as in Figure 2). However, when the tasks
are complicated (e.g., when human is rotating around
the vertical axis, or when the second to fifth sub-tasks
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LRFs to overcome this occlusion problem, as shown in
Figure 5(b).

With the two pairs of LRFs, we can obtain range images of
the chest and the two ankles (shown in Figure 6). Using
the range data, positions of the chest and the ankles are
calculated following the steps listed below:

1. The chest and the ankles appeared in the range
image are considered as an ellipse and two circles,
respectively. At the beginning of each pHRI, the human
user is required to stand near the robot for a few
seconds, until the geometric parameters (i.e., lengths of
the major and minor axes of the ellipse, and the radius
of the circles) are extracted.

2. Given a specific range image obtained during the pHRI,
we first remove the spurious range image data that are
significantly detached from the chest/ankle patterns.

3. Using the ellipse and circle parameters obtained in step
1, the chest center and its orientation are calculated by
the ellipse fitting, and the ankle centers are obtained by
circle fittings.

The calculated chest/ankle positions in a range image is
shown in Figure 6. Using the calculated human-chest
position, a stiffness estimator is introduced (Figure 7).
The estimated stiffness is used to adjust the parameters
of the admittance controller, whose output (the desired
robot trajectory) is tracked by a low-level PD controller.
The block diagram of the SDVAC-based system is given
in Figure 7.

Besides estimating stiffness, the measured human position
is also utilized to determine the human coordinate frame,
in which we can define the admittance-type dynamics
of the mobile robot. In the next section, we discuss
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Figure 6. A range image of the chest and the ankles. The black “+” and “×”
markers denote the raw range data from the two lower LRFs. The red “+”
and “×” markers stand for the range data from the two upper LRFs. Both
“o” and “□” mark the calculated positions of the ankles and the chest
respectively.
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With the two pairs of LRFs, we can obtain range images of
the chest and the ankles (shown in Figure 6). Using the
range data, the positions of the chest and the ankles are
calculated following the steps listed below:

1. The chest and the ankles appearing in the range image
are considered as an ellipse and two circles, respec‐
tively. At the beginning of each pHRI, the human user
is required to stand near the robot for a few seconds,
until the geometric parameters (i.e., the lengths of the
major and minor axes of the ellipse, and the radius of
the circles) are extracted.

2. Given a specific range image obtained during the
pHRI, we first remove the spurious range image data
that are significantly detached from the chest/ankle
patterns.

3. Using the ellipse and circle parameters obtained in
Step 1, the chest centre and its orientation are calculat‐
ed by ellipse fitting while the ankle centres are
obtained by circle fittings.

The calculated chest/ankle positions in a range image are
shown in Figure 6. Using the calculated human-chest
position, a stiffness estimator is introduced (Figure 7). The
estimated stiffness is used to adjust the parameters of the
admittance controller, whose output (the desired robot
trajectory) is tracked by a low-level PD controller. The block
diagram of the SDVAC-based system is given in Figure 7.

Besides estimating stiffness, the measured human position
is also utilized to determine the human coordinate frame
in which we can define the admittance-type dynamics of
the mobile robot. In the next section, we discuss the
implementation of admittance controllers in different
coordinate frames.

3. Admittance Control in Different Coordinate Frames

An admittance controller needs to be defined in a coordi‐
nate frame. In our application, where a human user
physically interacts with a mobile robot on the ground, it is
natural to consider three candidate frames: the global frame
Σg  (fixed to the ground), the robot frame Σr  and the human
frame Σh . Figure 8 shows a top-view of the three frames.
For ease of modelling and without loss of generality, the
origin of the human frame is defined as a point in front of
the human user so that the robot is at the desired pose when
Σr  and Σh  are aligned.

Robot

Human

r h

g

x
y

r
r

xg

yg xh

yh

Figure 8. Top-view showing the ground, the robot and the human frames

Both the human and the robot are assumed to have three
degrees of freedom (DOF). These are two-DOF translation‐
al motion along the horizontal ground and one-DOF
rotation around the vertical axis. For convenience, we name
them as the x / y -dimensions and the θ -dimension,
respectively.

The admittance control law of the robot is given by

( )1= ,- -p M f Cp&& & (1)

where p = x,y,θ T  is the robot pose. M  and C  are ℝ3×3 virtual
mass and viscosity matrices of the admittance controller,
respectively. f = f x, f y, f θ

T  is the force/torque vector
acting on the robot.

The admittance-type dynamics defined in (1) do not
correspond to any coordinate frame. In the next subsection,
we show how different selections of coordinate frames can
lead to different admittance-type dynamics in pHRI.

3.1 Admittance Control in the Global Frame

The admittance control law in the global frame is

( )1= ,g g g
r g r g r

- -p M f C p&& & (2)

where pr
g  is the robot pose in the global frame (the subscript

“r” indicates the robot and the superscript “g” indicates the
global frame). f r

g  is the force/torque vector acting on the
robot. M g and Cg  are the virtual mass and viscosity
matrices.
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Figure 7. Block diagram of the proposed system based on SDVAC
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If the human and the robot are separated, (2) is a simple
linear system. However, nonlinearity arises when the
human and the robot are physically coupled via the
human’s arms. For simplicity, we approximate this arm
connection with a stiffness matrix and ignore the effect of
viscosity2. With the stiffness matrix, the interaction force is
modelled by

= ,r r
r r hf K p (3)

where f r
r , ph

r and Kr  are the force/torque, the human pose
and the stiffness matrix defined in the robot frame, respec‐
tively. Theoretically, Kr  can be defined in any frames, but
it is more convenient to define Kr  in the robot or human
frame, and thus Kr  is only affected by the human arm
characteristics. In contrast, if Kr  is defined in the global
frame, then Kr  will depend on the orientation of the robot.
This orientation-dependency can significantly complicate
the system and is explained in (6).

The human pose is transformed to the global frame by

= ,g g gr
h r h r+p R p p (4)

where pr
g  is the robot pose in the global frame, and Rr

g is a
ℝ3×3 rotation matrix (the rotation angle θr

g  is the third
component of pr

g) from the robot frame to the global frame.
Rr

g  has its third row as 0,0,1  and the third column as
0,0,1 T .

Similarly, the transformation from f r
r  to f r

g  is

= .g g r
r r rf R f (5)

From (2), (3), (4) and (5), the system dynamics in the global
frame are

3 3 3 3
1 1

3 3
1

=
( )

,
( )

g g
r r

gg g
g r g gr r

g
g h

g r

q

q

´ ´
- -

´
-

é ù é ùé ù
ê ú ê úê ú

- -ê ú ê úê úë ûë û ë û
é ù
ê ú+
ê úë û

0 Ip p
M K M Cp p
0

p
M K

&

&& &
(6)

where I3×3 is a three-by-three identity matrix.
K (θr

g)=Rr
gKrRg

r  is a θr
g  -dependent stiffness matrix which

introduces nonlinearity into (6).

Due to the nonlinearity, the stability of (6) cannot be
examined by the Routh–Hurwitz criterion (as in [35]).
Instead, a Lyapunov function (as in [38]) is formulated as a
sufficient condition for stability. Here, we introduce a
Lyapunov function using the mechanical energy of the
human/robot system:

( ) ( ) ( ) ( )1 1, = .
2 2

T Tg g g g g g g
r r r r r r g rV q +p p p K p p M p& & & (7)

We directly give the result of V̇ =dV / dt . Assuming an
autonomous system with the input ph

g =0, and given that
Kr , M g  and Cg  are all symmetric, we have

( ) ( ) ˆ= ,
T Tg g g g g

r g r r r rV q- +p C p p Sp& && & (8)

where Ŝ = R̂r
gKrRg

r + Rr
gKr R̂ g

r  and R̂r
g =d(Rr

g) / dθr
g . If Kr  is

symmetric, Ŝ  is thus skew-symmetric; hence,
θ̇r

g(pr
g)T Ŝ pr

g =0 and V̇ = − ( ṗr
g)TCg ṗr

g . Therefore, the system
is stable given that Kr  and M g  are symmetric and Cg  is
positive definite.

