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We derive a series of quantitative bulk-boundary correspondences for 3D bosonic and fermionic symmetry-
protected topological (SPT) phases under the assumption that the surface is gapped, symmetric, and topologically
ordered, i.e., a symmetry-enriched topological (SET) state. We consider those SPT phases that are protected by
the mirror symmetry and continuous symmetries that form a group of U(1), SU(2), or SO(3). In particular, the
fermionic cases correspond to a crystalline version of 3D topological insulators and topological superconductors
in the famous tenfold-way classification, with the time-reversal symmetry replaced by the mirror symmetry and
with strong interaction taken into account. For surface SETs, the most general interplay between symmetries
and anyon excitations is considered. Based on the previously proposed dimensional reduction and folding
approaches, we rederive the classification of bulk SPT phases and define a complete set of bulk topological
invariants for every symmetry group under consideration and then derive explicit expressions of the bulk
invariants in terms of surface topological properties (such as topological spin, quantum dimension) and symmetry
properties (such as mirror fractionalization, fractional charge or spin). These expressions are our quantitative
bulk-boundary correspondences. Meanwhile, the bulk topological invariants can be interpreted as anomaly
indicators for the surface SETs which carry ’t Hooft anomalies of the associated symmetries whenever the bulk is
topologically nontrivial. Hence, the quantitative bulk-boundary correspondences provide an easy way to compute
the ’t Hooft anomalies of the surface SETs. Moreover, our anomaly indicators are complete. Our derivations of
the bulk-boundary correspondences and anomaly indicators are explicit and physically transparent. The anomaly
indicators obtained in this work can be straightforwardly translated to their time-reversal counterparts that apply
to the usual topological insulators and topological superconductors, due to a known correspondence between
mirror and time-reversal topological phases.
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I. INTRODUCTION

Symmetry-protected topological (SPT) phases are a class
of short-range entangled states of matter whose nontriv-
ial topological properties require protection from symme-
tries [1,2]. Topological insulators and topological supercon-
ductors are among the famous examples. One of the most
important features of SPT states is that the boundary cannot
be trivially gapped. For example, the surface of a 3D topo-
logical insulator can either be a gapless Dirac fermion, or a
spontaneous symmetry-breaking state, or certain time-reversal
symmetric non-Abelian topologically ordered states [3–7].
The nontriviality of these surface states lies in the fact
that they carry a quantum anomaly, more precisely the ’t
Hooft anomaly [8,9], of the underlying symmetries. Generally
speaking, an anomalous state cannot be regularized (e.g., by
a lattice realization) in the same dimensions without violating
the symmetries.1 Instead, it has to live on the boundary of a
bulk of one higher dimension. In fact, for given symmetries,
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1A caveat is that in a lattice realization, the symmetries should

be implemented in an on-site fashion and should be in a linear
representation of the symmetry group. If they are not on-site or in

there is a one-to-one correspondence between the bulk SPT
phases and the types of ’t Hooft anomalies on the bound-
ary. This correspondence is a manifestation of the famous
bulk-boundary correspondence in topological phases of mat-
ter [10,11].

In the past few years, special attention has been paid to
3D SPT systems with a gapped, symmetric, and topologi-
cally ordered surface state [3–7,12–21], i.e., the surface is a
symmetric-enriched topological (SET) state [22–26]. On the
one hand, surface SETs are a new scenario to terminate the
3D bulk state, which does not exist in lower dimensions. Also,
they are relatively easier to deal with than gapless surface
states in interacting systems. So, they attract a lot of atten-
tion. On the other hand, SETs themselves are of fundamental
interests. They exhibit interesting physical properties, such
as symmetry fractionalization on anyon excitations. It is im-
portant to determine the ’t Hooft anomaly of a given SET
state, a problem equivalent to establishing the bulk-boundary
correspondence for 3D SPT systems [19–21,24,27,28].

