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Simulation of a quantum many-body system at finite temperatures is crucially important but quite
challenging. Here we present an experimentally feasible quantum algorithm assisted with continuous
variable for simulating quantum systems at finite temperatures. Our algorithm has a time complexity
scaling polynomially with the inverse temperature and the desired accuracy. We demonstrate the quantum
algorithm by simulating a finite temperature phase diagram of the quantum Ising and Kitaev models. It is
found that the important crossover phase diagram of the Kitaev ring can be accurately simulated by a
quantum computer with only a few qubits and thus the algorithm may be implementable on current
quantum processors. We further propose a protocol with superconducting or trapped ion quantum
computers.
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Introduction.—Simulation of quantum many-body sys-
tems has been an incentive for building quantum computers
[1]. Recent advances of scaling up quantum processors
enable us to simulate steady states and dynamics of a
quantum system at zero temperature to a larger size [2–5],
and, remarkably, to make a simulation of quantum phase
transition to be a reality [5,6]. However, simulation of a
quantum many-body system at finite temperatures is even
more challenging as the state in a quantum computer is
usually a pure quantum state, while simulating a quantum
system at finite temperatures requires us to simulate a kind
of mixed states, namely, quantum thermal (Gibbs) states.
The relevance of thermal states is ubiquitous, and its
simulation is not only important for physics itself, such
as understanding high-Tc superconductivity [7], but also
can provide quantum speedup for optimization [8].
Thermal quantum simulation (TQS) requires good con-

trol of both quantum coherence and temperature, which
challenges the current quantum platforms. A quantum
algorithm based on quantum phase estimation may involve
a large number of auxiliary qubits and complicated quan-
tum circuits, which is not suitable for near-term quantum
simulators [9–12]. Recent hybrid quantum-classical varia-
tional algorithms require less quantum resources and are
feasible in implementation [13–18], but should be trained
for each Hamiltonian at every temperature and thus are not
a general solution. Moreover, they wait for a guarantee of
quantum advantages in time complexity.
An alternative way is to use continuous variables

(CV and also called qumode) for encoding and processing

high-density information by exploiting its infinite-dimen-
sional Hilbert space [19,20]. Notably, a hybrid approach of
incorporating both qubits and qumodes has been shown to
have a potential advantage to make the best of both worlds
[21–24]. Moreover, the mainstream platforms of quantum
computers often have naturally existing continuous varia-
bles, such as motional modes of trapped ions [25,26] and
cavity modes of superconducting circuits [27–30], making
a hybrid variable approach physically realizable. This may
enable us to design hybrid-variable quantum algorithms for
TQS with both quantum advantage and feasible physical
implementation.
In this Letter, we present a quantum algorithm for

thermal quantum simulation assisted with an auxiliary
qumode, which has a time complexity scaling polynomially
with the inverse temperature β and the desired accuracy ϵ.
The algorithm converts thermal information, encoded in the
CV resource state parametrized with β, into the temperature
of the quantum system. Moreover, by revealing an equiv-
alence relation of the quantum algorithm, we further
propose adaptive TQS, allowing TQS at varied β with a
proper-chosen resource state, which enables flexibility of
algorithm design in practice. To show the power of adaptive
TQS, we consider thermal states of two typical models, the
quantum Ising model [31] and Kitaev ring [32], in the
quantum critical regime, and demonstrate that our algo-
rithm can accurately determine the crossover temperature.
This indicates an interplay between quantum and thermal
fluctuations, which underlines the quantum criticality at
finite temperatures can be faithfully captured. An intriguing

PHYSICAL REVIEW LETTERS 127, 020502 (2021)

0031-9007=21=127(2)=020502(7) 020502-1 © 2021 American Physical Society

https://orcid.org/0000-0002-4458-8550
https://orcid.org/0000-0002-8913-9847
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.020502&domain=pdf&date_stamp=2021-07-08
https://doi.org/10.1103/PhysRevLett.127.020502
https://doi.org/10.1103/PhysRevLett.127.020502
https://doi.org/10.1103/PhysRevLett.127.020502
https://doi.org/10.1103/PhysRevLett.127.020502


result here is that the important crossover phase diagram
[31] of the Kitaev model with periodic conditions (Kitaev
ring) can be accurately simulated by a quantum computer
with only a few qubits and thus the algorithm may be
implementable on current quantum processors. We also
propose an experimental protocol based on a superconduct-
ing or trapped ion quantum computer. Our work opens a
new avenue for simulating finite temperature quantum
systems by exploiting the power of continuous variables.
Thermal quantum simulation.—Consider a quantum