However, although the global-frame admittance control is
stable, it exposes two problems in (6), (7), (8) and (2):

• The first problem is nonlinearity, which is introduced by
transforming Kr  to the global frame, resulting in an
orientation-dependent stiffness matrix K (θr

g). Although
the stability of the nonlinear system (6) has been proved,
if extra dynamics (e.g., a low-pass filter or a PD control‐
ler) are introduced, formulating the Lyapunov function
will become much more challenging.

• The second problem lies in (2), where M g  and Cg  are
defined in the global frame. Suppose that the human and
the robot are rotating together while maintaining a
constant relative pose, then the human user may feel
different admittances depending on θr

g . This orientation
dependency leads to undesired user experiences in
pHRI3

3.2 Admittance Control in the the Robot Frame

The admittance control in the robot frame is

( )1= ,r r r
r r r r r

- -p M f C p&& & (9)

2 On the one hand, the proposed method can also handle the inclusion of arm viscosity, and hence generality is preserved. On the other hand, the viscosity-
free assumption usually leads to conservative controller designs [26], and hence stability is also preserved.

3 One possible solution to this problem is to adjust M g and Cg according to θr
g, and thus the human user can feel the same admittance for all θr

g. However,
this method needs the measurement of θr

g. Since odometry is prone to accumulative errors, it is necessary to refer to some external information to determine
the orientation of the robot in the global frame. However, the need for external information introduces additional restrictions on the pHRI. For example, θr

g

could be measured by a motion capture system, an on-board camera, or a magnetometer; however, they would require the robot to be used in a motion capture
room, in an environment with some visual features or in a non-distorted magnetic field.

5Hongbo Wang, Federico Patota, Gabriele Buondonno, Markus Haendl, Alessandro De Luca and Kazuhiro Kosuge:
Stability and Variable Admittance Control in the Physical Interaction with a Mobile Robot



where ṗr
r  and p̈r

r  are the robot velocity and acceleration in
the robot frame at a specific instant.

By taking the time-derivative of (4), and using the facts that
θ
̣
r
g =θ

̣
r
r  and ṗr

g =Rr
g ṗr

r , we have

ˆ= ,gr r r r r
h r h r g hq- - +p Hp p R p&& & & (10)

where Ĥ  is a skew-symmetric matrix with Ĥ (1,2) (the
subscripts denote the row and column indices) being -1,
Ĥ (2,1) =1, and all the other entries in Ĥ  are 0.

From (9), (10) and (3), the system dynamics are given by

1 1

3 3

3 3
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Compared with the global  frame admittance control  in
(6),  the robot frame admittance control in (11) does not
have  the  orientation-dependency  problem.  In  addition,
(11)  contains  only  one  nonlinear  component  (θ

̣
r
r)  and

looks simpler than (6).  However,  formulating a Lyapu‐
nov function for (11) is actually much more challenging
(e.g.,  the dissipative-energy condition used in (8) is not
preserved  here).  The  authors  are  still  trying  to  formu‐
late a Lyapunov function for (11).  Moreover,  we might
also  expect  that,  if  extra  filter/controller  dynamics  are
introduced, the stability analysis will become even more
non-trivial.

3.3 Admittance Control in the Human Frame

The admittance control in the human frame is

( )1= .h h h
r h r h r

- -p M f C p&& & (12)

The force/torque defined in the human frame is

= .h h
r h r-f K p (13)

With (12) and (13), the system dynamics in the human
frame are

3 3 3 3
1 1= .

h h
r r
h h

h h h hr r

´ ´
- -

é ù é ùé ù
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- -ê ú ê úê úë ûë û ë û

0 Ip p
M K M Cp p

&

&& &
(14)

Since (14) is linear, its stability can be tested with the Routh–
Hurwitz criterion. Instead of directly checking the ℝ6×6 state
matrix, we use the determinant property of block matrices,
leading to the following characteristic equation,

( )2 1 1det = 0,h h h hl l - -+ +I M C M K (15)

where λ is the eigenvalue of the state matrix and det(⋅ )
denotes the determinant of a given matrix.

Besides the Routh–Hurwitz test, we can also use a similar
Lyapunov function as in (7). By assuming that Kh , Mh  and
Ch  are positive-definite, we obtain V̇ = − ( ṗr

h )TCh ṗr
h  and the

system stability is proved.

Besides the linear dynamics,  another use of  the human
frame admittance control  is  to  decouple  the  three-DOF
robot  dynamics  in  the  human  frame.  If  we  select  the
virtual  mass Mh  and the virtual  viscosity Ch  as  diago‐
nal and we assume that the stiffness Kh  can be approxi‐
mated by a diagonal matrix4 as in [19], then the dynamics
in (14) can be decoupled. This decoupling largely reduces
the system complexity and enables us to obtain a stability
criterion.  In  the  next  section,  we  derive  the  stability
criterion for the human frame admittance control.

4. Stability of the Human Frame Admittance Control

The dynamics in the three dimensions can be decoupled;
therefore, without loss of generality, we consider the robot
dynamics in the x -dimension,

( )1= ,x x xx m k x c x- - -&& & (16)

where kx, mx and cx are the first diagonal entries in Kh , Mh

and Ch , respectively. The above system is stable if kx, mx and
cx are all positive.

However, although the admittance controller itself is
stable, when it is combined with other components,
instabilities may arise. For example, Duchaine studied the
effect of a low-pass-filter [26] in a haptic device with slight
inertia and friction. In contrast, our system is a human-size
mobile robot which has significant inertia and is subject to
significant ground friction. Therefore, a PD controller is
used for reference trajectory tracking. Besides the PD

4 In the diagonal matrix approximation of Kh ,  as the principal axes of the ellipsoid-shaped stiffness is restricted so as to be aligned with the axes of
the  defined coordinate  frame,  the  accuracy  of  the  stiffness  estimations  is  reduced [27].  In  this  paper,  to  simplify  the  stability  analysis,  we  use  the
assumption in [19], while the consequence of the diagonal matrix approximation on the pHRI stability is to be examined in experiments.
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controller, another factor in our system is the relatively long
sampling period (28ms) of the LRF used for sensing the
human. This discretization also influences stability.
Therefore, in this section, we study the stability criterion
which takes the discretization and the PD controller into
account.

At moment k , let the robot state be x(k )= x(k ),ẋ(k ) T . The
admittance controller generates a desired acceleration ẍd

using (16). The desired robot state at moment k + 1 is:

21
( 1) = ( ) ,

0 1
s s

d d
s

t tk k x
t
é ùé ù

+ + ê úê ú
ê úë û ë û

x x && (17)

where ts is the sampling period. With the current state x(k )
and the desired state xd (k + 1), the PD controller generates
an actuation force:

( )= ( 1) ( ) ,x p D d A dk k k k k xt é ù + - +ë û x x && (18)

where kP , kD and kA are controller gains. Due to the discre‐
tization, the actuation force τx is held (by the ZOH, i.e., zero-
order hold) until moment k + 1 and the robot is driven to a
new state x(k + 1). We approximate the mechanical admit‐
tance of the robot with a first-order system:
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where mR and dR are the physical mass and viscosity,
respectively. The discretized system dynamics are

( )( 1) = ( ),d dk k+ +x A B L x (20)

where Ad  and Bd  are the discretized forms of Ac and Bc,
respectively. L  is a ℝ1×2 row vector with
L (1,1) =mx

−1kx(−kPts
2−kDts −kA) and

L (1,2) =mx
−1cx(−kPts

2−kDts −kA) + kPts.

System (20) is stable if the two eigenvalues of Ad + BdL  are
both inside the unit circle. Since Ad  and Bd  are assumed to
be given by identification, while kP , kD, kA and ts are all
known, we can derive an analytic stability condition using
the Jury stability test. For example, if mR =kA =70, dR =40,
kP =1600, kD =880 and ts =0.028, the stability criterion is given
by cx >0.05mx + 0.01kx.

