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Crop Mapping Using Sentinel Full-Year
Dual-Polarized SAR Data and a CPU-Optimized

Convolutional Neural Network With
Two Sampling Strategies
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Abstract—Although optical remote sensing can capture the
Earth’s environment with visible and infrared sensors, it is limited
by weather conditions. Often, only a few sets of cloud-free optical
imagery are available in cloudy regions, where many agricultural
towns are located. On the other hand, radar remote sensing can cap-
ture imagery under cloudy conditions. In this study, we examined
the capability of Sentinel-1 multitemporal dual-polarized synthetic
aperture radar (SAR) imagery in a whole year from Google Earth
Engine in crop mapping in two study sites in Chongqing, China,
and Landivisiau, France. Results show that it is possible to produce
better crop classification maps using multitemporal SAR imagery,
but the performance is limited by local terrain. Flat agricultural
regions, such as Western Europe, are expected to benefit from the
multitemporal SAR information. Mountain agricultural regions,
such as Southwestern China, will encounter difficulties due to the
undulate terrain. We also tested two sampling strategies, i.e., ran-
dom sampling and regional sampling, and observed high variation
in overall accuracy: the former led to a higher accuracy. The gap
is caused by the diversity of training sets examined using tSNE
visualization. The importance of SAR channels in each month
are correlated with their entropy. Data from the growing season
are important in distinguishing crop types. The 3-D convolutional
neural network (CNN) achieved similar results under a huge com-
putation cost compared with 2-D CNNs. Based on the experiments,
we recommend to use a lightweight 2-D CNN that can run on the
CPU for real-world crop mapping with SAR data.

Index Terms—Convolutional neural network (CNN), crop
mapping, multitemporal, radar remote sensing, sampling strategy,
synthetic aperture radar (SAR).
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I. INTRODUCTION

W ITH more than one billion people at the brink of star-
vation, the United Nations has announced zero hunger

as one of the sustainable development goals [1]. To achieve the
goal, timely and accurate monitoring of food production is es-
sential. Traditionally, governments rely on specialists to collect
food production data, which is time-consuming and expensive.
Thanks to the development of remote sensing technologies, we
can now estimate food production from satellite imagery with
minimal laborious works.

Optical remote sensing relies on the visible and infrared
information to distinguish crop types. This technique has shown
its great potential in crop mapping. For example, Wardlow and
Egbert [2] used time-series MODIS NDVI data to create crop
type maps with a hierarchical classification approach. Kussul
et al. [3] conducted crop classification in Kyiv, Ukraine with
multitemporal Landsat-8 data using an MLP model. Shelestov
et al. [4] explored the efficiency of using the Google Earth En-
gine platform to create large-area crop mapping in Ukraine using
multitemporal Landsat-8 and Sentinel-2 imagery. Pan et al. [5]
derived the NDVI time series from China’s HJ-1 A/B satellite
data to map small-scale crop seasonality. Gao et al. [6] gener-
ated 30-m crop phrenological metrics using fusion of Landsat
and MODIS data. Skakun et al. [7] combined Landsat-8 and
Sentinel-2A images to create winter crop maps and estimated
wheat yield. Wang et al. [8] used Fourier transform of Landsat
time-series images to distinguish crop types and achieved over
80% overall accuracy without in-season field data in some
regions using a random forest transfer technique. De Castro et
al. [9] developed an automatic random forest with object-based
image analysis for weed mapping using UAV imagery. With the
literature going deep, crop type classification is generated from
low-resolution satellite images to from high-resolution satellite
and even UAV images, but most of the studies focus on the usage
of random forest because of its robustness [10].

Although multitemporal optical remote sensing has shown
great potentials in crop mapping, it is limited by weather con-
ditions. In the rainy season, it cannot capture the ground infor-
mation because of the existence of dense clouds. Instead, radar
remote sensing is insensitive to clouds due to its long wavelength
nature. Radar remote sensing can penetrate heavy clouds and
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sense the solid ground, where the crops grow. Hence, it provides
us an opportunity to monitor crop areas in cloudy regions in the
rainy season. For instance, Le Toan et al. [11] assessed the use of
ERS-1 synthetic aperture radar (SAR) data to map rice-growing
areas and to retrieve rice parameters at a tropical site in Indonesia
and a temperate site in Japan. Jiao et al. [12] assessed the
use of object-oriented classification of 19 sets of multitemporal
RADARSAT-2 PolSAR imagery in Canada. In a nonmachine
learning fashion, Chen et al. [13] discriminated crop types based
on polarimetric correlation coefficients of PolSAR data. Fur-
thermore, a particle-swarm-optimized kernel-based clustering
method was developed using multitemporal L-band PolSAR
data for crop mapping [14]. Skriver et al. [15] assessed the
performance of the airborne AgriSAR 2006 data in crop clas-
sification and concluded that multitemporal information was
important in distinguishing, for both single- and dual-polarized
modes. The tradeoff between polarimetric information and the
multitemporal information was further discussed in a crop map-
ping study using the SAR data from the EMISAR system, and
multitemporal information was again confirmed to be more
important in crop mapping [16]. Bargiel [17] proposed a novel
phenological sequence pattern approach using dense time series
of Sentinel-1 images, which outperformed standard methods
such as random forest and maximum likelihood in distinguishing
cereal crops, oat, winter barley, and rye. A parcel-based method
was tested with multitemporal TerraSAR-X dual-polarimetric
data using four machine learning algorithms and two kernel-
based methods, where the multiple kernel learning achieved
the highest overall accuracy of 92.1% [18]. Using six spotlight
TerraSAR-X SAR images, Busquier et al. [19] concluded that
an increase of up to 10% in overall accuracy could be achieved
with the addition of coherent copolar polarimetry. A recent study
by Li et al. [20] has made use of the full-year L-band UAVSAR
time series for crop mapping with the random forest method. The
obtained result is promising. However, UAVSAR time series is
rare in many regions, and more studies should be conducted on
public popular datasets, e.g., the spaceborne Sentinel-1 data.