For 3D SPT systems with an SET surface, the bulk-
boundary correspondence can be established at a purely

a projective representation of the symmetry group, anomalous states
may still be realized on a lattice.
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FIG. 1. Dimensional reduction and folding. The pink plane represents the mirror reflection plane, and the dark blue plane represents the
physical surface. Applying symmetric local unitary transformations turns the system in (a) into the inverted T junction in (b) and further
folding the surface turns the T junction into the 2D system in (c). Arrows represent chirality of the topological states. This procedure reduces
the problem of 3D bulk-boundary correspondence to a problem of 2D gapped domain wall.

topological level, as both the bulk and surface are topological
states. Ideally, one may perform the following steps: (i) define
a set of bulk topological invariants to characterize the 3D SPT
state; (ii) define a set of surface topological invariants to char-
acterize the SET surface; and (iii) establish a set of equations
of the bulk and surface topological invariants, which serve as a
quantitative bulk-boundary correspondence. For example, 3D
topological superconductors, with the time-reversal symmetry
satisfying T 2 = −1, has a Z16 classification [7,17,18]. The
quantitative bulk-boundary correspondence can be expressed
as follows [29]:

ηT = 1√
2D

∑
a∈C

daθaT̃ 2
a , (1)

where ηT is a bulk invariant that takes a value in
1, eiπ/8, . . . , ei15π/8, and all quantities on the right-hand side
describe the surface SET. More specifically, C denotes the
surface topological order, a denotes a surface anyon, da and
θa are quantum dimension and topological spin, D = √∑

a d2
a

is the total quantum dimension, and T̃ 2
a = 0,±1 describes

time-reversal properties of the anyon a (see Refs. [29,30]
for details). Equation (1) applies to general time-reversal
symmetric fermionic SETs. It is not only a quantitative
bulk-boundary relation, but also provides an easy way to
compute the time-reversal ’t Hooft anomaly of an arbitrary
SET, which has the same Z16 classification as the bulk
topological superconductor. In this respect, ηT is also
referred to as an anomaly indicator.

It is highly desired to derive quantitative bulk-boundary re-
lations similar to Eq. (1) for 3D interacting SPT systems with
other symmetries. Difficulties are expected, e.g., it is usually
difficult to identify a complete set of topological invariants for
the bulk or the surface, in particular if one aims for results
that apply to the most general surface SETs. Nevertheless,
several successful attempts have been made. For example,
Refs. [31,32] find a physical way to define anomaly indica-
tors and derive similar equations to (1) for mirror-symmetric
bosonic and fermionic systems, respectively. Reference [33]
introduces several expressions of anomaly indicators for 3D
topological insulators, i.e., those SPTs with time reversal sym-
metry and U(1) charge conservation. Moreover, the work of
Ref. [34] introduces a general algorithm to compute anomalies
by making use of a class of exactly solvable models. More
discussions on prior works will be given in Sec. I B.

In this work, we aim to perform a systematic study on
3D interacting SPT phases protected by the mirror symme-
try M and continuous symmetries of group G, where G =
U (1), SU(2) or SO(3), and establish a collection of quan-
titative bulk-boundary correspondences like (1). The overall
symmetry group Ĝ formed by M and G will be discussed
more explicitly in Sec. II C. This work is a direct gener-
alization of Refs. [31,32]. We will study both bosonic and
fermionic systems. The fermionic cases are the mirror version
of the topological insulators and superconductors in the fa-
mous tenfold way classification [35,36], namely, topological
crystalline insulators and superconductors. More specifically,
we will derive or rederive the bulk SPT classification, define
anomaly indicators and surface topological invariants in a
physically transparent way, and finally establish quantitative
bulk-boundary relations like the one in Eq. (1). Our main
results are summarized in Sec. I A.

Before moving on to the main results, here we briefly
introduce our approach and make a few comments on its
advantages. We will use the folding approach introduced in
Ref. [31] to obtain the bulk-boundary correspondences (see
more details in Sec. II). This approach is developed specif-
ically to handle mirror symmetry, which is further based on
the dimensional reduction approach for crystalline symme-
tries, first introduced in Ref. [37]. Special treatment is needed
for spatial symmetries (such as the mirror symmetry) and
anti-unitary symmetries (such as time-reversal), because the
usual method of gauging symmetries does not apply [38]. The
folding approach transforms the original 3D problem to a 2D
problem such that (i) the mirror symmetry M turns into an on-
site unitary Z2 symmetry and (ii) the original bulk-boundary
relation becomes a problem of 2D gapped domain wall. See
Fig. 1 for an illustration. Since M becomes an on-site unitary
symmetry, we can now gauge it to study topological proper-
ties. Another advantage is that the topological correspondence
between the two sides of a gapped domain wall can be more
readily established.