5. Stiffness-based Variable Admittance Control

5.1 Stiffness Estimation

In the previous section, we showed that, to guarantee the
stability of pHRI, the admittance parameters should satisfy
a stiffness-dependent inequality. Therefore, identifying
arm stiffness is the prerequisite for variable admittance
control [19].

In previous investigations, arm stiffness has been estimated
by performing a linear regression on a fixed number of
samples of the force/position measurements [19]. However,
if the human arm stiffness rapidly changes (which fre‐
quently occurs in pHRI), fitting the fixed-size samples may
temporarily generate poor results. An example is given in
Figure 9. Assume that the number of force/position samples
used in the linear regression is 20. At moment k , the samples
are xk−19, xk−18,... and xk . We also assume that the arm
stiffness rapidly increases between the sampling moments
of xk−5 and xk−4. The 20 samples are shown in Figure 9(a).
Because of the rapid stiffness change, the 20 samples
diverge into two groups. Consequently, performing a
linear regression on all 20 samples leads to an incorrect
fitting result, which is shown in Figure 9(a).

4. Stability of the Human-frame Admittance Control

The dynamics in the three dimensions can be decoupled;
therefore, without the loss of generality, we consider the
robot dynamics in the x-dimension:

ẍ = m−1
x (−kxx− cx ẋ), (16)

where kx, mx, cx are the first diagonal entries in Kh, Mh,
and Ch, respectively. The above system is stable if kx, mx,
cx are all positive.

However, although the admittance controller itself is
stable, when it is combined with other components,
instabilities may arise. For example, Duchaine studied the
effect of a low-pass-filter [26] in a haptic device with small
inertia and friction. In contrast, our system is a human-size
mobile robot which has large inertia and is subject to large
ground friction. Therefore, a PD controller is used for
reference-trajectory tracking. Besides the PD controller,
another factor in our system is the relatively long sampling
period (28 ms) of the LRF used for sensing human. This
discretization also influences stability. Therefore, in this
section we study the stability criterion which takes the
discretization and the PD controller into account.

At moment k, let the robot state be x(k) = [x(k), ẋ(k)]T .
The admittance controller generates a desired acceleration
ẍd using (16). The desired robot state at moment k + 1 is:

xd(k + 1) =
[

1 ts
0 1

]
x(k) +

[
t2
s

ts

]
ẍd, (17)

where ts is the sampling period. With the current state
x(k) and the desired state xd(k + 1), the PD controller
generates an actuation force:

τx =
[
kP kD

]
(xd(k + 1)− x(k)) + kA ẍd, (18)

where kP, kD, and kA are controller gains. Due to
discretization, the actuation force τx is hold (ZOH) until
moment k + 1, and the robot is driven to a new state
x(k + 1). We approximate the mechanical admittance of
the robot with a first-order system:

ẍ = Acx+Bcτx

Ac =

[
0 1
0 −m−1

R dR

]
Bc = [0,−m−1

R ]T , (19)

where mR and dR are the physical mass and viscosity,
respectively. The discretized system dynamics are

x(k + 1) = (Ad +BdL)x(k), (20)

where Ad and Bd are discretized form of Ac and Bc,
respectively. L is an R1×2 row vector with L(1,1) =

m−1
x kx(−kPt2

s − kDts − kA), and L(1,2) = m−1
x cx(−kPt2

s −
kDts − kA) + kPts.

System (20) is stable if the two eigenvalues of Ad +BdL
are both inside the unit circle. As Ad, Bd are assumed to
be given by identification, while kP, kD, kA, and ts are all
known, we can derive an analytic stability condition by
using Jury stability test. For example, if mR = kA = 70,
dR = 40, kP = 1600, kD = 880, and ts = 0.028, the stability
criterion is given by cx > 0.05mx + 0.01kx.
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Figure 9. When the stiffness changes rapidly, the proposed
method gives a better fitting result. In (a), the “+” markers denote
the sampled data. Segments with the round and cross markers
show fitting results of the original method and the proposed
method, respectively. In (b), the thin, plain curve is the true
stiffness. The “+”-marked and the thick curves show results of
the original method and the proposed method, respectively.

5. Stiffness-Based Variable Admittance Control

5.1. Stiffness Estimation

In the previous section, we showed that to guarantee the
stability of pHRI, the admittance parameters should satisfy
a stiffness-dependent inequality. Therefore, identifying the
arm stiffness is the prerequisite for variable admittance
control [19].

In previous investigations, the arm stiffness was estimated
by performing a linear regression on a fixed number
of samples of the force/position measurements [19].
However, if the human-arm stiffness rapidly changes
(which frequently occurs in pHRI), fitting the fixed-size
samples may temporarily generate poor results. An
example is given in Figure 9. Assume the number of
force/position samples used in the linear regression is 20.
At moment k, the samples are xk−19, xk−18, . . . , and xk.
We also assume that the arm stiffness rapidly increased
between the sampling moments of xk−5 and xk−4. The 20
samples are shown in Figure 9(a). Because of the rapid
stiffness change, the 20 samples diverge into two groups.
Consequently, performing a linear regression on all the 20
samples leads to an incorrect fitting result, which is shown
in Figure 9(a).

The poor fitting result, which is caused by rapid stiffness
changes, can be solved by using samples of a variable
size: Instead of fitting a fixed number of samples, we can
perform linear regressions on multiple possible sample
sizes, until the optimal fit is found. To determine
which fitting result is optimal, we can use the correlation
coefficients as the index of optimality. The proposed
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Figure 9. When the stiffness changes rapidly, the proposed method gives a
better fitting result. In (a), the “+” markers denote the sampled data.
Segments with the circular and crossed markers show the fitting results of
the original method and the proposed method respectively. In (b), the thin,
plain curve is the true stiffness. The “+” markers and the thick curves show
the results of the original method and the proposed method respectively.

The poor fitting result, which is caused by rapid stiffness
changes, can be solved by using samples of a variable size:
Instead of fitting a fixed number of samples, we can
perform linear regressions on multiple possible sample
sizes until the optimal fit is found. To determine which
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fitting result is optimal, we can use the correlation coeffi‐
cients as the index of optimality. The proposed estimation
method is given in Algorithm 1. Results from the original
and the proposed stiffness-estimation methods are com‐
pared in Figure 9(b). According to the comparison, we can
see that the proposed method performs better under a rapid
stiffness change.

Dimensions mR dR kP kD kA m
x 56 112 698 384 0.34 15
y 56 112 698 384 0.34 15
θ 15 42 349 192 0.19 1

Table 1. Parameters used in the SDVAC design and simulations.
mR and dR were identified in a preliminary test using the step
response of the robot to motor torque inputs.

estimation method is given in Algorithm 1. Results

Algorithm 1 The proposed stiffness estimation method

1: procedure STIFF_EST(xk−ns+1, . . . , xk, fk−ns+1, . . . , fk,
nm) . ns: sample size; nm: minimum sample size

2: k∗ ← 0 . Initialize values
3: r∗ ← 0
4: for i = nm − 1 . . . ns − 1 do . Vary sample size
5: [k, r] ← LinearRegression(xk−i, . . . , xk,

fk−i, . . . , fk) . Standard linear regression method
6: if r > r∗ then
7: r∗ ← r . Find the best fit
8: k∗ ← k
9: end if

10: end for
11: if r∗ < rthreshold then . If the best fit is still poor
12: k∗ ← NaN . Set k∗ with “not a number”
13: end if
14: return k∗

15: end procedure

from the original and the proposed stiffness-estimation
methods are compared in Figure 9(b)). According to the
comparison, we see that the proposed method performs
better under a rapid stiffness change.