The literature works about multitemporal SAR information
for crop mapping are extensive, but most of them used either
rule-based methods or tree-based supervised learning (e.g., ran-
dom forest), and few explored the usage of deep learning meth-
ods. Tomppo et al. [21] applied an improved k nearest neighbor
(kNN) algorithm on 17 Sentinel-1 multitemporal scenes and
achieved a 72% overall accuracy on crop mapping in Eura,
Finland. Xiao and Lu [22] tested a subspace kNN and a bagged
tree method using 26 SAR images for crop mapping in Bengbu,
China, and found that the subspace kNN could achieve overall
accuracy of 97%. Arias et al. [23] used a rule-based supervised
method and 15-month Sentinel-1 SAR images to classify 14 crop
types in Navarre, Spain, and concluded that the field size of
croplands significantly affected the classification performance
(14%), where a smaller field was more difficult to classify
(<0.5 ha). Small croplands are signature in China in the form
of terraces [24], leading to a difficult crop mapping scenario.
Apart from backscatter, multitemporal InSAR coherence was
examined using multiple feature-based classifiers (e.g., random
forest, SVM, and kNN) by Jacob et al. [25]. A main conclusion

was that classification could achieve over 90% accuracy in flat
area such as Doñana wetlands National Park in Spain, but only
achieved 77% accuracy in challenging alpine terrain such as the
northern Italy. Full-year time-series interferometric coherence
and backscatter for crop mapping were also examined using
random forest by Mestre-Quereda et al. [26], where the joint
use of coherence and backscattering coefficient benefited classi-
fication the most. Random forest was found the most-often-used
classifier for multitemporal SAR crop mapping. However, it was
rare to include spatial information [either with spatial filters or
convolutional neural networks (CNNs)] when the multitemporal
data were used, though they have already been proven to be
powerful tools to increase classification accuracy.

Deep learning pixelwise classification, or patch-based classi-
fication, opens a small window from the pixel to be classified
to extract spatial information. Although this process saves us
the time to manually design spatial features, such as the GLCM
textures [27], the local binary patterns [28], and the Gobar fil-
ters [29], criticisms have been raised about whether this process
leads to overestimating the classification accuracy [30]–[36].
The main argument is that some of the reference data are leaked
when we open a small window [35]. In real-world applications,
the reference data are often collected in a parcel (a small region).
For example, farmland might be 50 × 50 m2 large; on a standard
Sentinel-2 scene with 10-m ground sampling distance, we will
collect a small region of 25 pixels as the reference data. As a
result, collected samples are not randomly uniformly distributed
in the agricultural region. This is contradictory to many literature
works developing state-of-the-art CNNs for land cover map-
ping with SAR and hyperspectral data. Many advanced CNNs
are developed with the random sampling strategy, instead of
using the above regional sampling strategy. In these literature
works, the available training and testing samples are randomly
uniformly distributed in the entire study area or called from the
same domain in technical terms [37], [38].

We show a toy example in Fig. 1 illustrating the difference of
the two strategies. The Earth environment is diverse in different
regions; in a satellite image, a region on the upper left may be
different from a region on the lower right in terms of atmosphere,
terrain, illumination, and satellite angle. As a result, two identical
objects on the ground can have two different spectral profiles in
an image. The variation inside a land cover class is better cap-
tured in random sampling than regional sampling, as the former
covers a more diverse region. From the perspective of supervised
machine learning, random sampling has a better estimation of the
data’s real distribution [39], [40]. If the same number of training
samples is used, the sample set from random sampling will be
more diverse than that from regional sampling [41], which may
be one of the reasons why random sampling leads to higher
classification accuracy. However, the problem is: how would
this affect real-world crop mapping using multitemporal SAR
data?