system described by a Hamiltonian H, which can be
mapped to a quantum computer with N qubits. The
energies and eigenstates of the Hamiltonian governed
by the Schrödinger equation Hjuni ¼ Enjuni (n ¼ 0;
1;…; D − 1, where D ¼ 2N). At a finite temperature
T ¼ 1=β, the system in equilibrium is in a quantum thermal
state ρðβÞ ¼ e−βH=ZðβÞ, where ZðβÞ ¼ Tre−βH is the
partition function. Our goal is to prepare a pure quantum
state jψðβÞi in an enlarger Hilbert space which has the
property ρðβÞ ¼ TrAjψðβÞihψðβÞj, where TrA denotes the
partial trace of some ancillary degrees of freedom
addressed later. One can verify that, partial trace of the
first partite of the thermofield double (TFD) state defined as

jψðβÞi ¼
X

n

e−βEn=2

ffiffiffiffiffiffiffiffiffiffi
ZðβÞp ju�niA ⊗ juniB ð1Þ

is just ρðβÞ. We propose a quantum process as follows,

jψðβÞi ¼
ffiffiffi
C

p
I ⊗ e−βH=2jψð0Þi; ð2Þ

where C is a normalization factor. Here, jψð0Þi ¼
ð1= ffiffiffiffi

D
p ÞPn jniA ⊗ jniB is an infinite temperature TFD

which can be written as a product of N copies of Bell state
(see Supplemental Material for a derivation [33]), and thus
is easy to prepare. The central task is then to con-
struct e−βH=2.
We introduce an auxiliary qumode to represent a

nonunitary e−βH=2 as an integral of unitary operators
[20,39–41], which extends the linear-combination-of-uni-
tary operator to the case of CV [8,39,42–45]. Note that

e−βh=2 ¼
Z

∞

−∞
dpRðβ; pÞe−ihp; Rðβ; pÞ ¼ 2

π

β

β2 þ 4p2

ð3Þ

holds for h ≥ 0. It implies that we shall add a constant to H
to guarantee a nonnegative ground state energy in the
algorithm. Then in the basis fjunig that H is diagonal, one
can verify that

e−βH=2 ¼
Z

∞

−∞
dpRðβ; pÞe−iHp ∝ h0qje−iHp̂jRðβÞi; ð4Þ

where jRðβÞi ¼ ffiffiffiffiffiffi
βπ

p R∞
−∞ dpRðβ; pÞjpip. Here we denote

jpip (jqiq) as basis of continuous variable quadrature p̂ (q̂).
Equation (4) shows a scheme that the nonunitary operator
e−βH=2 can be implemented on a quantum computer,
assisted with an ancillary qumode. The qumode is prepared
at jRðβÞi, evolves jointly with the system by e−iHp̂, and is
finally projected onto j0iq. As the information related to
temperature is encoded in jRðβÞi, we may call it as a
resource state.
Quantum algorithm.—We now present the procedure of

quantum algorithm for preparing thermal quantum simu-
lation. The quantum algorithm is probabilistic since it
postselects the quadrature q̂ to zero. In practice, the
measurement should have a finite precision, which
reduces the accuracy while raises the success rate. We
model this effect by projecting to a squeezing state
j0; si ¼ s−

1
2π−

1
4

R
dpjpipe−p2=2s2 , which squeezes the quad-

rature q̂ by a factor s. The quantum algorithm, as illustrated
in Fig. 1, has three steps: 1. State preparation. Prepare N
copies of Bell state, jψð0Þi ¼ Q

N
i¼1 Bi;iþN , where Bi;iþN ¼

ð1= ffiffiffi
2

p Þðj0i0iþNi þ j1i1iþNiÞ is a Bell state. A qumode is
initialized in a resource state jRðβÞi. The total system is in a
state jΨ0i ¼ jψð0Þi ⊗ jRðβÞi. Therefore, to simulate a
Hamiltonian H which is encoded in N qubits, our scheme
needs 2N qubits and one qumode. 2. Unitary evolution. A
constant is added to H to make positivity of the spectrum.
Then the unitary evolution I ⊗ e−iHp̂ is implemented and it
couples the system with the qumode. The unitary can be
decomposed with the Trotter-Suzuki formula, which will be
discussed later. The state can be written as

jΨ1i ¼
X

n

Z
∞

−∞
dpϕnðβ; pÞju�niA ⊗ juniB ⊗ jpip; ð5Þ

where ϕnðβ; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðβπ=DÞp

Rðβ; pÞe−Enp. 3. Projection.
Projecting the qumode onto a squeezing state j0; si, the
unnormalized final state (discarding the qumode) is

FIG. 1. An illustration of preparing quantum thermal state ρðβÞ
from N copies of Bell states, through coupling the system with a
qumode by unitary evolution e−iHp̂. The qumode is initialed at
the resource state jRðβÞi and is finally projected onto j0iq.
Thermal state ρðβÞ is obtained by discarding (tracing out) the
additional N ancillary qubits.