5.2. The Stiffness-Based Variable Admittance Control

Theoretically, both the virtual mass mx and the virtual
viscosity cx can be varied in SDVAC. But in practice, the
virtual mass mx is usually restricted by other factors: For
example, in our system, the force sensor is installed in the
waist of the robot, and there is an upper-body structure
above the force sensor (see Figure 1). Due to the inertia of
the upper body, mx cannot be arbitrarily small. Otherwise,
the small mx may lead to large robot accelerations, and the
upper body will conversely apply significant inertial forces
on the force sensor, introducing noises or even instabilities.
Because of this constraint, in this paper we keep the virtual
mass constant and only vary the virtual viscosity.

The system parameters are listed in Table 1, with the
sampling period ts = 28 ms. The relationships between
the virtual mass and viscosity are shown in Figure 10.
The values in the contour denote max ‖λ‖2 of the matrix
Ad + BdL in (20), where values greater than 1 indicate
instability. According to Figure 10, for a given contour line,
the stiffness and virtual viscosity has a linear relationship,
this conforms to the result of Section 4. Therefore, we
choose the following linear rules for SDVAC:

cx = 60kx/4500 + 10

cy = 60ky/4500 + 10

cθ = 25kθ/1800 + 5, (21)
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Figure 10. Contours of the pHRI stability with respect to the
human-arm stiffness and the virtual viscosity. The contour values
greater than 1 indicate instability

which is to be experimentally tested in Section 6.2.

5.3. Compensating for Human’s Future Trajectories

Besides SDVAC, the pHRI performance may also be
improved by estimating and compensating for human’s
future trajectories. The existing methods for future
trajectory estimation in [27, 30, 32] cannot be directly
applied to our application, where the human user is
walking with the robot and frequently varying his/her
direction of motion. Consequently, the force information
is often a result of body dynamics rather than a sign of
human intention. Therefore, in the following we propose
and test a new heuristic method.

Empirically, human’s future trajectory is correlated with
his feet positions and velocities. Let q

g
L,qg

S ∈ R2 be
positions of the landing and swinging feet in the global
frame, respectively. q̇

g
S is the swinging foot velocity.

Using the measured ankle information, we implement a
heuristic compensation method, which generates a virtual
compensation force in two situations:

1. The swinging foot has a non-zero velocity q̇
g
S , and

2. q
g
L − q

g
S and q̇

g
S form an acute angle.

The above rules give

f
g
V = a1h (β) β

(
q

g
L − q

g
S

)
+ a2q̇

g
S , (22)

where f
g
V is the virtual compensation force in the global

frame. a1, a2 are the user-specified gains (determined in
preliminary trials according to the human users’ subjective
evaluations on the compensation intensity). h(·) is the unit
step (or Heaviside) function, and β is defined as

β = q̇
g
S ·

(
q

g
L − q

g
S

)
/
(
‖q̇g

S‖+ ε
)

, (23)
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5.2 The Stiffness-based Variable Admittance Control

Theoretically, both the virtual mass mx and the virtual
viscosity cx can be varied in SDVAC. However, in practice,
the virtual mass mx is usually restricted by other factors. For
example, in our system, the force sensor is installed in the
waist of the robot and there is an upper-body structure
above the force sensor (see Figure 1). Due to the inertia of
the upper body, mx cannot be arbitrarily small. Otherwise,
the small mx may lead to large robot accelerations and the
upper body will conversely apply significant inertial forces
on the force sensor, introducing noise or even instabilities.
Because of this constraint, in this paper, we keep the virtual
mass constant and only vary the virtual viscosity.

The system parameters are listed in Table 1, with the
sampling period ts =28ms. The relationships between the
virtual mass and viscosity are shown in Figure 10.

Dimensions mR dR kP kD kA m

x 56 112 698 384 0.34 15

y 56 112 698 384 0.34 15

θ 15 42 349 192 0.19 1

Table 1. The parameters used in the SDVAC design and simulations. mR
and dR were identified in a preliminary test using the step response of the
robot to motor torque inputs.

The values in the contour denote max∥λ∥2  of the matrix
Ad + BdL  in (20), where values greater than 1 indicate

instability. According to Figure 10, for a given contour line,
the stiffness and virtual viscosity has a linear relationship.
This conforms to the result of Section 4.

Dimensions mR dR kP kD kA m
x 56 112 698 384 0.34 15
y 56 112 698 384 0.34 15
θ 15 42 349 192 0.19 1

Table 1. Parameters used in the SDVAC design and simulations.
mR and dR were identified in a preliminary test using the step
response of the robot to motor torque inputs.

estimation method is given in Algorithm 1. Results

Algorithm 1 The proposed stiffness estimation method

1: procedure STIFF_EST(xk−ns+1, . . . , xk, fk−ns+1, . . . , fk,
nm) . ns: sample size; nm: minimum sample size

2: k∗ ← 0 . Initialize values
3: r∗ ← 0
4: for i = nm − 1 . . . ns − 1 do . Vary sample size
5: [k, r] ← LinearRegression(xk−i, . . . , xk,

fk−i, . . . , fk) . Standard linear regression method
6: if r > r∗ then
7: r∗ ← r . Find the best fit
8: k∗ ← k
9: end if

10: end for
11: if r∗ < rthreshold then . If the best fit is still poor
12: k∗ ← NaN . Set k∗ with “not a number”
13: end if
14: return k∗

15: end procedure

from the original and the proposed stiffness-estimation
methods are compared in Figure 9(b)). According to the
comparison, we see that the proposed method performs
better under a rapid stiffness change.

5.2. The Stiffness-Based Variable Admittance Control

Theoretically, both the virtual mass mx and the virtual
viscosity cx can be varied in SDVAC. But in practice, the
virtual mass mx is usually restricted by other factors: For
example, in our system, the force sensor is installed in the
waist of the robot, and there is an upper-body structure
above the force sensor (see Figure 1). Due to the inertia of
the upper body, mx cannot be arbitrarily small. Otherwise,
the small mx may lead to large robot accelerations, and the
upper body will conversely apply significant inertial forces
on the force sensor, introducing noises or even instabilities.
Because of this constraint, in this paper we keep the virtual
mass constant and only vary the virtual viscosity.

The system parameters are listed in Table 1, with the
sampling period ts = 28 ms. The relationships between
the virtual mass and viscosity are shown in Figure 10.
The values in the contour denote max ‖λ‖2 of the matrix
Ad + BdL in (20), where values greater than 1 indicate
instability. According to Figure 10, for a given contour line,
the stiffness and virtual viscosity has a linear relationship,
this conforms to the result of Section 4. Therefore, we
choose the following linear rules for SDVAC:

cx = 60kx/4500 + 10

cy = 60ky/4500 + 10

cθ = 25kθ/1800 + 5, (21)
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Figure 10. Contours of the pHRI stability with respect to the
human-arm stiffness and the virtual viscosity. The contour values
greater than 1 indicate instability

which is to be experimentally tested in Section 6.2.

5.3. Compensating for Human’s Future Trajectories

Besides SDVAC, the pHRI performance may also be
improved by estimating and compensating for human’s
future trajectories. The existing methods for future
trajectory estimation in [27, 30, 32] cannot be directly
applied to our application, where the human user is
walking with the robot and frequently varying his/her
direction of motion. Consequently, the force information
is often a result of body dynamics rather than a sign of
human intention. Therefore, in the following we propose
and test a new heuristic method.

Empirically, human’s future trajectory is correlated with
his feet positions and velocities. Let q

g
L,qg

S ∈ R2 be
positions of the landing and swinging feet in the global
frame, respectively. q̇

g
S is the swinging foot velocity.

Using the measured ankle information, we implement a
heuristic compensation method, which generates a virtual
compensation force in two situations:

1. The swinging foot has a non-zero velocity q̇
g
S , and

2. q
g
L − q

g
S and q̇

g
S form an acute angle.