In this study, we are going to use multitemporal SAR data
from a whole year to produce crop maps, with both random sam-
pling training set and regional sampling training set. We select
three advanced CNNs, namely, the wide contextual residual net-
work (WCRN) [42], the HResNet [43], and the double-branch
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Fig. 1. Top example about the random sampling and regional sampling strategies. The example here includes four domains, and the same materials may have
different radar signals and spectral responses due to the effects of atmosphere, terrain, illumination, satellite angle, etc. Selected training samples are highlighted
in yellow. Although the two strategies obtained the same number of training samples, regional sampling fails to collect enough samples from the blue region.
Compared to random sampling, the training set’s diversity via regional sampling will be significantly lower, thereby limiting the performance of classifiers. (a)
Random sampling. (b) Regional sampling.

multiattention mechanism (DBMA) network [44], and random
forest [45] to test their performance. Among the three deep
learning models, the WCRN can run on CPU, and the DBMA
has the best performance in benchmark datasets with random
sampling strategy. The WCRN is the representative of 1 × 1
convolutional 2-D CNNs, inspired by the 2-D deep contextual
CNN [46]. The HResNet is the representative of ordinary 2-D
CNNs (the most common version). DBMA is the representative
of 3-D CNNs [47], [48]. Two study sites are selected: one in
China and one in France. Based on the experiments, we are
going to answer the following questions at the end of this
article.
� Can multitemporal SAR data classify crop types as good

as optical data?
� Will the two sampling strategies, i.e., random sampling and

region sampling, affect the classification, and if so, what
are the effects?

� Which classifier is the best for crop mapping using multi-
temporal SAR data?

The rest of this article is organized as follows. In Section II, we
introduce the two study sites with the collected reference data
and the multitemporal SAR data. In Section III, we describe
the three CNNs and random forest in detail. The results and
analysis are shown in Section IV. Finally, Section V concludes
this article.

II. STUDY AREA AND DATA

A. Chongqing, China

The first study site is located in the Jiangjin District,
Chongqing, the Mountain City of China, as shown in Fig. 2.
Chongqing lies in Sichuan Basin, southwestern China, and is
one of the cloudiest cities in the world. It receives only about
1200 sunshine hours per year [49]. As a comparison, the northern

TABLE I
NUMBER OF TRAINING AND TESTING SAMPLES OF THE CHONGQING DATA

China received about 2500 sunshine hours per year [50]. The
study site is in the mountains, where the elevation ranges from
178 to 1709 m. The entire district has a population of 1.3 million
and is one of the most active agricultural regions in China,
famous for its massive production of Sichuan pepper.

For this study site, the reference data were collected in a
field survey on July 5, 2019, along the road network. Six crop
types were recognized, plus four land cover classes to complete
the classification system. The number of training and testing
samples is shown in Table I. Photos of some crop types recorded
in the field survey are shown in Fig. 3. In regional sampling, we
randomly split the collected polygons into two parts: training and
testing. The maximum number of training samples per class is
limited to 200 to avoid imbalanced training. In random sampling,
the same amount of training and testing data were selected
randomly from all reference data to ensure a fair comparison
between two sampling strategies.

The multitemporal SAR data were extracted from Google
Earth Engine. Google Earth Engine restores a multipetabyte
catalog of satellite imagery, including the Sentinel-1 images,
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Fig. 2. Chongqing, China data. (a) Jiangjin, Chongqing, China. (b) Optical data (RGB: band 4, band 3, and band 2 of July). (c) DEM. (d) SAR data (RGB:
ascending VH, ascending VV, and descending VH of July before terrain correction). (e) SAR data (RGB: ascending VH, ascending VV, and descending VH of
July after terrain correction). (f) Reference data.

making it easy to use SAR imagery. By using the ready-to-use
data available on Google Earth Engine, we can save the prepro-
cessing time to handle raw SAR data: applying orbit file, noise
removal, radiometric calibration, terrain correction etc. Here,
we downloaded the monthly SAR composite from Google Earth
Engine. Both ascending and descending images are used with
dual polarization, i.e., VV and VH, resulting in a total number of
48 feature channels. Note that the Sentinel-1 SAR imagery was
not despeckled by default in Google Earth Engine, which was the
default setting in our experiment. We conducted an additional
set of comparison to test the influence of the Refined Lee filter
later. As a result, the SAR images in the main experiment did not
contain information from the surrounding pixels. We collected
two available cloudless scenes of Sentinel-2 multispectral data
in this region for comparison purposes.

B. Landivisiau, France

The second study site is located in Landivisiau, northwestern
France, as shown in Fig. 4. The elevation ranges from −8 to

131 m, a flat region compared to the Chinese site. The northwest-
ern part is the cloudiest region in France. For example, Tours, a
city between the Landivisiau and Paris, has about 1800 sunshine
hours per year [51].

The reference data were collected by the National Institute of
Forest and Geography Information in France based on farmers’
self-report under the Common Agricultural Policy of the Euro-
pean Union in 2017 [52]. A total of 23 classes were recorded,
where we selected 12 classes after adding the artificial class
(impervious) and discarding small classes. The number of train-
ing and testing data samples is shown in Table II. We randomly
split the collected polygons into two subsets: one as the training
set and the other as the testing set. The maximum of training
samples is limited to 10 000 to balance the samples, which
were randomly chosen during training. The above is regional
sampling. For random sampling, the same amount of training
and testing data was selected from all reference data randomly.

