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Abstract

The experimental characterization of multi-photon quantum interference effects in optical networks
is essential in many applications of photonic quantum technologies, which include quantum
computing and quantum communication as two prominent examples. However, such characteriza-
tion often requires technologies which are beyond our current experimental capabilities, and today’s
methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we
introduce a simple experimental technique to characterize multi-photon quantum interference by
means of practical laser sources and threshold single-photon detectors. Our technique is based on
well-known methods in quantum cryptography which use decoy settings to tightly estimate the
statistics provided by perfect devices. As an illustration of its practicality, we use this technique to
obtain a tight estimation of both the generalized Hong—Ou—Mandel dip in a beamsplitter with six
input photons and the three-photon coincidence probability at the output of a tritter.

1. Introduction

Multi-photon quantum interference is a key concept in quantum optics and quantum mechanics. It has been
extensively studied by many authors over recent decades, from the seminal two-photon interference experiment
performed by Hong, Ou and Mandel [1] to more recent experimental demonstrations which involve a higher
number of indistinguishable photons in various scenarios [2—8]. Moreover, besides its indubitable inherent
theoretical interest, multi-photon quantum interference also plays a pivotal role in several subfields and
applications of quantum information science that use, for example, optical networks (ONs) to set up
interference between photons. These applications include, among others, quantum computing [9], quantum
cryptography [10, 11], boson sampling [12—-16], quantum clock synchronization [17], and quantum metrology
[18]. In any practical realization of these applications it is essential to confirm experimentally that the photons
interfere as desired [19].

Unfortunately, however, to characterize multi-photon quantum interference in general ONs experimentally
is usually a quite challenging task [20]. This is so because, for this, one would ideally need to use high-quality on-
demand n-photon sources which are yet to be realized [21, 22], together with high-quality photon number
resolving (PNR) detectors, which, besides being expensive in terms of experimental resources, can currently only
distinguish up to a certain number of photons, and may also introduce noise [23—25]. As a result, we have that
current experimental techniques to characterize the quantum interference behaviour of ONs at a few photons
level typically suffer from inevitable errors due to the use of imperfect sources and detectors [20].

The main contribution of this paper is a novel technique to estimate the input—output photon number
statistics of ONs experimentally when the input signals are tensor products of Fock states. To this end, we use
simple laser sources to generate the input signals to the ON and practical threshold single-photon detectors to
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measure the output signals [26]. That is, our method is implementable with current technology, and allows the
estimation of the conditional probability distribution P (xy, ..., xp|ny, ..., ny) that describes the behaviour of
the ON on the input Fock states |y, ..., ny), where n; (xpwithi = 1,...,N(j = L, ..., M) denotes the number of
photons at the ith (jth) input (output) port of the ON. We emphasize, however, that, in practice, our method is
specially suitable to the evaluation of mainly small-size ONs. This is so because, as we show later, it requires the
experimental estimation of the probabilities of certain observable events whose estimation complexity may
increase exponentially with the number of input/output ports of the ON [12, 27].

The key idea builds on two techniques that are extensively used in the field of quantum cryptography: the
decoy-state method [28—30] and the so-called detector-decoy technique [31, 32]. We use the former at the input
ports of the ON to estimate the statistics provided by ideal n-photon sources. Besides standard quantum key
distribution [28-30, 33-35], the decoy-state method has also been used, for example, to estimate the yield of two
single-photon pulses in measurement-device-independent quantum key distribution [10, 36, 37], to simulate
single-photon sources with imperfect light sources [38], and to perform single-photon quantum state
tomography with practical sources [39]. Indeed, our technique is closely related to the methodology introduced
in [38]. However, while [38] and all other previous results which employ the decoy-state method to evaluate the
behaviour of ONss, typically estimate only the statistics associated with those events where the ONs receive single-
photon pulses at their input ports, here we extend these results to estimate the behaviour of ONs in the general
case where they also receive multi-photon pulses. The second key difference between our analysis and that
introduced in [38] is that here we employ the detector-decoy method [31, 32] at the output ports of the ON to
estimate the statistics provided by ideal PNR detectors by means of threshold single-photon detectors.