The above rules give

f
g
V = a1h (β) β

(
q

g
L − q

g
S

)
+ a2q̇

g
S , (22)

where f
g
V is the virtual compensation force in the global

frame. a1, a2 are the user-specified gains (determined in
preliminary trials according to the human users’ subjective
evaluations on the compensation intensity). h(·) is the unit
step (or Heaviside) function, and β is defined as

β = q̇
g
S ·

(
q

g
L − q

g
S

)
/
(
‖q̇g

S‖+ ε
)

, (23)
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Figure 10. Contours of the pHRI stability with respect to human arm stiffness
and virtual viscosity. The contour values greater than 1 indicate instability.

Therefore, we choose the following linear rules for SDVAC:

= 60 / 4500 10
= 60 / 4500 10
= 25 / 1800 5,

x x

y y

c k
c k
c kq q

+

+

+
(21)

which is to be experimentally tested in Section 6.2.

5.3 Compensating for the Human’s Future Trajectories

Besides SDVAC, the pHRI performance may also be
improved by estimating and compensating for the human’s
future trajectories. The existing methods for future trajec‐
tory estimation in [27, 30, 32] cannot be directly applied to
our application, where the human user walks with the
robot and frequently varies his/her direction of motion.
Consequently, the force information is often a result of
body dynamics rather than a sign of human intention.
Therefore, in the following, we propose and test a new
heuristic method.

Empirically, a human’s future trajectory is correlated with
his/her feet positions and velocities. Let qL

g ,qS
g∈ℝ2 be the

positions of the landing and swinging feet in the global
frame, respectively. q̇S

g  is the swinging foot velocity. Using
the measured ankle information, we implement a heuristic
compensation method which generates a virtual compen‐
sation force in two situations:
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1. The swinging foot has a non-zero velocity q̇S
g , and

2. qL
g −qS

g  and q̇S
g  form an acute angle.

The above rules give

( ) ( )1 2= ,g g g g
V L S Sa h ab b - +f q q q& (22)

where f V
g  is the virtual compensation force in the global

frame. a1 and a2 are the user-specified gains (determined in
preliminary trials according to the human user’s subjective
evaluations of the compensation intensity). h (⋅ ) is the unit
step (or Heaviside) function, and β is defined as

( ) ( )= / ,g g g g
S L S Sb × - +q q q q& & ò (23)

where є >0 is a small value used for avoiding singularity.
f V

g  will later be added as a virtual compensation force to
the input of the admittance controller. Note that the
proposed compensation method does not work in the θ -
dimension, as the human’s feet trajectory can hardly be
used for predicting future rotations.

6. Simulations and Experiments

6.1 Simulations

In the first simulation, we assumed the human user is static
with ph

g = 0.1,0.2,0.3 T . The stiffness matrix was
Kh =diag(4500,4500,1800). The responses of the robot using
three admittance controllers were simulated with the
parameters listed in Table 1 and the sampling period
ts =28ms. Controller 1 had constant Ch =diag(70,70,30),
Controller 2 had constant Ch =diag(10,10,5), and Controller
3 was SDVAC as in (21). The simulation results in the θ -
dimension are given in Figure 11.
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Figure 11. Responses of the robot in the θ-dimension. The
thin curve is the response of controller 2, and the thick curves
(overlapped) are responses of controller 1 and 3.

where ε > 0 is a small value used for avoiding singularity.
f

g
V will later be added as a virtual compensation force

to the input of the admittance controller. Note that the
proposed compensation method does not work in the
θ-dimension, as human’s feet trajectory can hardly be used
for predicting future rotations.

6. Simulations and Experiments

6.1. Simulations

In the first simulation, we assumed the human user is
static with p

g
h = [0.1, 0.2, 0.3]T . The stiffness matrix was

Kh = diag(4500, 4500, 1800). Responses of the robot
using three admittance controllers were simulated with the
parameters listed in Table 1 and the sampling period ts =
28 ms. Controller 1 had constant Ch = diag(70, 70, 30),
controller 2 had constant Ch = diag(10, 10, 5), and
controller 3 was SDVAC as in (21). Simulation results
in the θ-dimension are given in Figure 11. As predicted
by Figure 10(b), controller 2 exhibited marginally stable
behavior. In contrast, controller 3 (SDVAC) had similar
stable behavior as controller 1. Therefore, the use of
SDVAC in stabilizing pHRI is supported and controller 2
cannot be used under high human-arm stiffness.

In the second simulation, the orientation of human was
set to follow a sinusoidal trajectory with period of 5 s
and amplitude of π/2 (Figure 12(a)). The stiffness of
human arm was assumed to vary randomly between
0–1800 Nm/rad, and the standard deviation of the random
changes was 100 Nm/rad. Note that this random-walk
stiffness was only used to qualitatively demonstrate the
resultant pHRI of the admittance control, which is to
be experimentally tested in the next subsection. The
simulation results in the θ-dimension are shown in
Figure 12. We can see the pHRI is stable and the torque has
been significantly reduced, suggesting the enhancement of
pHRI performance by using the SDVAC.

6.2. Experiments

In experiments, we evaluated the pHRI performances of
the following controllers:

1. A constant admittance controller (CAC) with Ch =
diag(70, 70, 30);

2. SDVAC with Ch varying according to (21);

3. (SDVAC-C) SDVAC with the compensation method
given in (22).
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Figure 12. Simulation results in the θ-dimension. In (a), the
black curve represents the human trajectory, the blue curve with
“+” markers is the robot trajectory using controller 1, and the red
curve with “o” markers is the robot trajectory using controller 3.
In (b), the blue curve with “+” markers is the interaction torque
corresponding to controller 1, the red curve with “o” markers
corresponds to controller 3.
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Figure 13. Procedure of the designed pHRI task; the three round
dots in the bottom of each subfigure denote the start, middle, and
end markers attached to the floor. At each step, the human user is
required to align the robot with a certain floor marker.

The pHRI experiments were performed in an indoor
environment with no obstacle in the experiment space.
The robot used in the experiments was introduced in
Section 2. To evaluate the performances of the three
controllers, we designed a pHRI task containing the
following steps:

1. Three markers were attached to the floor (see
Figure 13). In step 1, the human moves from the start
marker to the end marker.

2. Turning 90° in the clockwise direction;

3. Moving rightward (seen from the human user) to the
middle marker;

4. Moving leftward to the end marker;

5. Turning 90° in the counter-clockwise direction;

6. Moving backward to the start marker.

The above procedure is illustrated in Figure 13. A skilled
user (who knew the operation of the mobile robot) and
a novice user participated in the experiments. In the
beginning, several preliminary trials were conducted to
familiarize the novice user with the experiment procedure
and the robot. For each user, the pHRI task was performed
for three trials to compare the performances of CAC,
SDVAC, and SDVAC-C.
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Figure 11. Responses of the robot in the θ -dimension. The thin curve is the
response of Controller 2 and the thick curves (overlapped) are the responses
of Controllers 1 and 3.

As predicted by Figure 10(b), Controller 2 exhibited
marginally stable behaviour. In contrast, Controller 3
(SDVAC) exhibited similar stable behaviour to Controller
1. Therefore, the use of SDVAC in stabilizing pHRI is
supported and Controller 2 cannot be used under signifi‐
cant human arm stiffness.

In the second simulation, the orientation of the human was
set to follow a sinusoidal trajectory with a period of 5s and
an amplitude of π / 2 (Figure 12(a)). The stiffness of the
human arm was assumed to vary randomly between 0 –
1800N m /rad, and the standard deviation of the random
changes was 100N m /rad. Note that this random-walk
stiffness was only used to qualitatively demonstrate the
resultant pHRI of the admittance control (which is to be
experimentally tested in the next subsection). The simula‐
tion results in the θ -dimension are shown in Figure 12.