Similar to the Chongqing data, a total of 48 SAR channels
were collected to train the model. For comparison purposes, we
collected seven available cloudless scenes of multispectral data
from the Google Earth Engine.
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Fig. 3. Photos from site visit. (a) Paddy. (b) Corn. (c) Orange trees. (d) Sichuan pepper.

Fig. 4. Landivisiau, France data. (a) Landivisiau, France. (b) Optical data (RGB: band 4, band 3, and band 2 of May). (c) DEM. (d) SAR Data (RGB: ascending
VH, ascending VV, and descending VH of May before terrain correction). (e) SAR data (RGB: ascending VH, ascending VV, and descending VH of May after
terrain correction). (f) Reference data.
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Fig. 5. Three CNNs tested for crop mapping. More details of the implementation regarding the number of kernels can be found in the Supplementary Material.
(a) WCRN. (b) DBMA. (c) HResNet.

TABLE II
NUMBER OF TRAINING AND TESTING SAMPLES OF THE LANDIVISIAU DATA

III. METHODOLOGY

A. Architectures of the Three CNNs

In this section, we first go through the three CNNs used in
this study in general terms. We then illustrate in detail about
their components in the following subsections. The three CNNs,
i.e., the WCRN, the HResNet, and the DBMA, are tested in
the experiments. The architectures of these CNNs are shown in
Fig. 5. For the WCRN, the head of the network is a multiscale
2-D convolution to extract spatial and spectral information. The
extracted features go through a max pooling layer to reduce the
spatial dimension to one, followed by a residual unit with 1 ×
1 convolutional layer. Finally, the fused features are fed into a
fully connected (FC) layer with the SoftMax function to give
the probability to each class.

The DBMA network contains two parallel parts: spectral and
spatial. Each part includes a 3-D convolutional layer, a dense
block focusing on the spectral or spatial domain, a dimension
reduction component, a channelwise (spectral) or spatial atten-
tion unit, and a global average pooling layer. The features from

the spectral and spatial branches are then concatenated together
and fed into an FC+SoftMax layer.

As for the HResNet, the input 9 × 9 features first go through
a 2-D 3 × 3 convolutional layer with 64 kernels. The output
7×7×64 features are then fed into a residual unit with 3 × 3
convolutions. The extracted features are fed to the FC+SoftMax
layer. Details of the three networks’ implementation are shown
in the Supplementary Material and will be discussed in the
following sections.

B. Deep Network Elements

1) Convolution: The fundamental component of a CNN is
the convolutional layer. A convolutional layer is capable of
extracting high-level spatial features, such as the frequency and
edge features, using local connections [53]. In a deep CNN, the
output yi,j of a feature map of a convolutional layer at position
(i, j) can be expressed as

yi,j = b+
M∑

m=1

P∑

p=1

Q∑

q=1

wp,q,m × xi+p,j+q,m (1)

where P and Q are the height and width of the convolutional
layer, M is the number of feature maps, and wp,q,m and b are the
weight at (p, q) of the convolutional filter and the bias connected
to the mth feature map. The complexity of a CNN can be
modeled from two aspects, i.e., the number of parameters and the
number of FLOPs. The number of parameters is the complexity
of the network architecture. For better generalization, a network
should have less parameters as possible. FLOPs, i.e., floating
point operations, describe the calculations needed in a neural
network. With more FLOPs, the network is more complex and
time-consuming.

In this study, we selected three advanced CNNs for crop
mapping, i.e., the WCRN, the HResNet, and the DBMA. The
three networks are representatives of lightweight CNNs, 2-D
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CNNs, and 3-D CNNs. In the literature, the DBMA achieved the
best classification on hyperspectral benchmarks, and the WCRN
is the fastest among the three.

2) Residual Learning and Batch Normalization: Two out
of three models contain residual learning, which is a basic
element to obtain deeper networks and to accelerate the training
process [54]. Assuming that the input feature matrix is x, the
output feature matrix y after a residual unit is given by

y = x+ F(f(x),W) (2)

where F is the residual function containing convolutions and
batch normalization [55], f is the activation function, and W
is a set of weights and bias of this layer. If we extend the d-
dimensional feature matrix x in a channelwise fashion, i.e., x =
(x1, . . ., xd), each dimension after batch normalization can be
expressed as

x̂k = BN(xk) =
xk −E[xk]√

Var[xk]
(3)

where the expectation, E[·], and variance, Var[·], are calculated
over a small batch of training samples. The batch normalization
layer keeps the gradients in backpropagation stable and brings
generalization ability to the model.