A. Main results

We study 3D bosonic and fermionic interacting SPT sys-
tems with both the mirror symmetry M and a continuous
symmetry group G = U(1), SU(2), or SO(3). Different cases
of the total symmetry group Ĝ ⊃ G will be discussed in
Sec. II C. We give a systematic and physical characteriza-
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TABLE I. Classification of 3D bosonic SPT phases with different symmetries and values of the anomaly indicators η1, η2, η3, and η4. The
symbol “◦” means the corresponding anomaly indicator is not defined. Remark: in the case of SU(2) × ZM

2 , the alternative indicator η̃3 can
take ±1. However, it is forced to be 1 when the surface is an SET state, which indicates that the surface is either symmetry breaking or gapless
if η̃3 = −1.

Symmetry Classification η1 η2 η3 η4

U(1) × ZM
2 Z4

2 ±1 ±1 ±1 ±1
U(1) � ZM

2 Z3
2 ±1 ±1 ±1 ◦

SU(2) × ZM
2 Z3

2 ±1 ±1 η1η̃3 η2η̃3

SO(3) × ZM
2 Z4

2 ±1 ±1 ±1 ±1

tion of the bulk and surface topological properties using the
dimensional reduction and folding approaches [31,37]. In par-
ticular, we define a complete set of anomaly indicators for
all the SPT phases under consideration and derive a series of
quantitative bulk-boundary relations. The anomaly indicators
are summarized in Tables I and II. These indicators form a
complete set of bulk topological invariants so that the bulk
SPT classification can be inferred from the possible values
that they can take. The inferred classifications are the same
as those of interacting time-reversal topological insulators
and superconductors [7,40], in agreement with the crystalline
equivalence principle [41].

More specifically, for bosonic systems with G = U(1), we
study both cases of U(1) × ZM

2 and U(1) � ZM
2 . The two

cases have Z4
2 and Z3

2 classification, respectively. We first
define a set of anomaly indicators η̃1, η̃2, η̃3, η̃4, and η̃5

to characterize the bulk SPT state (not all are independent).
These indicators can be recombined into four other indepen-
dent indicators η1, η2, η3, and η4, which have the following
expressions in terms of surface SET quantities:

η1 = 1

D

∑
a∈C

d2
a θa, (2a)

η2 = 1

D

∑
a∈C

daθaμa, (2b)

η3 = 1

D

∑
a∈C

d2
a θaei2πqa , (2c)

η4 = 1

D

∑
a∈C

daθaμaei2πqa , (2d)

where all ηi take a value ±1, da and θa are quantum dimension
and topological spin of anyon a in the topological order C,
μa = 0,±1 is a quantity describing mirror fractionalization,
qa (defined modulo 1) is the fractional charge associated with
U(1) symmetry. We remark that the indicator η4 only applies
to U(1) × ZM

2 but not U(1) � ZM
2 . The two sets of indicators

{η̃i} and {ηi} are equivalent, with the relations shown in Ta-
ble III. The indicators η̃i have transparent physical definitions
(see Sec. III) while ηi have simpler expressions, so we keep
both notations in this paper. The bulk SPT is trivial if and
only if ηi = 1 for every i. Equivalently, the surface SET is
anomaly-free if and only if ηi = 1 for every i when evaluated
by Eqs. (2a)–(2d). The indicators η1 and η2 characterize pure
mirror anomalies, while η3 and η4 are associated with mixed
anomalies between M and U(1). The indicators η1 and η2 and
their time-reversal counterparts have already been discussed
in Refs. [29,42], and the time-reversal counterparts of η3 and
η4 have been proposed in Ref. [33].