0 1 2 3
0

0.2

0.4

0.6

Time (s)

R
o

b
o

t 
an

g
lu

la
r 

p
o

si
ti

o
n

 (
ra

d
)

Figure 11. Responses of the robot in the θ-dimension. The
thin curve is the response of controller 2, and the thick curves
(overlapped) are responses of controller 1 and 3.

where ε > 0 is a small value used for avoiding singularity.
f

g
V will later be added as a virtual compensation force

to the input of the admittance controller. Note that the
proposed compensation method does not work in the
θ-dimension, as human’s feet trajectory can hardly be used
for predicting future rotations.

6. Simulations and Experiments

6.1. Simulations

In the first simulation, we assumed the human user is
static with p

g
h = [0.1, 0.2, 0.3]T . The stiffness matrix was

Kh = diag(4500, 4500, 1800). Responses of the robot
using three admittance controllers were simulated with the
parameters listed in Table 1 and the sampling period ts =
28 ms. Controller 1 had constant Ch = diag(70, 70, 30),
controller 2 had constant Ch = diag(10, 10, 5), and
controller 3 was SDVAC as in (21). Simulation results
in the θ-dimension are given in Figure 11. As predicted
by Figure 10(b), controller 2 exhibited marginally stable
behavior. In contrast, controller 3 (SDVAC) had similar
stable behavior as controller 1. Therefore, the use of
SDVAC in stabilizing pHRI is supported and controller 2
cannot be used under high human-arm stiffness.

In the second simulation, the orientation of human was
set to follow a sinusoidal trajectory with period of 5 s
and amplitude of π/2 (Figure 12(a)). The stiffness of
human arm was assumed to vary randomly between
0–1800 Nm/rad, and the standard deviation of the random
changes was 100 Nm/rad. Note that this random-walk
stiffness was only used to qualitatively demonstrate the
resultant pHRI of the admittance control, which is to
be experimentally tested in the next subsection. The
simulation results in the θ-dimension are shown in
Figure 12. We can see the pHRI is stable and the torque has
been significantly reduced, suggesting the enhancement of
pHRI performance by using the SDVAC.

6.2. Experiments

In experiments, we evaluated the pHRI performances of
the following controllers:

1. A constant admittance controller (CAC) with Ch =
diag(70, 70, 30);

2. SDVAC with Ch varying according to (21);

3. (SDVAC-C) SDVAC with the compensation method
given in (22).
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Figure 12. Simulation results in the θ-dimension. In (a), the
black curve represents the human trajectory, the blue curve with
“+” markers is the robot trajectory using controller 1, and the red
curve with “o” markers is the robot trajectory using controller 3.
In (b), the blue curve with “+” markers is the interaction torque
corresponding to controller 1, the red curve with “o” markers
corresponds to controller 3.
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Figure 13. Procedure of the designed pHRI task; the three round
dots in the bottom of each subfigure denote the start, middle, and
end markers attached to the floor. At each step, the human user is
required to align the robot with a certain floor marker.

The pHRI experiments were performed in an indoor
environment with no obstacle in the experiment space.
The robot used in the experiments was introduced in
Section 2. To evaluate the performances of the three
controllers, we designed a pHRI task containing the
following steps:

1. Three markers were attached to the floor (see
Figure 13). In step 1, the human moves from the start
marker to the end marker.

2. Turning 90° in the clockwise direction;

3. Moving rightward (seen from the human user) to the
middle marker;

4. Moving leftward to the end marker;

5. Turning 90° in the counter-clockwise direction;

6. Moving backward to the start marker.

The above procedure is illustrated in Figure 13. A skilled
user (who knew the operation of the mobile robot) and
a novice user participated in the experiments. In the
beginning, several preliminary trials were conducted to
familiarize the novice user with the experiment procedure
and the robot. For each user, the pHRI task was performed
for three trials to compare the performances of CAC,
SDVAC, and SDVAC-C.
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Figure 12. Simulation results in the θ -dimension. In (a), the black curve
represents the human trajectory, the blue curve with “+” markers denotes
the robot trajectory using Controller 1, and the red curve with “o” markers
denotes the robot trajectory using Controller 3. In (b), the blue curve with
“+” markers is the interaction torque corresponding to Controller 1 while
the red curve with “o” markers corresponds to controller 3.

We can see that the pHRI is stable and that the torque has
been significantly reduced, suggesting the enhancement of
pHRI performance by using SDVAC.

6.2 Experiments

In the experiments, we evaluated the pHRI performances
of the following controllers:

1. A constant admittance controller (CAC) with
Ch =diag(70,70,30);

2. SDVAC with Ch  varying according to (21);

3. (SDVAC-C) SDVAC with the compensation method
given in (22).

The pHRI experiments were performed in an indoor
environment with no obstacles in the experiment space.
The robot used in the experiments was introduced in
Section 2. To evaluate the performances of the three
controllers, we designed a pHRI task containing the
following steps:

1. Three markers were attached to the floor (see Figure
13). In Step 1, the human moves from the start marker
to the end marker;

2. Turning 90°  in the clockwise direction;

3. Moving rightwards (seen from the human user) to the
middle marker;

4. Moving leftwards to the end marker;
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5. Turning 90°  in the counter-clockwise direction;

6. Moving backwards to the start marker.

0 1 2 3
0

0.2

0.4

0.6

Time (s)

R
o
b
o
t 

an
g
lu

la
r 

p
o
si

ti
o
n
 (

ra
d
)

Figure 11. Responses of the robot in the θ-dimension. The
thin curve is the response of controller 2, and the thick curves
(overlapped) are responses of controller 1 and 3.

where ε > 0 is a small value used for avoiding singularity.
f

g
V will later be added as a virtual compensation force

to the input of the admittance controller. Note that the
proposed compensation method does not work in the
θ-dimension, as human’s feet trajectory can hardly be used
for predicting future rotations.

6. Simulations and Experiments

6.1. Simulations

In the first simulation, we assumed the human user is
static with p

g
h = [0.1, 0.2, 0.3]T . The stiffness matrix was

Kh = diag(4500, 4500, 1800). Responses of the robot
using three admittance controllers were simulated with the
parameters listed in Table 1 and the sampling period ts =
28 ms. Controller 1 had constant Ch = diag(70, 70, 30),
controller 2 had constant Ch = diag(10, 10, 5), and
controller 3 was SDVAC as in (21). Simulation results
in the θ-dimension are given in Figure 11. As predicted
by Figure 10(b), controller 2 exhibited marginally stable
behavior. In contrast, controller 3 (SDVAC) had similar
stable behavior as controller 1. Therefore, the use of
SDVAC in stabilizing pHRI is supported and controller 2
cannot be used under high human-arm stiffness.

In the second simulation, the orientation of human was
set to follow a sinusoidal trajectory with period of 5 s
and amplitude of π/2 (Figure 12(a)). The stiffness of
human arm was assumed to vary randomly between
0–1800 Nm/rad, and the standard deviation of the random
changes was 100 Nm/rad. Note that this random-walk
stiffness was only used to qualitatively demonstrate the
resultant pHRI of the admittance control, which is to
be experimentally tested in the next subsection. The
simulation results in the θ-dimension are shown in
Figure 12. We can see the pHRI is stable and the torque has
been significantly reduced, suggesting the enhancement of
pHRI performance by using the SDVAC.

6.2. Experiments

In experiments, we evaluated the pHRI performances of
the following controllers:

1. A constant admittance controller (CAC) with Ch =
diag(70, 70, 30);

2. SDVAC with Ch varying according to (21);

3. (SDVAC-C) SDVAC with the compensation method
given in (22).
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Figure 12. Simulation results in the θ-dimension. In (a), the
black curve represents the human trajectory, the blue curve with
“+” markers is the robot trajectory using controller 1, and the red
curve with “o” markers is the robot trajectory using controller 3.
In (b), the blue curve with “+” markers is the interaction torque
corresponding to controller 1, the red curve with “o” markers
corresponds to controller 3.
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Figure 13. Procedure of the designed pHRI task; the three round
dots in the bottom of each subfigure denote the start, middle, and
end markers attached to the floor. At each step, the human user is
required to align the robot with a certain floor marker.