3) Dense Connection: Dense connection claims to be an
advanced skip connection technique that outperforms residual
learning. Its basic idea is similar to residual learning to use
skip connection and help information flow in the network, but
in a more progressive way. Inside a residual unit, the residual
function F is extended as two series of batch normalization,
ReLU, and a convolutional layer. Each series as G, the residual
unit is reformulated as

y = x+ G2(f(G1(f(x),W1)),W2). (4)

Dense connection is more progressive

x1 = x0 + G1(f(x0),W1) (5)

y = xn = x0 + G1(f(x0),W1) + · · ·+ Gn(f(xn−1),Wn).
(6)

The DBMA network used in this study contains three dense
blocks, i.e., n = 3, as shown in the Supplementary Material.

4) Usage of 1 × 1 Convolution: The usage of 1 × 1 con-
volutional layer reduces the number of parameters of a deep
network and is useful in deep-learning-based remote sensing
image classification by easing overfitting [56]. In the pre-deep-
learning era, remote sensing image classification consisted of
two major procedures [57], [58], which often included designing
some filter to extracting spatial features (e.g., GLCM) and the
fusion of multisource data (e.g., spectral, spatial, temporal,
and backscattering) with dimensional reduction methods (e.g.,
principal component analysis and manifold learning [59]). If we
treat the network into the same two components, then the 1 × 1
convolutional layer is responsible for the fusion process, and a
larger convolutional layer at the head of a network is responsible
for spatial feature extraction. The usage of 1 × 1 convolutional
layer significantly accelerates the WCRN.

5) Max Pooling and Average Pooling: Max pooling and
average pooling are often used to further reduce the number
of parameters in a deep network [60]. For each dimension,
the output feature zavg after an average pooling layer can be
expressed as

zavg =
1

H ×W

H∑

i=1

W∑

j=1

xi,j . (7)

The output of a max pooling layer is given by

zmax = max (xi,j) (8)

where i and j indicate the location of a feature map. When
H and W are equal to the height and width of a feature map,
respectively, pooling is squeezed to a feature value. In a sense,
pooling can be regarded as a special spatial filter.

6) Attention: Attention is a mechanism to assign weights on
the feature maps [61], [62]. This technique has been popular
since its invention and is used in the DBMA network. Given
an extracted feature x, the output features y after attention are
multiplied by a weight matrix s

y = fm(x, s) (9)

where s is given by

s = σ(W2f(W1z)) (10)

where z is the channelwise statistic obtained via global average
pooling, and W1 and W2 are two FC layers.

C. Experimental Details

We implemented the deep learning experiments using Keras
with TensorFlow back-end on a personal PC equipped with an
Intel I5-8500 CPU, 32-GB RAM, and an Nvidia GTX1080Ti
GPU. We used the AdaDelta optimizer to train the network [63].
The learning rate was set as 1.0 for the first 170 epochs and
then as 0.1 for another 30 epochs. If the training loss does
not decrease for five epochs, the training will enter to the next
phase immediately. The batch size was 20. We augmented the
training samples horizontally, vertically, and diagonally to make
full use of the training samples. For experiments with random
forest, we used the scikit-learn library [64]. The number of
trees was searched from 100 to 1000 with a step of 100. The
number of features was searched from 1 to the square root of
the number of features. Threefold cross validation was used to
prevent overfitting. As for experiments with LightGBM [65],
we used the LightGBM official Python implementation. The
boosting mode was set as gradient boosted decision trees, and
the number of trees was searched from 100 to 500 with a step of
50. Threefold cross validation was used to prevent overfitting.

IV. RESULTS AND ANALYSIS

A. Results on the Chongqing Data

The results obtained on the Chongqing data are shown in
Table III. For random sampling, the best result in terms of
OA (95.00%) was obtained via DBMA, though the difference
among WCRN, DBMA, and HResNet is marginal (93.07%,
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TABLE III
CLASSIFICATION ACCURACY OF THE CHONGQING REGION

TABLE IV
CLASSIFICATION ACCURACY OF THE LANDIVISIAU DATA

95.00%, and 94.23%). DBMA was also the best model in terms
of mapping error. RF achieved an OA of 82.55%, which is lesser
than other models in terms of all three metrics. For regional sam-
pling, the WCRN achieved the best result, but the OA dropped
dramatically compared to random sampling, from 93.07% to
59.57%. The five classification methods were comparable to
each other within one standard deviation. The major influential
factor is the sampling strategy. For regional sampling (real-case
scenarios), using RF and LightGBM has similar performances
as using CNNs.

B. Results on the Landivisiau Data

As for the Landivisiau, France data, we show the classification
results in Table IV. For random sampling, the best classification
was achieved via HResNet in terms of all metrics, followed
by DBMA. The difference between these two models was
marginal. The OAs were 92.79% and 92.54%, respectively.
RF and LightGBM obtained significantly worse results. With
regional sampling, the best two models were, surprisingly, RF
and LightGBM. The three CNNs were comparable and slightly
worse than the ensemble methods.