PHYSICAL REVIEW LETTERS 127, 020502 (2021)

020502-2



jψ̃ðβÞi ¼
X

n

aðEi; β; sÞju�niA ⊗ juniB; ð6Þ

where aðE; β; sÞ ¼ s−
1
2π−

1
4

R
∞
−∞ dpϕnðβ; pÞe−ðp2=2s2Þ. The

success rate is O½ZðβÞ=ðsDÞ�.
Notably, at the limit of s → ∞, aðE; β; sÞ ∝ e−βE=2,

which exactly equals to the quantum thermal state at an
inverse temperature β.
One issue of the quantum algorithm is that the resource

state cannot be produced for free. To solve this problem, we
reveal an equivalent relation of the quantum algorithm,
which says that ρðβÞ can be simulated with different pairs
of resource states and unitary evolutions, namely,

ðRðβ0Þ; e−iHp̂ðβ=β0ÞÞ ↦ ρðβÞ; ð7Þ

where β0 is adjustable. The equivalent relation is a direct
consequence of an invariance under β → aβ andH → H=a
in Eq. (4).
The equivalent relation allows us to use a fixed resource

state to simulate the thermal state at varied β, which we call
as adaptive TQS. From the perspective of quantum resource
theory [46], the equivalent relation may reveal a conversion
between static resource (preparing resource state) and
dynamical resource (constructing unitary e−iHp̂) and their
trade-off for thermal quantum simulation. It enriches the
flexibility and feasibility of algorithmic implementation, as
difficulties of resource state preparation and Hamiltonian
evolution vary on different quantum platforms.
Time complexity.—We give a runtime analysis for a

relative error ϵ in the partition function. As it is not practical
to ignore the cost of preparing resource state (e.g., at
β → 0;∞ limits), we consider adaptive TQS with a
resource state jRðβ0Þi that is easy to prepare. The runtime
then relies on the circuit complexity of constructing the
unitary operator e−iHp̂β=β0 and the success rate.
For a Hamiltonian H ¼ P

M
i¼1 ciHi with local terms, one

can refer to the Trotter-Suzuki formula [47] to decompose
e−iHp̂β=β0 . Typically, it includes terms like evolutions of
σαi p̂, σ

α
i σ

γ
iþ1p̂ (α; γ ¼ x, y, z), which can be viewed as

parity-dependent displacement operator and can be decom-
posed as basic gates of qubits and a hybrid gate eiθσ

xp̂ (see
Supplemental Material [33]). The circuit complexity is
OðM3ϵ−1β2Þ, and may be improved with more advanced
techniques [48–50]. For a precision ϵ, the squeezing
factor should be s ¼ Oðϵ−1

2Þ. Using amplitude amplifica-
tion [51], the success rate becomes Of ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ZðβÞ=ðsDÞ�p g,
and the algorithm should be run repeatedly with
Of ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½D=ZðβÞ�p

ϵ−
1
4g times. In total, the time complexity

is Of ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½D=ZðβÞ�p
M3β2ϵ−

5
4g, which improves polynomially

from methods using quantum phase estimation [10]. In
addition, it is found that the quantum algorithm gives a
bound from below for the partition function (see Ref. [33]).
We emphasize that amplitude amplification is demanding

for quantum resources, while TQS of physical models to be
presented below may be implemented on the current
quantum devices as the procedure of amplitude amplifica-
tion is not involved.
Demonstration with a single qubit.—To warm up, we