The pHRI experiments were performed in an indoor
environment with no obstacle in the experiment space.
The robot used in the experiments was introduced in
Section 2. To evaluate the performances of the three
controllers, we designed a pHRI task containing the
following steps:

1. Three markers were attached to the floor (see
Figure 13). In step 1, the human moves from the start
marker to the end marker.

2. Turning 90° in the clockwise direction;

3. Moving rightward (seen from the human user) to the
middle marker;

4. Moving leftward to the end marker;

5. Turning 90° in the counter-clockwise direction;

6. Moving backward to the start marker.

The above procedure is illustrated in Figure 13. A skilled
user (who knew the operation of the mobile robot) and
a novice user participated in the experiments. In the
beginning, several preliminary trials were conducted to
familiarize the novice user with the experiment procedure
and the robot. For each user, the pHRI task was performed
for three trials to compare the performances of CAC,
SDVAC, and SDVAC-C.
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Figure 13. Procedure for the designed pHRI task—the three round dots at
the bottom of each subfigure denote the start, middle and end markers
attached to the floor. At each step, the human user is required to align the
robot with a certain floor marker.

The above procedure is illustrated in Figure 13. A skilled
user (who knew the operation of the mobile robot) and a
novice user participated in the experiments. In the begin‐
ning, several preliminary trials were conducted to famili‐
arize the novice user with the experimental procedure and
the robot. For each user, the pHRI task was performed for
three trials to compare the performance of CAC, SDVAC
and SDVAC-C.

The experiment results are shown in Figure 14. Comparing
these results in Table 2, we can observe that the force/torque
interaction in the SDVAC and SDVAC-C trials are signifi‐
cantly smaller than the force/torque in the CAC trials. For
example, in the θ -dimension, the maximum torque has

been reduced by more than 50% for both the skilled and the
novice users. The significant force/torque reductions are
also observed in the x and y dimensions. Since SDVAC and
SDVAC-C demand less human effort in pHRI, their task
completion times are also shorter: compared with CAC,
both SDVAC and SDVAC-C correspond to over 32% and
42% time reductions for the skilled and the novice users,
respectively. Moreover, performances of the novice user
are similar to the skilled user in the SDVAC and SDVAC-
C trials, possibly because the simplicity of the admittance
control demands little training on the human’s part.

CAC SDVAC SDVAC-C

Max. force in the x-
dimension (N)

38.3. (37.9) 28.5 (26.1) 23.2 (21.7)

Max. force in the y-
dimension (N)

41.7 (42.1) 21.2 (22.7) 22.1 (21.0)

Max. torque in the θ-
dimension (Nm)

17.7 (17.7) 7.0 (6.8) 6.4 (6.7)

Task completion time (s) 23.8 (30.3) 16.1 (17.7) 16.0 (17.6)

Table 2. Comparison of the experimental results using the three listed
controllers. The values inside and outside the parentheses denote the results
of both the novice user and the skilled user, respectively.

We can also observe that SDVAC-C did not outperform
SDVAC. Due to the complexity of human body dynamics
during walking as well as the heuristic nature of SDVAC-
C in (22), it is a challenging task to quantitatively under‐
stand this phenomenon. However, empirically, the human
users reported that SDVAC-C was “too active” and prone
to “overshoot”. An example of overshoot is the peak on the
red curve at about 16s in Figure 14(e). This overshoot
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Figure 14. Results of pHRI performances using CAC, SDVAC, and SDVAC-C. The thin black curves with “+” markers denote the results of
CAC. The thicker red curves stand for the results of SDVAC-C. The thickest blue curves correspond to the results of SDVAC.

The experiment results are shown in Figure 14. Comparing
these results in Table 2, we observe that the interaction
force/torque in the SDVAC and SDVAC-C trials are
significantly smaller than the force/torque in the CAC
trials. For example, in the θ-dimension, the maximum
torque has been reduced by more than 50% for both the
skilled and the novice users. The significant force/torque
reductions are also observed in the x and y dimensions. As
SDVAC and SDVAC-C demand less human effort in pHRI,
their task-completion times are also shorter: Compared
with CAC, both the SDVAC and SDVAC-C correspond
to over 32% and 42% time reductions for the skilled and
novice users, respectively. Moreover, performances of the
novice user are similar to the skilled user in SDVAC and
SDVAC-C trials, possibly because the simplicity of the
admittance control demands little training on the human’s
part.

We also observe that the SDVAC-C did not outperform
the SDVAC. Due to the complexity of human body
dynamics during walking, as well as the heuristic nature
of SDVAC-C in (22), it is challenging to quantitatively
understand this phenomenon. But empirically, the human
users reported that the SDVAC-C was “too active” and
prone to “overshoot”. An example of the overshoot is
the peak on the red curve at about 16 s in Figure 14(e).
This overshoot happened when the human user was in
the transition from moving backward to complete stop
(corresponding to the termination of step 6 in Figure 13).
According to Figure 14(e), we can see that for CAC
and SDVAC, the user spent roughly 5 N to decelerate
the robot. In contrast, for SDVAC-C, to cancel the
effect of ankle-velocity compensation and realize the
robot deceleration, it took the human user approximately
20 N, which causes significant degeneration in the pHRI

performance. Consequently, as the human users had to
resist the overshoots, the advantages gained from the
compensations were canceled.

According to the experiment results, compared with CAC,
the proposed SDVAC method significantly reduced the
interaction force/torque and task-completion time in the
mobile-robot-based pHRI. Moreover, the performance of
SDVAC-C is similar to SDVAC.

7. Discussion

7.1. Practicability of Robot-frame Admittance Control

In practice, the robot-frame admittance control
implemented in the physical interaction between
human and mobile robot demonstrates stable behaviors.
However, due to its nonlinear dynamics in (11), its
resultant pHRI stability is difficult to prove or disprove5.
This implies that designing a variable-admittance rule
for such a nonlinear system is of significant difficulty.
Therefore, despite its practical stability, the robot-frame
admittance controller is not analyzed or tested in
simulations and experiments.

7.2. Possible Improvements on the Experiments

The experiments discussed in Section 6.2 involved two
subjects, and the use of SDVAC would receive stronger
support if more subjects could be invited. At the same
time, the fact that small viscosity corresponds to small
interaction force has been well supported and applied in

5 We can observe that the right-hand side of (11) is and odd-ordered
polynomial, which has the similar form as the example system
discussed in [39]. The Lyapunov function for such system might be
non-polynomial and demands non-trivial effort.
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Figure 14. The results of pHRI performances using CAC, SDVAC and SDVAC-C. The thin black curves with the “+” markers denote the results of CAC. The
thicker red curves stand for the results of SDVAC-C. The thickest blue curves correspond to the results of SDVAC.
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happened when the human user was making the transition
from moving backwards to completely stopping (corre‐
sponding to the termination of step 6 in Figure 13). Ac‐
cording to Figure 14(e), we can see that for CAC and
SDVAC, the user spent roughly 5N in order to decelerate
the robot. In contrast, for SDVAC-C, to cancel the effect of
ankle velocity compensation and realize the robot deceler‐
ation, it took the human user approximately 20N, which
causes significant degeneration in pHRI performance.
Consequently, as the human users had to resist any
overshoots, the advantages gained from the compensations
were cancelled.

According to the experimental results, and compared with
CAC, the proposed SDVAC method significantly reduced
the interaction force and task completion time in the mobile
robot-based pHRI. Moreover, the performance of SDVAC-
C is similar to SDVAC.

7. Discussion

7.1 Practicability of Robot Frame Admittance Control

In  practice,  the  robot  frame  admittance  control  imple‐
mented in the physical interaction between a human and
a mobile robot demonstrates stable behaviours. Howev‐
er,  due  to  its  nonlinear  dynamics  in  (11),  its  resultant
pHRI  stability  is  difficult  to  prove  or  disprove5.  This
implies that designing a variable-admittance rule for such
a nonlinear system is of significant difficulty. Therefore,
despite its practical stability, the robot frame admittance
controller is not analysed or tested in the simulations or
experiments.