To illustrate the practicality of our technique in the study of ONs, we evaluate two simple examples of
interest. In the first, we estimate the generalized Hong—Ou—Mandel (HOM) dip [1] in a beamsplitter when the
total number of input photons is six for two different conditional probabilities, P (3, 3|3, 3)and P (5, 1|5, 1).
The first case has been experimentally studied in [5], where the authors used for this a spontaneous parametric
down-conversion source in combination with a measurement setup with six threshold single-photon detectors.
The second case, however, (to the best of our knowledge) has not yet been experimentally implemented, due to
the difficulty of generating five-photon states to input to the beamsplitter. In both scenarios, we use our method
to estimate the HOM dip by means of just two laser sources and two threshold single-photon detectors. In the
second example, we estimate the three coincidence detection probability in a tritter [40] when there is just one
single-photon pulse in each of its input ports—i.e. we estimate P(1, 1, 1|1, 1, 1). This example is also used to
obtain a high precision estimation of the dependence of that probability on the triad phase, which arises when
one considers more than two input photons [40]. While these two examples correspond to evaluating linear
ONs, we remark that our method could also be used to study multi-photon quantum interference in non-
linear ON:gs.

The paper is organized as follows. In section 2, we present our method in detail. Then, in section 3, we
evaluate the two practical examples described above. Finally, we summarize the content of the paper in section 4.
The paper also includes two appendixes with additional information.

2. Method

As mentioned above, we use the decoy-state (detector-decoy) method at the input (output) ports of the ON to
estimate the statistics provided by ideal #n-photon sources (PNR detectors). Of course, in contrast to the case
where one really uses perfect n-photon sources and PNR detectors, the use of decoy settings does not provide
single shot resolution about how many photons input and output each port of the ON each given time.
However, it permits to estimate the full statistics that such perfect devices could give, which is enough for our
purposes.

More precisely, we use as input signals to the ON Fock diagonal states each having different photon number
statistics. This type of signal could be generated, for instance, using attenuated laser diodes emitting phase-
randomised weak coherent pulses (WCPs), triggered spontaneous parametric down-conversion sources or
practical single-photon sources, together with variable attenuators to vary the intensity of the individual light
pulses. To implement the detector-decoy method, on the other hand, we also place variable attenuators on the
output ports of the ON, together with threshold single-photon detectors. This general scenario is illustrated in
figure 1. In so doing, as we show below, we have that the probability of each possible detection pattern observed
on the threshold single-photon detectors can be written as a sum of linear terms where the only unknowns are
the probabilities P (x;, ..., Xp|#y, --., iy) = P (x|n) (where, for ease of notation, we use x = x;, ..., xprand
n = ny, ..., nyin what follows). As a result, we obtain a set of linear equations which are functions of the
probabilities P (x|n) and, in principle, one can estimate these quantities accurately. The more decoy-state/
detector-decoy settings we use, the higher the number of linear equations that we obtain, and thus the better the
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Figure 1. Schematic of the method used to characterize the quantum interference behaviour of an optical network (ON) by means of
simple laser sources and threshold single-photon detectors. It builds on the decoy-state method [28-30] and the detector-decoy
technique [31, 32]. More precisely, we place at each input porti = 1, ..., N of the ON a source of phase-randomized WCPs together
with a variable attenuator of transmittance ;. At each output portj = 1, ..., M of the ON we place a variable attenuator of
transmittance w;jand a threshold single-photon detector D;. The input (output) spatial modes are denoted in the figure with the letters
a; (b;), and the output detection pattern of click and no-click events given by the threshold single-photon detectors is denoted by .

accuracy of the estimation. Indeed, in the asymptotic limit using an infinite number of decoy-state/detector-
decoy settings, the probabilities P (x|n) could be estimated precisely. Importantly, however, as we show below, a
small number of decoy-state/detector-decoy settings can typically provide quite a tight estimation of P (x|n) for
small values of n and x.

Our starting point is the input state to the ON. As shown in figure 1, this is the state of the N spatial modes
after the input attenuators of transmittance ;. This state can be written as

N
pln = Qp"=>_ Piln)(nl, (1)
i=1

n

where p!' = m—oDLi|n;) (n;| is the Fock diagonal state at the ith input spatial mode of the ON, which in the

i
case of phase-randomized WCPs satisfies p!' = e /i)' / n;!. Here, the mean photon number 1, = ~ 1/, with 11/
being the initial intensity of the laser sources. The quantity P£ = Hfi | P!, on the other hand, represents the
conditional probability of having the input state |n) = |ny, ..., ny) given the set of input intensities i = {1, ...,