Based on the two experiments, we observed that there was
no significant difference between ensemble methods and CNNs
in distinguishing crop types under the regional sampling strat-
egy. However, in random sampling, the CNNs were better.
The reason is straightforward. CNNs are capable of extracting
spatial information, where nearby pixels are more dependent

on each other than the distant ones. Such reliance provides
additional benefit for CNNs in smoothing the classification
results.

Although the two sampling strategies had an impact on the
classification accuracy, it was not caused (only) by the overlap
of spatial filtering. The features we used in RF and lightGBM
were single-pixel radar scatters only. They did not contain spatial
information from neighborhood pixels. However, it is fair to say
that some overestimation was caused in opening a window, since
the accuracy gap between RF and CNNs was smaller in regional
sampling than random sampling.

C. Comparison Between SAR and Optical Data

To answer the question of whether we can produce crop maps
with SAR data that are as good as optical data, we show results
on the two study sites in Table V using optical only, SAR only,
and both optical and SAR data.

For the Chongqing data, the best classification under random
sampling is obtained by using optical data only via HResNet,
followed by the combined use of optical and SAR data. Under
regional sampling, the best classification is obtained by using
optical data only via RF. The difference between the results
obtained with optical and SAR data is significant. SAR data can
achieve classification with over 90% OA under random sampling
and over 55% OA under regional sampling, but is worse than that
using optical data only. It is also interesting that the combined
used of both data cannot improve the classification.
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TABLE V
CLASSIFICATION COMPARISON WITH DIFFERENT CLASSIFIERS AND DIFFERENT SETS OF DATA IN TERMS OF OA (%)

For the Landivisiau data, the best classifications under random
sampling and regional sampling are obtained using optical and
SAR data. The obtained OAs using optical only and SAR data
only are similar, which means multitemporal SAR data could be
as good as optical data for crop mapping.

The different conclusions via the two study sites are caused
by the fact that Landivisiau, France, is a flat agricultural region,
as shown in Fig. 4, whereas Chongqing, China, is a mountain
agricultural region, as shown in Fig. 2. For the Landivisiau
region, the SAR signals did contain different information from
the ground that is caused by crop phenology and ground objects.
We can easily identify and separate the airport from others. The
high values in SAR signals indicate the existence of man-made
ground objects, e.g., the airport terminal and downtown Landi-
visiau. However, for the Chongqing region, it is apparent that the
mountains play a very important role in determining the reflected
radar signals. In this case, seasonal crop phenology might be
too minor in radar signals compared with huge mountains. By
comparing the classifications from terrain-corrected SAR and
nonterrain-corrected SAR in Table V, we can see that terrain
correction improved the classification in regional sampling by
about 1–3% for the Chongqing data.

D. Visualization of the Samples Sets via Random Sampling
and Regional Sampling

We here show the tSNE visualization of latent features of
the HResNet in Fig. 6. The goal is to show that the sample
set’s variation contributes to the classification gap in the two
sampling strategies. We first check with the Chongqing data,
as shown in Fig. 6(a) and (b). The tSNE visualization is a dimen-
sion reduction tool (similar to principal component analysis) to
visualize high-dimensional data, which is helpful in clustering
and classification [66], [67]. The x and y axes of the tSNE
visualization have no special physical meaning. Each point in
the figure represents a sample instance. The closer the points are,
the similar they are, which is why instances from the same class
always cluster together. We can see some difference regarding
the random sampling and regional sampling strategies. Take
the point cluster (Lotus) of the Chongqing data on the left as
an example. Points from regional sampling are more compact
than those from random sampling. The closer these training
samples are, the less diverse the training set is. Compared to
a diverse training set, a compact training set fails to capture the
whole picture of the real world. In this case, the classifier is

forced to make classification decisions based on a bias sample
set, resulting in overfitting and poor performance of a machine
learning model.

This situation is lightened in the Landivisiau data, as shown
in Fig. 6(d) and (e), because the training set contains a massive
amount of samples (10 000 per class). The massive amount of
training data help the classifier capture the data’s real-world dis-
tribution and enhances the classification performance in regional
sampling. Still, sample points are more compact in regional sam-
pling than in random sampling, e.g., the yellow dots representing
the rapeseed class.

E. Classification Maps Among the Four Methods With Two
Sampling Strategies

To tell the difference, we show the Landivisiau’s classification
maps obtained with all four methods in both random and regional
sampling strategies in Fig. 7. The first row shows classification
maps under random sampling, and the second row shows classi-
fication under regional sampling. We can see that there is no huge
difference in the final classification maps for random sampling
with different methods. Some variations exist in the lower left of
the image, in which HResNet has a slightly better classification
as the classification map is more compact. For regional sampling,
the major difference is in the largest cropland in the middle of
the image. DBMA and HResNet misclassified some areas inside
this cropland, and RF, surprisingly, produced the most accurate
classification. However, RF still failed to classify crop types in
the lower left of the image.