7.2 Possible Improvements on the Experiments

The experiments discussed in Section 6.2 involved two
subjects, and the use of SDVAC would receive stronger
support if more subjects could be invited. At the same time,
the fact that a low viscosity corresponds to a slight interac‐
tion force has been well-supported and applied in existing
literature [19, 25, 27, 30 – 33, 37]. The viscosity of CAC is
conservatively designed for the worst-case stiffness,
whereas the viscosity of SDVAC is always smaller than or
equal to (in the worst case) the viscosity of CAC. Therefore,
the interaction force corresponding to SDVAC will be
smaller than that of CAC. Figure 15 shows the viscosities
of CAC and SDVAC. We can observe that the SDVAC
viscosity is much smaller than the CAC viscosity for most
of the experiment. Consequently, compared with the pHRI
using CAC, the interaction force corresponding to SDVAC
is significantly reduced. This observation matches the
pHRI result of implementing SDVAC in human/manipu‐
lator interaction in [27, 37].

CAC SDVAC SDVAC-C
Max force in the x-dimension (N) 38.3 (37.9) 28.5 (26.1) 23.2 (21.7)
Max force in the y-dimension (N) 41.7 (42.1) 21.2 (22.7) 22.1 (21.0)

Max torque in the θ-dimension (Nm) 17.7 (17.7) 7.0 (6.8) 6.4 (6.7)
Task-completion time (s) 23.8 (30.3) 16.1 (17.7) 16.0 (17.6)

Table 2. Comparison of the experiment results using the three listed controllers. Values inside and outside the parentheses denote the
results of the novice and skilled users, respectively.
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Figure 15. The viscosity parameters corresponding to the pHRI in
Figure 14(b). The dashed and solid curves denote the viscosities
of the CAC and SDVAC, respectively.

existing literature [19, 25, 27, 30–33, 37]. The viscosity
of CAC is conservatively designed for the worst-case
stiffness, whereas the viscosity of SDVAC is always smaller
than or equal to (in the worst case) the viscosity of
CAC. Therefore, the interaction force corresponding to the
SDVAC will be smaller than that of CAC. Figure 15 shows
the viscosities of the CAC and SDVAC. We can observe
that the SDVAC viscosity is much smaller than the CAC
viscosity at the most time of the experiment. Consequently,
compared with the pHRI using CAC, the interaction force
corresponding to SDVAC is significantly reduced. This
observation matches the pHRI result of implementing the
SDVAC in human–manipulator interaction in [27, 37].

7.3. The Implementation of LRFs in pHRI

The reason for implementing LRFs instead of other
sensors is the close distance (0.06 m–0.6 m) between the
human and the robot. This short distance prevents the
implementation of more commonly used sensors (e.g.,
Kinect) in the pHRI. Moreover, as has been discussed in
Section 2, in order to enlarge the coverage of human-chest
measurement and to prevent ankle occlusions (which
frequently occurs in complicated tasks), we implement
four LRFs in total. In contrast, we had tested using only
two LRFs for detecting the upper body and the ankles
in our earlier work [40, 41], but it turned out that the
detection was only successful for simpler tasks, e.g., when
the human–robot motions were limited in the sagittal
plane [40, 41].

As LRFs are expensive (each LRF costs approximately
1700 USD), the four LRFs implemented in the robot
significantly elevate the cost and prevent the application
of the proposed system outside laboratories. However,
we can expect that new sensors, which can work in close
ranges and can be made inexpensive, may solve this
problem. The focus of this paper is the analysis and design
of variable admittance controllers. But in the near future,
we will substitute the LRFs with new, inexpensive, and
close-range sensors.

8. Conclusions

In this paper, we studied the pHRI between a human user
and a mobile robot. We developed a robotic system which
can measure human’s chest/ankle positions using four
LRFs. The pHRI dynamics using admittance controllers
in the global, robot and human frames were analyzed
and compared. With the LRF measurements, we could
implement human-frame admittance control to remove the
nonlinearity in system dynamics, and derive a stability
criterion considering the effects of the PD controller and
the time discretization. By using an improved stiffness
estimation method along with the derived stability
criterion, a stiffness-based variable admittance controller
was designed. The proposed method for improving
the pHRI performance is supported by simulation and
experiment results.

The present work can be improved in several ways. First,
the Lyapunov function corresponding to the admittance
control in the robot frame is to be found. Besides, the
current ankle-velocity compensation method (SDVAC-C)
was based on heuristics. To improve this method, a
quantitative analysis and more comparison experiments
with existing methods [27, 30, 32] are needed. Moreover,
the current assumption on the diagonal stiffness matrix
and the estimation method can be improved by the
methods in [27]. Finally, although the reduction of
interaction force by using variable admittance control has
been well supported by existing literature, more subjects
should be invited in experiments to test the potential
instability in more complicated tasks (e.g., in a more
dancing-like pHRI with additional DOFs in human’s
shoulders and pelvis). We will develop a new prototype
to experimentally evaluate the performance of SDVAC in
those complicated pHRI tasks [42].
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7.3 The Implementation of LRFs in pHRI

The reason for implementing LRFs instead of other sensors
is the short distance (0.06m–0.6m) between the human and
the robot. This short distance prevents the implementation
of more commonly-used sensors (e.g., Kinect) in the pHRI.
Moreover, as has been discussed in Section 2, in order to
enlarge the coverage of human chest measurement and to
prevent ankle occlusions (which frequently occur during
complicated tasks), we implement four LRFs in total. In
contrast, we performed tests using only two LRFs for
detecting the upper body and the ankles in our earlier work
[40, 41]; however, it turned out that the detection was only
successful for simpler tasks, e.g., when the human/robot
motions were limited in the sagittal plane [40, 41].

Because LRFs are expensive (each LRF costs approximately
1700 USD), the four LRFs implemented in the robot
significantly elevate the cost and prevent the application of
the proposed system outside laboratories. However, we
can expect that new sensors—which can work at close
range and which can be made inexpensive—may solve this
problem. The focus of this paper is on the analysis and
design of variable admittance controllers. However, in the
near future, we will substitute the LRFs with new, inex‐
pensive and close-range sensors.

8. Conclusions

In this paper, we studied the pHRI between a human user
and a mobile robot. We developed a robotic system which
can measure a human’s chest/ankle positions using four
LRFs. The pHRI dynamics using admittance controllers in
the global, robot and human frames were analysed and
compared. With the LRF measurements, we could imple‐
ment human frame admittance control to remove the
nonlinearity in the system dynamics, and derive a stability
criterion considering the effects of the PD controller and
time discretization. By using an improved stiffness estima‐
tion method along with the derived stability criterion, a
stiffness-based variable admittance controller was de‐
signed. The proposed method for improving the pHRI

5 We can observe that the right-hand side of (11) is an odd-ordered polynomial, which has a similar form to that of the example system discussed in

[39]. The Lyapunov function for such a system might be non-polynomial and it demands non-trivial effort.
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performance is supported by simulations and experimental
results.

The present work can be improved in several ways. First,
the Lyapunov function corresponding to the admittance
control in the robot frame is to be found. Besides, the
current ankle velocity compensation method (SDVAC-C)
was based on heuristics. To improve this method, a
quantitative analysis and further comparison experiments
with existing methods [27, 30, 32] are needed. Moreover,
the current assumption as to the diagonal stiffness matrix
and the estimation method can be improved by the
methods in [27]. Finally, although the reduction of the
interaction force using variable admittance control has
been well-supported by the existing literature, more
subjects should be invited in the experiments to test the
potential instability in more complicated tasks (e.g., in
pHRI closer approximating dancing with additional DOFs
in the human’s shoulders and pelvis). We will develop a
new prototype to experimentally evaluate the performance
of SDVAC in such complicated pHRI tasks [42].
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