simulate the thermal state of a single qubit to highlight
some features of the quantum algorithm. For the numeral
simulation, we develop a classical simulator for hybrid-
variable quantum computing based on the open-source
Qutip [52]. The Hamiltonian is H ¼ gðσx þ cÞ (here the
conditions g > 0 and c ¼ 1 enforce all eigenvalues are non-
negative). After initialing the cavity mode into a resource
state and preparing a Bell state, an unitary e−igðσxþ1Þp̂t (t is
the time of evolution) performs on the cavity mode and the
system qubit, and finally the cavity mode is squeezed and
projected onto zero photon. We use two approaches for
preparing thermal states at β ¼ 1, 2, 3. The first one fixes
t ¼ 1=g and uses resource states jRðβÞi with β ¼ 1, 2, 3,
respectively. The second is adaptive TQS, fixing the
resource state jRðβ ¼ 1Þi and using t ¼ 1, 2, 3, respec-
tively. Because of finite squeezing at the projection, those
simulated thermal states can only approximate the exact
thermal states. We use trace distance to measure the
precision, drðβÞ ¼ 1

2
Trjρ̃ðβÞ − ρðβÞj. In Fig. 2, we can

see that the trace distance decreases rapidly with an
increase of squeezing factor, at the cost of decreasing
success rate, as expected. Using the adaptive TQS, the
increasing of precision can be faster, and the trace distance
can be small even at small s. Moreover, a moderate
truncation of phonon number (e.g., up to 7 even-number
Fock states) can reach a good precision (see Supplemental
Material [33]). The above results indicate that we can use
an adaptive approach with an approximated resource state
for thermal quantum simulation. Remarkably, the one-qubit
system reveals the mechanism of performance of TQS with
truncation for different regimes of temperature, and can be
quite informative for simulating the finite-temperature
quantum many-body systems (see Supplemental Material
[33] for more numerical results, analysis of general
behavior, and a physical picture of the quantum algorithm).
Simulation of the finite-temperature phase diagram.—

We now consider our TQS with two textbook models, the

FIG. 2. Performance of preparing thermal states of the single
qubit with two different approaches: β (β̃) stands for results from
TQS (adaptive TQS).
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Kitaev ring (a spinless p-wave superconductor) [32] and
the quantum Ising model [31]. The Hamiltonian of the
Kitaev ring reads

HK ¼ −J
XL

i¼1

ðc†i ciþ1 þ c†i c
†
iþ1 þ H:c:Þ − μ

XL

i¼1

c†i ci; ð8Þ

where fermionic operators cLþ1 ¼ c1 as we consider the
periodic condition. The model has a topological phase
transition at λK≡μ=2J¼1. Using the Jordan-Wigner transfor-
mation, ci¼

Q
i−1
j¼1σ

z
jσ

−
i , c†i ¼σþi

Q
i−1
j¼1σ

z
j, c†i ci¼1

2
ðσzi−1Þ,

the Hamiltonian of the Kitaev ring can be mapped into a
spin model

HS ¼ −h
XL

i

σzi − J
XL−1

i

σxi σ
x
iþ1 − Jσy1PLσ

y
L þ E0; ð9Þ

where h ¼ −ðμ=2Þ, PL ¼ Q
L−1
i¼2 σzi is a string operator, E0 is

added for assuring a non-negative spectrum (which is
demanded for the quantum algorithm). The spin model HS

becomes the quantum Ising model if σy1PLσ
y
L is replaced by

σxLσ
x
1, and it has a phase transition at λS ≡ h=J ¼ 1. This

differencebetween the Ising andKitaevmodels has a big effect
on the quantum criticality for small sizes, as addressed below.
The finite-temperature phase diagrams of these twomodels in
the infinite lattice size are the same, which have an important
V-shape crossover structure [31] as shown in Fig. 3.
From numeral calculations (see Supplemental Material

for details [33]), it is shown that almost L ≈ 80 qubits are
required for the quantum Ising chain to show well-shaped
crossover temperatures, as seen in Fig 3, and L should be
larger when the system is closer to the QPT point. For the
Kitaev ring, in contrast, the temperature crossovers are very
close in shape for a quite large range even for small L. The
subtle lies in that Kitaev ring always has an energy gap
Δ ¼ 2Jj1 − λKj, while the quantum Ising model will have
low-lying in-gap states when λS < 1, leading to small
crossover temperatures for λS < 1, which is obvious for
L ¼ 10, 20. Thus, we refer to a small-size Kitaev ring for
simulating a finite-temperature phase diagram with quan-
tum computers.
To address the feasibility of physical implementation, we