USSR
Let us now consider the output state p” = Up!! U of the ON, where U denotes the evolution unitary

operator applied by the network*. We can %Etrite this state in terms of the probabilities P (x|n). For this, for
convenience, we first combine the effect of each output attenuator w; with the detection efficiency of each
threshold single-photon detector D; (see figure 1). By doing so, we can conceptually consider that at the jth
output port of the ON there is now a threshold single-photon detector with efficiency x; = w;np,forj = 1,...,
M, where 71, is the detection efficiency of the threshold single-photon detector D;in the original scenario (note
that here, for simplicity, we assume that all detectors D; have the same detection efficiency 7). This is so because
when a detector has some finite detection efficiency 7, it can be mathematically described by a beamsplitter of
transmittance np combined with a lossless detector [41]. Importantly, since the positive-operator valued
measure (POVM) that characterizes the behaviour of a typical threshold single-photon detector is diagonal in
the Fock bases, it follows that the resulting measurement statistics when measuring p’  remain unchanged if,
before the actual measurements, we perform a quantum nondemolition (QND) measurement of the total
number of photons at each output mode of the ON. This means, in particular, that for any pf,,;, there is always a
Fock diagonal state, which we shall denote by ﬁo‘fl o of the form

Po = 2 (x| ph %) 1x) (x| = > (x] Upl, U'lx) |x) (x|

X

=22 Pil(x| Uln) PIx) (x| = > >~ PYP(xIn)[x) (x], 2

n x<n

4 . . .
Note that the output state p”' = could also arise from tracing out some of the output modes of the network. That is,
pl = Tryesl Upl, UT}, where B denotes the set of output modes that is traced out.

out
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that provides exactly the same measurement statistics as p/' .Inequation (2), |x) = |xy, ..., Xar) is the Fock state
after the QND measurements on p* ,and P(x|n) = |(x| U|n) | denotes the conditional probability of having
such a state |x) given that the input state to the ON is |n). Note that here, for simplicity, we consider passive
networks that do not create photons, and therefore we assume that jw x; < Z,N n;. That is, the total number of
output photons cannot be greater than the total number of input photons to the ON. This last condition is
expressed in equation (2) with the symbol x < n. However, we remark that our method could as well be applied
to evaluate active ONs.

Finally, to estimate the unknown probabilities P (x|n), we need to relate them to some observable quantities.
For this, we use the fact that the probability P)"" of observing the detection pattern 8 = (6, .. ), where 6; s
equal to zero (one) for a no-click (click) event in the threshold single-photon detector D), given the state 5/ and
the detectors’ efficiencies k = Ky, ..., Ky is given by

M
Py = T{p;;t ®ng} 3)
=1
with the POVM elements ng given by

ng =1 - Pdark)Z(l - ﬁj)n|n> <n|)

n=0

I =1— 10y, 4

where pg,i denotes the dark count probability of the detector Dj, which we assume for simplicity to be equal for
allj = 1, ..., M. Thatis, the operator Hg’j (Hfj )is associated with a no-click (click) event at the detector D;. After
substituting equations (2) and (4) into equation (3), we finally obtain

Py =" PiP(xIn)P"(0)]x). (5)

n x<n

Here, P*(0|x) = (x| ®§Vi1 H;?flx> denotes the probability of observing the detection pattern 6 given the output
state |x), the detection efficiencies ~ and the dark count probability pgq«. If the detectors D; are well-
characterized, this quantity is known. Importantly, equation (5) relates the observed probabilities P§", which
can be directly measured in the actual experiment, to the unknown probabilities P (x|n) via the statistics P and
P (8|x), which are both known a priori given the experimental parameters 1/, 77, and pga,i together with the
attenuator settingsy = {7, ..., v} andw = {wy, ..., wys}. Indeed, as mentioned previously, each decoy-state/
detector-decoy setting provides a new linear equation which has the same unknowns P (x|n) but different
coefficients P! and P*(8|x) and constant terms Pj"". Thus, by solving the set of linear equations given by
equation (5) one can, in principle, estimate any conditional probability P (x|n).

3. Evaluation

In what follows, we illustrate this method with two simple examples of practical interest.

For simulation purposes, in both examples we set the detection efficiency of the threshold single-photon
detectors ton)p = 80%, and their dark count probability to pg.c = 10, which are values which can be
achieved with current technology [42]. We remark, however, that our method can also provide tight estimations
when it employs detectors with lower detection efficiency and higher dark count rate. That is, the method is in
principle quite robust to typical imperfections of the detectors, given that they are well-characterized. Indeed,
when the detection efficiency is low, in principle one can mitigate its effect by increasing the number of decoy-
state/detector-decoy settings. This is illustrated in figure C1. Also, if the value of the dark count rate is stable,
then itis basically a scaling factor in the equations of the linear program and thus its value does not greatly affect
the estimation. For simplicity, in our simulations we disregard other imperfections of the detectors such as after-
pulsing. Note that in a practical implementation of the method, one could strongly reduce the number of after-
pulses by just imposing—for example—a dead-time to all detectors after observing a detection click [42].
During this dead-time period no detector is able to produce further detection clicks, and thus no after-pulse can
occur.