For fermion systems with G = Uf (1), there are three pos-
sible symmetry groups, corresponding to the AI, AII, and
AIII classes in Table II. We define three anomaly indicators
η1 f , η2 f and η3 f to characterize the bulk SPT state (where η1 f

is not applicable to AI class). Again, they form a complete
set of bulk topological invariants so that the SPT classification

TABLE II. Classification of 3D fermionic SPT phases with different symmetries and values of the anomaly indicators η1 f , η2 f , η3 f ,
and η4 f . We have adapted the Altland-Zirnbauer symmetry classes [39] by replacing the time-reversal with the mirror symmetry, with the
understanding that “T 2 = ±1” is mapped to “M2 = ∓1.” Here, we list only the classes that have nontrivial 3D interacting SPT phases. Our
classification is obtained by the dimensional reduction approach [37], and the results are in agreement with those from invertible topological
field theory [40]. Anomaly indicators for the DIII class was studied in Ref. [32] and we list it here for completeness. The number n in the
fourth column is an integer. The symbol “◦” means the corresponding anomaly indicator is not defined. The red numbers cannot be realized
by surface SETs, indicating that the surface is either symmetry breaking or gapless.

Class Symmetry Classification η1 f η2 f η3 f η4 f

DIII Z f
2 × ZM

2 Z16 einπ/8 ◦ ◦ ◦
AIII U f (1) × ZM

2 Z8 × Z2 einπ/4 ±1 η4
1 f ◦

AII U f (1) � ZM
2 Z3

2 ±1 ±1 ±1 ◦
AI [U f (1) � Z fM

4 ]/Z2 Z2 ◦ ±1 1 ◦
CI SU f (2) × ZM

2 Z4 × Z2 ±1, ±i ±1 1 ◦
CII [SU f (2) × Z fM

4 ]/Z2 Z3
2 ◦ ±1 1, −1 ±1
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TABLE III. Relations between η̃i and ηi in bosonic systems. The
indicators η̃i are defined in Sec. III A.

U(1) × ZM
2 U(1) � ZM

2

η̃1 = η1 η̃1 = η1

η̃2 = η2 η̃2 = η2

η̃3 = η1η3 η̃3 = η1η3

η̃4 = η1η2η3η4 η̃4 = η1η3

η̃5 = η4 η̃5 = η2

can be inferred from the values they can take. With the folding
approach, we are able to show that

η1 f = 1√
2D

∑
a∈C

daθaμa, (3a)

η2 f = 1√
2D

∑
a∈C

d2
a θaeiπqa , (3b)

η3 f = 1

2D

∑
a,b∈C

dadbei2πqa ei2πqbSab, (3c)

where C is now a fermionic topological order, Sab is the S
matrix, μa = 0,±1 describes mirror fractionalization of the
surface SET, qa (now defined modulo 2) is the fractional
charge associated with U f (1). The bulk SPT is trivial if and
only if ηi f = 1 for every i, and equivalently the surface SET is
anomaly-free if and only if ηi f = 1 for every i when evaluated
by Eqs. (3a)–(3c). The indicator η1 f describes pure mirror
anomaly, which was discussed in Ref. [32], and η2 f , η3 f

describe mixed anomalies between M and U f (1). We remark
again that the time-reversal counterparts of the expressions
in (3) have already been proposed in Ref. [33] before.

For bosonic systems with G = SU(2) or SO(3) in Table I,
the indicators η1 and η2 still apply as they characterize pure
mirror anomalies. To characterize the mixed anomalies, we
show that it is enough to consider their U(1) subgroup, and
thereby anomaly indicators inherit from those of U(1) × ZM

2 .
For G = SU(2), there is only one Z2 in the classification asso-
ciated with the mixed anomaly, characterized by η̃3. However,
η̃3 is enforced to be 1 if the surface is an SET, due to the
fact that SU(2) cannot be fractionalized by anyons. Therefore
any SPT state with η̃3 = −1 is enforced to support a gapless
surface if no symmetry breaking occurs. This phenomena
is known as “symmetry-enforced gaplessness” and was first
discovered in Ref. [7]. In the case of SO(3), the bulk-boundary
relations for η3 and η4 inherit from (2c) and (2d):

η3,SO(3) = 1

D

∑
a∈C

d2
a θaei2πsa , (4a)

η4,SO(3) = 1

D

∑
a∈C

daθaμaei2πsa , (4b)

where sa is the spin carried by the anyon a under SO(3),
which is either an integer or half-integer. That is, the fractional
charge qa in (2c) and (2d) are replaced by sa in (4a) and (4b).
Note that we have dropped the subscript “SO(3)” of η3,SO(3)

and η4,SO(3) in Table I.