As for Chongqing, the classification is shown in Fig. 8. The
variation between random sampling and regional sampling is
high. Take the classification by HResNet as an example. It is ap-
parent that with regional sampling, the classifier failed to capture
general features to classify crop types, in this case, paddy. With
random sampling, the classification is slightly better, but cannot
be categorized as satisfactory, probably due to the fragmented
land parcels and the significant difference in elevation. It might
be better to use UAV remote sensing in this mountainous region
to obtain high spatial and spectral resolution imagery and to
avoid bad weather.

F. Importance of SAR Channels of Each Month and the
Influential Factors

To understand which month’s data are important in crop
mapping, we show the importance of SAR channels of each
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Fig. 6. Visualization of HResNet-extracted features of the training samples using tSNE. Random sampling is more diverse; regional sampling is more compact.
A diverse sample set helps the machine learning model achieve better generalization. (a) Random sampling from the Chongqing data. (b) Regional sampling from
the Chongqing data. (d) Random sampling from the Landivisiau data. (e) Regional sampling from the Landivisiau data.

Fig. 7. Classification maps in Landivisiau, France, using five models with random sampling and regional sampling.
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Fig. 8. Classification maps in Chongqing, China, using five models with random sampling and regional sampling.

Fig. 9. Importance of SAR channels of each month (Chongqing).

month estimated by random forest in Figs. 9 (Chongqing) and
10 (Landivisiau). For Chongqing, ascending VV (green point)
appears to be the most important channel in almost all months,
while in some months, descending VV is more important. SAR
signals from spring and summer months (January to August) are
more important than those from the fall and winter months in
distinguishing crop types. For Landivisiau, the most important
feature is descending VH of July. SAR signals from the summer
months (May to July) are significantly important. The two sites
show the importance of summer SAR data in distinguishing crop
types. The difference lies in the spring SAR data. Chongqing
(29.4◦) is located in a subtropical is located in a subtropical
monsoon climate region, where the temperature in spring is
enough to grow crops. We show the monthly average tempera-
tures of Chongqing and Landivisiau in Fig. 11. In March, when
the average high temperature in Landivisiau is below 10◦, the
average high temperature in Chongqing has already reached 15◦.
The temperature difference leads to different farming behaviors
(Chongqing is two or even three harvests a year, while Landi-
visiau is one harvest a year), and therefore, the sensitivity of
SAR signals is different (due to changes of croplands) in the
two regions.

Such difference can also be inferred from the image’s entropy,
as shown in Fig. 12. Strong linear correlations were found
between feature importance and each SAR channel’s entropy
(p < 0.01 for Chongqing, and p < 0.05 for Landivisiau).

Along with the SAR channel’s entropy, we examined four
climatological factors, including monthly average high and low
temperatures, soil moisture, and rainfall. Monthly soil moisture
data of their respective years (2019 for Chongqing and 2017 for
Landivisiau) were obtained from the NOAA Physical Sciences
Laboratory. Temperature and rainfall data were obtained from
the Climate-Data.ORG. The result is shown in Table VI. These
climatological factors are not universal factors correlated with
feature importance. Only the high and low temperatures of
Landivisiau are strongly correlated with feature importance,
which is a reflection of its growing season.

G. Effects of Growing Seasons

The growing season should be considered when using full-
year SAR data. According to Garonna et al. [68], the European
countries have a growing season length of about 160 days,
starting from the 100th day (March) of the year to the 260th
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Fig. 10. Importance of SAR channels of each month (Landivisiau).

Fig. 11. Monthly average temperatures of Chongqing and Landivisiau.

Fig. 12. Relationship between feature importance and the SAR channel’s entropy. (a) Chongqing. (b) Landivisiau.
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TABLE VI
CORRELATION WITH FEATURE IMPORTANCE

*indicates p value < 0.05; **indicates p value < 0.01.

TABLE VII
CLASSIFICATION COMPARISON USING FULL-YEAR DATA AND

GROWING-SEASON DATA

For Chongqing, the growing season is February–November; for Landivisiau, the
growing season is March–August.

TABLE VIII
EFFECTS OF DESPECKLING IN TERMS OF OVERALL ACCURACY (%)

day (August). For south China (where Chongqing locates), the
growing season is 280–320 days, starting as early as January
and ending after November [69].

We selected the growing season in Landivisiau as from
March to August, and the growing season in Chongqing as
from February to November. The comparison between using
full-year and growing-season data (via regional sampling) is
shown in Table VII. When using CNNs, the OAs were similar or
slightly increased using growing-season data. When using 1-D
classifier such as RF or lightGBM, the OAs of growing season
were smaller than the one of full year. This is because RF and
lightGBM are insensitive to noise. The addition of nongrowing
season data would not affect their performance. However, CNNs
are not selective. If noisy channels or abundant channels were
included, their performance could be degraded due to the lack
of feature selection and high dimensionality.