Also, for simplicity, we consider the asymptotic scenario where the number of signals transmitted is infinite,
and disregard imperfections (like, for instance, intensity fluctuations or imperfect phase randomisation) of the
light sources. The realistic scenario where the number of signals transmitted is actually finite, could be analysed
by means of standard techniques in quantum key distribution (see e.g. [43]), which use concentration
inequalities—like, for instance, Chernoff’s [44] and Hoeffding’s [45] bounds—to relate the observed
experimental data and its expected value except for a minuscule error probability. As a result, the accuracy of the
estimation obviously depends on the number of trials of the experiment. Similarly, the case of imperfect light
sources could be evaluated using techniques from quantum key distribution. For example, to consider the effect

4



10P Publishing

New J. Phys. 20 (2018) 043018 A Navarrete et al

that intensity fluctuations have on the estimation results provided by the decoy-state method, one could use—
for instance—the techniques introduced in [46]. There, the authors study the case where the intensity
fluctuations are bounded within a certain interval except for a minuscule probability. Finally, a simple method to
generate phase-randomized WCPs is to directly modulate the lasers using gain-switching conditions—i.e. far
above and below threshold. For this, please note that it is essential that the time where the laser is off is
sufficiently long in comparison with its reset time. Thus, it is simultaneously guaranteed that the cavity field is
sufficiently attenuated that any prior coherence vanishes, and inputs amplified spontaneous emission due to
vacuum fluctuations which results in a field with a truly random phase. As a result, the phases of the optical
pulses generated are truly random and not intercorrelated. In so doing, there is no need to use quantum random
number generators, together with phase modulators, to select the phase of each outgoing pulse randomly.
Indeed, this technique is commonly used in decoy-state quantum cryptography, and also to generate random
numbers using phase diffusion in semiconductor lasers [47, 48]. The analysis of the finite regime case with
imperfect light sources is, however, beyond the scope of this paper.

3.1. First example: beamsplitter
. . N A . . AT
In this case, we have that the creation operators, af and a; , for the input modes of a beamsplitter and those, b,

and Z;;, for its output modes satisfy the relations l;: = td; + ra, and l;; = r'4] + t'4;, where the parameters
ry t, r'and t/ fulfill [t? + |7 = 1, || = ||, |r] = |*'|and t'r + 't = 0 [49]. Thatis, if the state at the input
spatial modes a; and a, is say |1y, 11, )4, (i.€. it consists of n; and n, indistinguishable photons respectively), the
state at the output modes b; and b, is given by the following coherent superposition of Fock states

n M — ~ — ~
[out Jorb, = Z(’le[nzj\/(nz j4+ DIm —i+j)!

i=0 j=0 J mylm!

ny+m—j—i

i . . .
xn 2 A=m2(=D|m —i+j,m—j+ i, (6)

where, for simplicity, we have considered the particular caseinwhichr = —/1 — 5, r’ = —rand
t' =t = 1, withnbeing the transmittance of the beamsplitter. From equation (6) one could directly calculate
the theoretical probability distribution P (x;, 3|11, 12) = |(¥oulx1, %) [* of finding respectively x; and x,
photons at the output ports b, and b, of the beamsplitter, given that there are n, and n, photons at its input ports
a; and a,. Importantly, according to quantum mechanics, the value of this probability strongly differs from that
of a classical scenario, where the photons are considered distinguishable particles which do not interfere. The
HOM dip [1] is a well-known example of this fact. Indeed, when two photons input a 50: 50 beamsplitter
through a different input port, classical mechanics predicts a probability equal to 1/2 of finding the two photons
at different output ports of the beamsplitter, while quantum mechanics predicts (for indistinguishable photons)
that this probability is equal to zero. In general, this difference between the predictions of quantum and classical
mechanics can be quantified by means of the visibility, which is defined as

_ P (x1, xlmy, ma)e — P(x, xlm, na)

Vi = (7)
b P(x1, xlm, my)c ’

where the subindex c denotes the classical case, i.e. when the photons are perfectly distinguishable.