use the adaptive TQS for simulating thermal states of the

Kitaev ring, using a resource state jRðβ ¼ 4Þi and a
squeezing factor s ¼ 10. The crossover temperature for
each λK is determined by the temperature that maximizes
the magnetic susceptibility χm (corresponding to the
fluctuation of fermion number in the Kitaev ring), which
can be obtained by measuring the magnetization M ¼
ð1=LÞPi TrρðβÞσzi and then calculating the magnetic
susceptibility χm ¼ ½ð∂MÞ=ð∂hÞ� using a finite difference.
The results are plotted in Fig. 4. For L ¼ 2, we compare
results of different truncation for the resource state (Nc is
the number of Fock basis of even-number photons), and it
can be seen that the V-shape crossover temperature
approaches the exact one when increasing Nc. We also
simulate L ¼ 2, 3, 4, 5, which demonstrates very close
crossover temperatures. Moreover, the near independence
of L holds even for small truncation Nc (see Supplemental
Material [33]). Therefore, a remarkable advantage of our
quantum algorithm is that observation of the important
crossover temperature phase diagram of the Kitaev ring
needs only a few qubits.
Experimental realization.—We now discuss the physical

implementation of the quantum algorithm, which relies on
hybrid variable quantum computing. Promising candidates
include trapped ions [25,26,53–55] and superconducting
circuits [56–62], etc. We take the superconducting circuit
system as an example, for their well controllable CV cavity
mode and its coupling to the qubits. The scheme can be
straightforwardly used in a trapped ion quantum computer.
First, the resource state can be expanded in

a Fock space, jRðβÞi ¼ P∞
n¼0 rnj2ni, where rn ¼R

∞
−∞ dq

ffiffiffiffiffiffiffiffiffiffiffiffiðβ=2Þp
e−βjqj=2H2nðqÞe−ðq2=2Þ and HnðqÞ is the

nth order Hermite function. With a truncation of photon
number, the state can be prepared in a cavity by superposing
even-number photons. We demonstrate in the Supplemental
Material [33] that the resource states can be feasibly realized
with two schemes. It can be achievedwith a sequenceof qubit
rotation and Jaynes-Cummings type qubit-cavity coupling
[62,63], or using the number-dependent arbitrary phase gate
and displacement operator in the dispersive regime [59,64].
An alternative method is optimal quantum control, which
uses a sequence of well-designed pulses to generate required

FIG. 3. Finite temperature phase diagram of the one-dimen-
sional Kitaev ring and quantum Ising model.

FIG. 4. Simulation of crossover temperature for the Kitaev ring
in the quantum critical regime with adaptive TQS. (a) Crossover
temperatures that use different truncating of photon number Nc
for the resource state jRðβ ¼ 4Þi.(b) Crossover temperature for
different lattice sizes, L ¼ 2, 3, 4, 5.
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superposed Fock states. This approach has been widely
applied for bosonic codes [65,66].As a concrete example,we
demonstrate in the Supplemental Material [33] that the
resource state around β ¼ 4 can be approximated with a
few components of small number photons, and can be
experimentally realized with both approaches. Thus, we
can choose one such resource state and use it for adaptive
TQS. Second, construction of e−iHp̂t can be compiled into
basic qubit gates and only one hybrid variable gate eiθσ

xp̂, as
discussed before. All are standard quantum operations in the
superconducting circuit system, and remarkably, the hybrid
gate eiθσ

xp̂ can be readily realized in the strong coupling limit
[67–69]. Third, projection onto a squeezing state j0; si can be
implemented by first performing a squeezing on the CV
mode, and then postselecting the CV mode to the vacuum
state (zero photon state). Further, we can measure the system
to access the thermal state by quantum state tomography, or
studying the quantum statistical mechanism by measuring
physical quantities, such as heat capacity, magnetic suscep-
tibility, etc. As for the Kitaev ring, we note that the evolution
of the nonlocal term σy1PLσ

y
Lp̂ can be constructed efficiently

(see Supplemental Material [33]). Thus, all the above well-
developed quantum operations can render a feasible imple-
menting protocol for thermal quantum simulation of the
Kitaev ring, to illuminate the novel quantum critical regime
on small quantum processors (we have analyzed the exper-
imental requirements and feasibility in aminimal Kitaev ring
with L ¼ 3, see Ref. [33]).
Summary.—We have proposed a quantum algorithm for

thermal quantum simulation assisted with an auxiliary CV
resource state. We have confirmed its power by simulating
finite-temperature phase diagram of the Kitaev ring, and
found that the important crossover phase diagram of the
model can be accurately determined by a quantum com-
puter with only a few qubits. Thus, our work may pave the
way for studying finite temperature quantum systems in
experiments.
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