For fermionic systems with G = SU f (2), there are two
symmetry classes, corresponding to the CI and CII classes in
Table II. Similarly to the bosonic case, many properties can
be characterized by M and the U f (1) subgroup. However,
compared to G = U f (1), we define a forth indicator η4 f for
CII class. The indicators η1 f , η2 f and η3 f are similarly de-
fined, though they may take different values. We show that
the two cases, that η1 f = ±i in CI class and that η3 f = −1 in
CII class, cannot be realized from surface SETs and must lead
to symmetry-enforced gaplessness. The expression of η1 f is
again given by (3a). The others are

η2 f ,SU f (2) = 1√
2D

∑
a∈C

d2
a θaei2πsa , (5a)

η4 f ,SU f (2) = 1√
2D

∑
a∈C

daθaμaei2πsa . (5b)

Equation (5a) is related to (3b) by replacing qa with 2sa,
where the factor of 2 is due to the convention that SU f (2)
has an angle period 4π while U f (1) has an angle period 2π .
Also, (5b) is very similar to (4b). Indeed, we derive the former
from the latter in Sec. VII C. Again, we have dropped the
subscript “SU f (2)” of η3 f ,SU f (2) and η4 f ,SU f (2) in Table II.

Finally, we remark that while the above quantitative
bulk-boundary relations are our main results, the physical def-
initions of the anomaly indicators are also worth emphasized,
which are given in Secs. III, VI A, and VII A. In addition,
when rederiving the classification of 3D SPT phases in Ta-
bles I and II, we also derive a few classifications of 2D SRE
states, which are summarized in Table IV. To our knowledge,
some of these classifications are not known previously.

B. Relation to prior works

Here we discuss the prior works that are closely related to
this work.

First, regarding classification of strongly correlated topo-
logical crystalline phases, there have been many works in the
literature [37,41,43–52]. The dimensional reduction approach
proposed in Ref. [37] and the crystalline equivalence principle
proposed in Ref. [41] are two general classification schemes
that emphasize more on physical properties. The two schemes
are later shown to be equivalent [43–46]. There are also
more mathematical approaches such as the cobordism the-
ory [50,53] and invertible topological field theory [40,51,52].
For our purpose of defining bulk topological invariants using
physical observables, we find the dimensional reduction ap-
proach more suitable and adopt it extensively in this work.
More specifically, on classification of 3D topological crys-
talline phases protected by M and a Lie group G = U(1),
SU(2), or SO(3), not all cases have been worked out explicitly
before (some U(1) cases were done in Ref. [37]). So, we
derive or rederive these classifications using the dimensional
reduction approach, in particular for some of the fermionic
cases. Nevertheless, classifications of the time-reversal coun-
terparts can be found in Refs. [7,40]. Our results are in
agreement with the time-reversal classifications, under the
crystalline equivalence principle [28,41].

The scenario of gapped symmetric topologically ordered
surface states for 3D SPT phases was first proposed in

075111-4



ANOMALY INDICATORS AND BULK-BOUNDARY … PHYSICAL REVIEW B 104, 075111 (2021)

TABLE IV. Classification of 2D SRE phases, including both SPT and invertible topological orders, with a continuous symmetry G and a
unitary Z2 symmetry for bosonic and fermionic systems, where G = U(1), SU(2), or SO(3). The Z2 component in all cases is associated with
the chiral E8 state and IQH state. In the fourth column, we list the smallest possible Hall conductance σ 0

H and the Hall conductance σ root
H of

the root state for the IQH Z classification.a The ratio σ root
H /σ 0

H is the filling factor of the root IQH state. In the last column, we list the reduced
classification of SRE states under adjoining operations, which corresponds to the classification of 3D SPT phases in Tables I and II.