Equation (7) has been experimentally evaluated in many different experiments over recent years. For
instance, in [4] and [5], the authors obtain visibilities V4 ,,,, equal to 88% for a four-photon interference scheme
within an asymmetric beamsplitter and V; 33 ; equal to 92% for a six-photon interference scheme, respectively.
For this, they use type-II parametric down-conversion sources to generate pairs of entangled photons and a
measurement setup with four and six threshold single-photon detectors, respectively, in combination with
beamsplitters. Also, in the experiment reported in [8], the authors interfere two bosonic atoms (instead of
photons) and observe a visibility equal to about 65%.

We now apply our method based on two sources of phase-randomized WCPs and two threshold single-
photon detectors to evaluate the visibility V; ., - As in the general case considered in the previous section, it is
straightforward to show that by varying the intensity yu; of the input signals at the ith input port of the
beamsplitter, as well as the attenuator’s transmittance w; (and thus the effective detector’s efficiency ;) at its jth
output port, withj = 1,2, one can generate an arbitrary number of inequalities that involve the unknown
probabilities P (x;, %|n;, np). The final system of linear equations, particularized from equation (5), is given by

Ppt=3%" > Pi. P(x, xlm, m)P5(0x;, x), (8

XpX2

ny, My
X1+x<m+ny

for each one of the four possible detection patterns 8 = (#,6,) € {00, 01, 10, 11}. quin, in areal experiment,
the probabilities P}, = e~ (i) ,uZZ/(nl!nQ!) and P*(0)x;, %) = (%, x| ®§:1 Hg}_jlxl, %), with H;f given
by equation (4), are known given the experimental sets p and « together with the value of the dark count
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Figure 2. Hong—Ou—Mandel dip for the conditional probabilities P(3, 3|3, 3) and P(5, 1|5, 1) atabeamsplitter of transmittance
n = 1/2andn = 5/6 respectively, as a function of the relative delay d7/AT. Here, d T denotes the absolute delay between the arrival
times of the optical pulses at each input port of the beamsplitter and AT'is the FWHM of the pulses. The theoretical values predicted
by quantum mechanics are illustrated with solid and dashed black lines, respectively. The blue (red) dots and crosses show the upper
(lower) bound for these probabilities obtained with our method based on the use of two laser sources emitting phase-randomized
WCPs and two threshold single-photon detectors. In our simulations, we consider that the efficiency 7, of the detectors is 80% [42],
the dark count probability is pg. = 1074, and the transmittances ~; (wj) take six (five) different values.

probability of the detectors, while the probabilities P)" can be directly observed in the experiment, once
performed. For our simulations, we use as observed values Pj"" those predicted by quantum mechanics (see
appendix A for more details).

To solve the set of linear equations given by equation (8), one can use analytical or numerical tools. For
simplicity, here we solve equation (8) numerically. For this, we first transform the set of equalities given by
equation (8), which contains an infinite number of unknowns P (x;, %|n;, 1,), into a set of inequalities with a
finite number of unknowns, as shown in appendix B. Also, we use the linear programming solver Gurobi [50]
and the Matlab interface Yalmip [51].

Just as an example, figure 2 shows our results for the conditional probabilities P(3, 3|3, 3)and P(5, 1|5, 1)
in beamsplitters with transmittance n = 1/2 and n = 5/6 respectively, as a function of the relative delay dT/AT
between the arrival times of the phase-randomized WCPs at the two input ports of the beamsplitter. Here dT
denotes the absolute delay between the arrival times of the optical pulses at each input port of the beamsplitter
and AT is the full-width-half-maximum (FWHM) of the pulses, which for simplicity we assume is equal for all
of them. We have chosen these particular examples because quantum mechanics predicts that these probabilities
are equal to zero (i.e. complete destructive interference) when d7/AT = 0. As we can see from figure 2, our
estimations approximate the theoretical value very well; the simulated lower bounds for the visibilities Vj 333
and Vs 51 are very close to one. To be precise, we obtain V; 5133 > 0.99994 and V5 5, > 0.99996. The main
reasons for the slightly noisy behaviour of the estimated values, as well as for the small discrepancy between these
and the theoretical values predicted by quantum mechanics (especially when dT /AT = 0), are twofold. First, as
we have already mentioned above, in our simulations we use a relatively small number of decoy-state/detector-
decoy settings. In particular, for each value of dT/ AT, we choose an optimized set of six possible values for the
input parameters (1, and p, and five possible values for the output parameters ; and k,. By using a larger
number of settings, one could in principle approximate the theoretical value as closely as desired. The second
reason is the limited numerical precision of the linear solver together with the fact that, as explained in
appendix B, to solve equation (8) numerically we reduce the number of unknowns P (x;, x|#;, #,) to a final set.
Also, we emphasise that the upper and lower bounds illustrated in figure 2 depend on the absolute value of d T/
AT. This is because the experimental data P}"" that we use in our simulations depend on [dT /AT] (see
appendix A for further details).