H. Effects of Despeckling

In our main experiments, the SAR images used were without
despeckling since this is the default setting in Google Earth
Engine. To test its effects on crop mapping, we did an experiment
on the data after the Refined Lee filtering with a 7 × 7 kernel
size. The result is shown in Table VIII. We can see that usage of
the Refined Lee filter led to an increase of classification accuracy
for RF and LightGBM, as it included some spatial information

TABLE IX
COMPUTATION TIME (S) AND MODEL COMPLEXITY IN TERMS OF THE NUMBER

OF PARAMETERS AND FLOPS

For WCRN, we also report the run time on CPU (Intel I5-8500) in brackets. We did
not report this metric on HResNet and DBMA because they are extremely slow on
CPU. It took 7 s to run an epoch on CPU with the WCRN, but took 4 min to run an
epoch on CPU with the HResNet.

that helped the classification. However, usage of the Refined
Lee filter led to a decrease of the classification using CNNs, as
it blurred the image.

I. Computation Time

Finally, we show the computation time of the five models
and the number of parameters and FLOPs of neural networks in
Table IX. We can see that DBMA, the 3-D CNN, is exceptionally
time-consuming and nearly ten times slower compared to other
models. The three deep learning models have similar numbers
of parameters and FLOPs. Still, WCRN and HResNet are faster
than DBMA because 1) 3-D convolutional layers require a larger
memory than the 2-D version, and 2) the implementation of 2-D
convolutions is well optimized in TensorFlow, while the 3-D
version is not.

With the acceleration of a GTX1080Ti GPU, HResNet and
WCRN cost a similar time as RF. For the Landivisiau, France
data, since the training samples are greatly enlarged, the time
to train a neural network is short than RF. RF is an ensemble
learning method of multiple decision trees, and its training
time complexity is O(ntree×mtry × n log n). When ntree
and mtry are constant, the training time is linear with n log n,
where n is the number of training samples. For LightGBM,
its time complexity is O(0.5×#feature×#bin), which is
insensitive to the number of training samples [65]. For neural
networks, the time complexity is directly linear with the number
of training samples. As a result, with a large amount of training
data, neural networks can be faster than RF.

It is surprising but still reasonable that the WCRN runs faster
on CPU than GPU. This is because: 1) there is some conversion
time of the training data between RAM and GPU; 2) the I5-8500
is an advanced CPU; and, most importantly, 3) WCRN processes
with only 5 × 5 input patches and has a simple and elegant
architecture with only 58K parameters and 1.16M FLOPs. We
only report the computation time of the WCRN because the other
two networks are extremely slow. For example, it took 7 s to run
an epoch on CPU with WCRN, but took 4 min to run an epoch on
CPU with the HResNet. Based on the experiments, the WCRN
not only has a similar performance with other deep networks,
but also can run on CPU. For those with limited budgets, it is
highly recommended to use WCRN as their first choice for crop
mapping.
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V. CONCLUSION

In this study, we aim at using multitemporal SAR data to
produce crop type classification maps. We throw three questions
at the beginning of this article. The first question is whether
we can produce crop maps using multitemporal SAR data as
accurately as those using optical data. The answer is yes, as
we did produce better crop maps in terms of OA, Kappa, and
mapping error in the Landivisiau study site. However, it should
be noted that Landivisiau is a flat agricultural region located in
northwest France. If the agricultural region is not flat enough,
such as Chongqing, southwest China, mountains will become a
major issue in using radar signals to distinguish crop types. One
should note that this was based on two study sites in China and
France. In our setting, the SAR signals were averaged monthly.
Such setting, although provides a general scenario for crop
mapping using SAR data, reduces the potentials of Sentinel-1
dual-polarized SAR data since its maximum capability is one
visit per six days. Additionally, the ascending data were obtained
in the evening and the descending data in the morning, which
could lead to different characteristics of the SAR signals that
might benefit crop mapping. The second question is about the
random sampling and regional sampling. Classification with
random sampling is better compared to regional sampling.
The better classification of random sampling is not overestima-
tion caused by overlapping of training and testing samples. It is a
result of domain bias. With the same amount of training samples,
the training set via random sampling has a larger variation
than regional sampling. Therefore, it has a better estimation
of the data’s real-world distribution, which will bring good
generalization to the machine learning models. As for the last
question, 3-D CNNs such as DBMA are too time-consuming
compared to 2-D CNNs, random forest, and LightGBM. Their
performances were barely as competitive as 2-D CNNs. Fewer
parameters are not the guarantee of faster computation for 3-D
CNNs. It is better to use lightweight 2-D CNNs, such as the
WCRN that can run on CPU with small FLOPs, in real-world
crop mapping with multitemporal SAR data.

We also examined the potential factors that affect the capa-
bility of SAR data in distinguishing crop types. Strong cor-
relations were found between each channel’s entropy and its
feature importance in distinguishing crop types. Monthly tem-
perature, which is related to the growing season, is a major
factor for the Landivisiau region (length of the growing season:
160 days), but not a factor for the Chongqing region (length
of the growing season: 300 days). Other factors, including soil
moisture and rainfall, did not show significant correlations with
feature importance. Future studies should explore more about
the influential factors of SAR data to understand the underling
physical meaning.
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