Boson/Fermion Symmetry SRE classification (σ 0
H , σ root

H ) Reduction

Boson U(1) × Z2 Z2 × Z2
2 (2, 2) Z4

2

Boson U(1) � Z2 Z2 × Z2 (2, 2) Z3
2

Boson SU(2) × Z2 Z2 × Z2 (1, 1) Z3
2

Boson SO(3) × Z2 Z2 × Z2
2 (2, 2) Z4

2

Fermion(AIII) U f (1) × Z2 Z2 × Z4 (1, 1) Z2 × Z8

Fermion(AII) U f (1) � Z2 Z2 × Z2 (1, 1) Z3
2

Fermion(AI) [U f (1) � Z f
4 ]/Z2 Z2 (1, 2) Z2

Fermion(CI) SU f (2) × Z2 Z2 × Z2 (1/2, 1) Z2 × Z4

Fermion(CII) [SU f (2) × Z f
4 ]/Z2 Z2 × Z2 (1/2, 1) Z3

2

aBy “the smallest possible Hall conductance” we mean when only U(1) or the z-component rotation of SU(2) and SO(3) is present. For U(1)
and SO(3), the unit charge or spin is 1, the flux quantum is 2π , and accordingly the conductance quantum is 1/2π . For SU(2), the unit spin is
1/2, the flux quantum is 4π , such that the conductance quantum is 1/4π . We have listed the Hall conductances in units of 1/2π in the Table.

Ref. [12] for bosonic topological insulators. Later, intensive
effort was made on surface SETs for 3D SPT phases, based
on either field theoretical analysis, Walker-Wang models,
or other methods [3–7,12–20,29–34,42,54–62]. While some
works concern a specific surface SET state, some others
deal with bulk-boundary relations and ’t Hooft anomalies of
general surface SETs. Those that are most closely related
to this work are several works on anomaly indicators.
Time-reversal anomaly indicators for bosonic and fermionic
systems were proposed and proved in Refs. [29,30,42]. These
indicators are the time-reversal counterparts of η1, η2 in (2)
and η1 f in (3). The proofs given in Refs. [30,42] make use
of the path integral on unoriented manifolds in the limit of
topological field theories (i.e., the energy gap is pushed to
infinity). References [31,32] developed the folding approach
and derived similar expressions of anomaly indicators for the
mirror symmetry. More recently, Ref. [33] derived a series of
anomaly indicators for bosonic and fermionic time-reversal
topological insulators with U(1) symmetries. Also, Ref. [34]
developed a general algorithm to compute the H4(G, U(1))
topological invariants, which can be viewed as anomaly in-
dicators, for bosonic SET phases. The idea is to use SET
data to construct a 3D exactly solvable model and extract
topological invariants from the model. Unfortunately, de-
riving explicit expressions of anomaly indicators seem not
easy.

As mentioned above, this work is a direct generalization
of the works in Refs. [31,32]. We do not have much technical
advance compared to these works. Also, we remark that many
parts of our results were obtained previously in the context
of time-reversal SPT phases in Ref. [33]. The connection
between this work and Ref. [33] can be established by the
crystalline equivalence principle [28,41]. Nevertheless, our
study provides physically clear definitions of the anomaly
indicators and the establishment of bulk-boundary correspon-
dence is very direct and systematic. Furthermore, we also
deal with the systems with both mirror and SO(3) or SU(2)
symmetries, which are not discussed in Ref. [33].

C. Organization of the paper

The rest of the paper is organized as follows. In Sec. II,
we discuss several general aspects of this work, including
the dimensional reduction and folding approaches, symmetry
groups, fundamentals of topological orders, the method of
gauging symmetries. In Sec. III, we define a complete set
of anomaly indicators for both bosonic and fermionic sys-
tems with U(1) and M symmetries, using the dimensional
reduction approach. Next, we discuss properties of surface
SETs, derive bulk-boundary relations and the expressions of
anomaly indicators for bosonic and fermionic systems with
G = U(1), in Secs. IV and V, respectively. In Sec. VI, we
define anomaly indicators and derive the bulk-boundary re-
lations for bosonic systems with G = SU(2) or SO(3). In
Sec. VII, we study fermionic systems with M and SU f (2)
symmetries. We give a brief discussion in Sec. VIII.