Finally, let us remark that when we try to estimate the conditional probabilities P (x;, x|n;, 1) for higher
total input photon numbers, the accuracy of the estimation decreases. This is so because the value of the
coefficients P4 P*(0|x) decreases very rapidly when n increases, which renders the estimation problem difficult
to solve numerically even with strong scaling methods. Moreover, increasing the value of the intensity setting p
is not of much help here, since it entails an increase of the leftover term (see appendix B). Possible solutions
mightbe to try to solve the set of linear equations analytically by means of—say—Gaussian elimination, or to
develop more efficient numerical estimation methods with higher numerical precision. Also, one could replace
the detector-decoy method with practical photon number resolving detectors like, for example, those based on
time-multiplexing [52], or those introduced in [23]. A potential advantage of this latter approach would be that
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Figure 3. Three-photon coincidence probability P(1, 1, 1|1, 1, 1) inatritter. (a) Here the three input light pulses have the same
polarization state, and P(1, 1, 1|1, 1, 1) is shown as a function of their relative delay dT/AT. (b) In this case, the three input light
pulses have different polarization statesand P (1, 1, 1|1, 1, 1) is shown as a function of the triad phase ¢. In both figures, the
theoretical values predicted by quantum theory are shown with a solid line while the upper and lower bounds estimated with our
method are shown with dots. In our simulations, we consider that the efficiency 7, of the detectors is 80% [42] and the dark count
probability is pgar. = 10~°.

now the linear program that estimates the input-output statistics of the ON would be simpler and involve fewer
unknowns, and thus it could handle a larger number of photons. The main drawback of this approach is,
however, that it requires the use of PNR detectors, which are more expensive resources than threshold single-
photon detectors. In any case, it would be definitively interesting to investigate these three options further.

3.2. Second example: tritter

We now estimate the three coincidence detection probability P(1, 1, 1|1, 1, 1) for a tritter for two different
scenarios. Both scenarios have been experimentally analysed very recently in [40], where the authors used
heralded single-photon sources (based on spontaneous four-wave mixing in silica-on-silicon waveguides
together with three threshold single-photon detectors for heralding) in combination with a measurement setup
with five threshold single-photon detectors. If we denote by (¢5]t)x) = e the inner product between the
states of the single-photon signals at the jth and kth input ports of the tritter, quantum mechanics predicts that
the probability P(1, 1, 1|1, 1, 1) is given by [40, 53]

1
POLLAIL 1 1) = (2 dniamsrs cos(9) — My — 135 — 13))s )

where ¢ = ¢1;, + ¢r3 + @3, is the so-called collective triad phase.

The first scenario that we consider is shown in figure 3(a). In this case, the input pulses to the tritter have the
same polarization state, but their arrival times at the various input ports of the tritter vary. The result predicted
by quantum theory for P(1, 1, 1|1, 1, 1) in this situation is shown with a solid line in figure 3(a), while our
estimations are shown with dots. Again, we can see that the estimated upper and lower bounds for
P(1, 1, 1|1, 1, 1) fit the theoretical probability tightly. In the second scenario, the polarization states of the input
light pulses are now chosen to compensate the temporal distinguishability between the arriving photons, and
might be different for the signals at each input port. The motivation for this scenario is to observe the
dependence that the three-photon coincidence probability P(1, 1, 1|1, 1, 1) has on the triad phase ¢ by
keeping constant all those terms rj, that affect such probability but arise from two-photon distinguishability
[40]. The results are shown in figure 3(b), where once again we can see that our method provides a tight
estimation of the theoretical values, thus showing its practicality. Also, we remark that, as in the case of figure 2,
the upper and lower bounds illustrated in figure 3 depend on |[dT / A T| because in our simulations the
experimental data P}"" depend on |[dT /AT|. Here we use the expected values predicted by quantum mechanics
for P)". Furthermore, for each value of dT/ATin figure 3(a), and for each value of ¢ in figure 3(b), we choose
three different values for the intensities of the phase-randomized WCPs, as well as two possible values for the
output attenuators.

4. Conclusion

In this paper, we have proposed a simple method to experimentally characterize the behaviour of small-size
optical networks (ONs) for input signals that are tensor products of Fock states. More precisely, our method
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could be used to obtain a tight estimation of the input—output photon number statistics of an ON. Importantly,
our technique could easily be implemented with current technology, such as—for instance—phase-randomized
weak coherent pulses together with threshold single-photon detectors. The main idea of the method is rather
simple: it estimates the statistics provided by ideal n-photon sources at the input ports of an ON by means of
decoy-state techniques and estimates the statistics provided by ideal photon number resolving detectors at its
output ports by means of detector-decoy techniques.

To illustrate the practicality of the method, we have evaluated two simple examples. In the first, we have
estimated the generalized Hong—Ou—Mandel dip in a beamsplitter for a total number of six input photons,
while in the second we have estimated the three coincidence detection probability in a tritter when it receives one
single-photon pulse at each of its input ports. In both cases, we have obtained tight estimates that approximate
the theoretical values very well.
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Appendix A. Toy model for the experimental data P)""

In order to evaluate the performance of our technique, we need to generate the experimental data P}"" which is
required to run the simulations. For this, and in the absence of a real experiment, we use a simple mathematical
model that we detail below. In particular, let A” (B") be the creation operators for the input (output) spatial
modes of the ON. Thatis, A" = [4, ..., 4]" and B is defined similarly. These vectors satisfy

A" = UBT, (A.1)

where Uis the unitary transformation that describes the behaviour of the ON.
In the case of WCPs, the input state to the ON can be written as | W;,) = @£ ;|¥in.1), where

[ink) = exp( [ (@x(@)a] @) = af@)anw)dw) 105, (A2)

is the coherent state at the kth input mode [54]. Here, the parameters ay(w) are defined as

K w? ) i
op(w) = ﬁexp(—r‘zj elPk I, (A.3)

That is, for simplicity, we assume that each |y (w) |? follows a Gaussian distribution of mean zero and standard
deviation o which is multiplied by the intensity 1 to guarantee that the condition f | (W) Pdw = g, holds.
The temporal parameter f represents the arrival time of the optical pulse that enters the ON through its kth
input port. We remark that in the definition of the states |1}, ), we have not yet included the fact that their
phases ¢y are randomized. We will return to this point later.

Let {1} be the elements of the unitary matrix U. By applying equation (A.1), and due to the linearity of the
integral, we have that the state at the output ports of the ON can be written as |¥,) = Q- ,|Vour k) Where

o) = exb ([ Bulerbi @) — B b@)dw) 100, (A9

and Gy (w) = Z?]: 1 @ (w) uji.. This means that the state | U,,) at the output ports of the attenuators of efficiency
is given by

M
| Bout) = exp (Z VR [ 3@l @) — B bk«u»dw] 10) (A5)
k=1

For convenience, note that here—as in the main text—we have included the effect of the efficiencies 7jp of the
threshold single-photon detectors into the efficiency of the attenuators.

The probability of having vacuum in a specific output mode k is related to the mean photon number
fix = f |Gk (W) [* dw of the coherent state in that mode by Py = ™. In order to calculate 7y, let ¢y be the phase of

the element uj of U, i.e. uj = |ujk|ei¢fk. It is then straightforward to show that
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N N—-1N-s

1Bk P = lai(@) Pluad® + D2 > 2leg(@)llas(@) lujdlusd

i=1 s=1 j=1

X €os(¢; — O + @y — P + w(ts — 1)) (A.6)

This means, in particular, that

s=1 j=1 AT?
X cos(@y — & + @ — P> (A7)

i 2 a N ey 7342
ix = f Bu@) Pdw = 3 ulunl? + 3 3 2 75 Ji luglluglexp| —
j=1

where 7; = t; — t;represents the delay between the arrival times of the pulses that enter the ON through its ith
and jth input ports, and AT is their FWHM. Finally, we have that the joint probability of detecting a certain
pattern 6 on the threshold single-photon detectors is given by

P,LL,N,(P _ 11\_4[ 1 — (71)9k + (_1)0k(1 o ) — Kk A.8
0 - 5 pdark € > ( : )

k=1

where ¢ = {¢,, ..., ¢y} represents the dependence of that probability on the phase of each input coherent
pulse. This is so because the probability of having no click at output port k (that s, 6, = 0) is given by
Pé"”k’d’ = (1 = py)e "™, and thus the probability of having a click (6 = 1) has the
form P{"”k’d’ =1—(1 — pple ™

If we consider now the fact that the input coherent states are phase-randomized, we find that the probability
of detecting the pattern @ on the threshold single-photon detectors D; s given by

i 1 2m 2w 2
ol [ 15>
= o j; fo j; PL%ds dg, ... dby, (A.9)

which can be calculated numerically, or even analytically for the simplest cases.