The appendices contain some technical discussions. In Ap-
pendix A, we prove the constraints that certain vortex braiding
statistics must obey in the case that M and U(1) symmetries
do not commute. In Appendix B, we discuss the consequence
of adjoining integer quantum Hall states in the dimensional
reduction approach in a few cases. In Appendices C, D, and E,
we give alternative derivations of η̃3, η̃4, and η̃5 through anyon
condensation theory, respectively. While these derivations are
lengthy and more technical than those in the main text, they
do provide a better understanding of the surface SETs and the
bulk-boundary correspondence.

II. GENERALITIES

In this section, we discuss the background and methods to
prepare for the studies in the next several sections.

A. Dimensional reduction

One of the approaches to analyze 3D mirror-symmetric
SPT phases is the dimensional reduction approach introduced
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in Ref. [37]. We will adopt this approach in this work. Below
we briefly review the general idea in the current context.

First of all, we notice that there is no 3D SPT phase pro-
tected solely by G = U(1), SU(2) or SO(3) for either bosonic
or fermionic systems [1,40,53,63,64]. Then, there exists a
G-preserving local unitary transformation that can remove
all short-range entanglement in the ground state [65]. To
further make M preserved, we first consider a local unitary
transformation Ul , which acts on the left side of the mirror
plane in Fig. 1(a) and turns the left part of the state into a
trivial product. It respects G, i.e., Ul g = gUl for every g ∈ G.
In addition, we also apply the local unitary transformation
Ur = M−1UlM, which acts only on the right side of the
mirror plane in Fig. 1(a). Note that Ur also preserves G, as
long as G is a normal subgroup of the overall symmetry group
Ĝ, which is always true for G consisting of only internal
symmetries. Then, it is not hard to show that the combined
unitary transformation UlUr respects M: M−1(UlUr )M =
UlUr . Accordingly, UlUr respects the total symmetry group Ĝ.

The consequence of applying UlUr onto the ground state
is that it turns the state into the trivial product state every-
where except for the degrees of freedom near the mirror
plane [Fig. 1(b)]. Near the mirror plane, the supports of Ul

and Ur overlap, so entanglement cannot be fully removed.
Nevertheless, the degrees of freedom near the mirror plane
decouple from elsewhere. Accordingly, we obtain an effective
2D short-range entangled (SRE) state on the mirror plane. In
general, a 2D SRE state2 can be either an SPT or an invertible
topological order [63]. 2D invertible topological orders are
generated under stacking by the E8 state for bosonic sys-
tems [66], and are generated by integer quantum Hall (IQH)
states for fermionic systems. The 2D SRE state in the mirror
plane contains all topological properties of the original 3D
SPT state. Two nice things of this dimensional reduction are
that: (1) since the effective SRE system is 2D, its topological
properties are easier to analyze than the original 3D systems;
(2) in the mirror plane, M becomes an internal symmetry so
it is easier to deal with too. The latter allows us to gauge ZM

2
and extract topological properties by studying gauge fluxes
(see Sec. II E).

Classification of 3D SPT states can then be obtained by
classifying 2D SRE states with a symmetry group Ĝ, where
M is viewed as internal. However, the latter classification is
generally larger than that of the original 3D SPT states. To
obtain the correct 3D classification, one needs to consider
a reduction by the so-called adjoining operations [37]: one
adjoins two G-symmetric SRE states on the two sides of the
mirror plane, where the two states are images of each other
under M. The adjoined states can be removed by 3D local
unitary transformations (Fig. 2), so two 2D SRE states that can
be related by adjoining operations are equivalent from a 3D
point of view. With adjoining operations, the 3D classification
can be obtained from 2D SRE states. Properties of 2D SRE
states in the mirror plane will be discussed in Secs. III, VI A,
and VII A for different symmetries.