Appendix B. Numerical estimation with linear programming

For small values of the intensities ;1 = {1, ..., fin}, we have that the coefficients PX' P* (0]x) of the set of linear
equations given by equation (5) drop quickly to zero as the number of photons n = n;, ..., nysincreases.
Therefore, one can neglect some of the terms in equation (5) to decrease the number of unknowns P (x|n) toa
finite set. For instance, one can discard all the summation terms that satisfy Z,N n; > M.y, for a certain prefixed
parameter M. In this way, we obtain that

Pyt > >0 > PAPxIn)P*(0lx), (B.1)

nESqy X<n

where S, is the subset that contains all possible n such that Z,N n; < M. Similarly, one could also obtain an
upper bound on Pj"" that depends on the same finite number of unknowns P (x|n). For this, note that

Pyt = 5" ST PEPIMPFOX) + > > PLP(xIn)Pr(6]x)

neESqy X<n ¢Sy X<N
< Y Y PIPEIMPIOX) + > PL Y P(xin)
neESy Xx<n n¢Seut x<n

= > ZP,‘I‘P(x|n)P"‘(0|x)+{1 - > P,‘;}

neSqy x<n neSqy

> > PEP&ImPR(OIx) + AL, (B.2)

nESqy X<n

where the first inequality is due to the fact that P*(6]x) < 1and the second equality comes from
Yyl (XIn) = 1and }° Py = 1,Vn. Obviously, theleftover term A§ =1 — 3=, ¢ Py shouldbeassmallas
possible.

By using this result, one can numerically obtain an upper bound for the probability P (x|n) by solving the
following linear program:




10P Publishing

New J. Phys. 20 (2018) 043018 A Navarrete et al

(a) (b)

T
= = =Theoretlcal
et |p|=2 5 l=2|
s |p|=3 ; wl=2
st [p]=3 5 flm3] o

o
1)
ooy

e
@
=

e e e
N 2 3

P(1,1]1,1)

°
P222,2)

3
8

0.06

Figure C1. Upper bounds on two different conditional probabilities, P(1, 1|1, 1) and P (2, 2|2, 2), for abeamsplitter of transmittance
1 = 1/2,asafunction of the detection efficiency np, of the threshold single-photon detectors. As expected, for a fixed value of 7, the
accuracy of the estimation improves as we increase both the number |11| of decoy-state settings and the number |w| of detector-decoy
settings.

max P(x|n)
st. PN < Y0 Y PYPxImPR(Ox) + AL, Yy, K, 0
nESqy X<n
Pyt = > > PEPxn)P(Ox), YV, k, 0
neESqy x<n
0<Pxn <1, Vx<n,neE Sy
> P(xln) =1, Vn € Sq (B.3)

x<n

The lower bound can be estimated by simply replacing the max with a min.

Appendix C. Effect of the detection efficiency in the estimation

The method proposed in this work allows the estimation of the interference probabilities P (x|n) for general
ONs even when the threshold detectors have a relatively low detection efficiency. Indeed, the main limitation of
low detection efficiencies arises because the values x; € [0, 7p] of the set of output effective attenuators are upper
bounded by np, withj = 1,2, ..., M. When np < 1, this significantly reduces the range of Ky and thus the
accuracy of the estimation for a fixed number of decoy settings. Importantly, however, it is possible to mitigate
this effect by increasing the number of decoy-state/detector-decoy settings, as this generates more constraints
for the linear program. This is illustrated in figure C1, where—for simplicity—we consider upper bounds on the
input—output statistics P(1, 1|1, 1) and P (2, 2|2, 2) of abeamsplitter of transmittance) = 1/2. The
roughness of the upper bounds is mainly due to the finite size of the optimization grid. Note that, in theory, fora
continuous optimization grid we have that Ub,, [P (x|n)] < Ubn; [P (x|n)] for np > n;), being Ub, [P (x|n)]
the upper bound on P (x|n) calculated with detectors of efficiency 7). This is because the optimal input and
output settings when the efficiency is 1}, are always also accessible when the efficiency is 7p.
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