2In this paper, we use the convention that SRE states include both
SPT states and invertible topological orders.

FIG. 2. Adjoining operation. The middle line is the mirror plane
in the front view. Other lines are symmetrically located on the two
sides and represent adjoined 2D SRE states. Two lines connected
by a blue stripe are removed by local unitary transformations. The
existence of two paths, (a)-(b)-(c) and (a)-(d)-(e), demonstrates that
(c) and (e) are topologically equivalent from a 3D viewpoint.

B. Folding approach

The above analysis can be applied equally well in the
presence of a surface (Fig. 1). We will assume that the sur-
face carries a topological order and respects the symmetry
group Ĝ, i.e., it is a symmetry-enriched topologically ordered
state (SET).3 Different from the bulk, the surface cannot be
turned into a trivial product state by local unitary transfor-
mations due to the presence of topological order. However,
by a similar Ĝ-symmetry local unitary transformation UlUr as
above, all information of symmetry-protected entanglement
on the surface can be moved to the intersection line between
the surface and the mirror plane. This leaves an inverted T-
like junction, which is decoupled from other bulk degrees of
freedom and contains all information of symmetry-protected
entanglement [31].

Let us be more specific on the T-like junction in Fig. 1(b).
Let HL (HR) be the Hamiltonian of the left (right) wing of
the junction, Hmp be the Hamiltonian of the mirror plane, and
Hdw be the Hamiltonian of the degrees of freedoms near the
intersection line of the surface and mirror plane. The total
Hamiltonian is

H = HL + HR + Hmp + Hdw. (6)

Let U(g) be the unitary symmetry operator for g ∈ G. Since H
respects G and M, it is required that

MHLM−1 = HR, MHmpM−1 = Hmp,

MHdwM−1 = Hdw, U(g)HαU(g)−1 = Hα, (7)

where α = L, R, mp, or dw in the last line. We see that the left
and right wings are mirror images of each other. In particular,

3This assumption may not always be valid. There exist 3D SPT
states whose surface is enforced to be gapless [7,67], if the symmetry
is not broken. We will discuss this situation later in the case G =
SU(2).
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they have opposite chiral properties such as chiral central
charge and Hall conductance.

With the above understanding, Ref. [31] proposes to fold
the two wings and form the geometry in Fig. 1(c). The sys-
tem is the same as before, only except that the orientation
associated with HR is reversed. Figure 1(c) is a 2D system,
consisting of the double-layer system on the left, the mirror
plane on the right and a domain wall between them. It is
gapped everywhere and symmetric under the full symmetry
Ĝ. It is worth emphasizing that in the double-layer system,
M becomes an internal layer-exchange symmetry too, like
in the mirror plane. Accordingly, the mirror symmetry group
ZM

2 can be gauged in the double-layer system (see Sec. II E)
and SET properties can be extracted by studying gauge
fluxes.

Therefore the final setup contains: (a) the double-layer
system described by HL + HR, which represents the original
surface; (b) the mirror plane described by Hmp, which repre-
sents the original 3D bulk; and (c) the gapped domain wall
Hdw which describes the boundary condition between (a) and
(b). The bulk-boundary correspondence in the original 3D
system can then be established by studying the connection
between (a) and (b) through the boundary condition (c). The
latter is the problem of gapped domain walls and has been
widely studied [68–78], e.g., by the so-called anyon condensa-
tion theory [72,79–82]. In the main text, anyon condensation
theory will not be extensively used for our purpose. However,
in Appendices D and E, we will provide alternative derivations
for anomaly indicators η̃3, η̃4 and η̃5 using anyon condensation
theory. Accordingly, a brief review on this theory is given in
Appendix C.

C. Symmetry groups

In this work, we study systems that respect the mirror
symmetry M and an internal unitary symmetry group G, with
G = U(1), SU(2) or SO(3). All symmetries together form the
group Ĝ. Here, we would like to make a few comments on
symmetry groups in different scenarios (see Tables I and II).

First, in fermionic systems, there is a special symmetry,
the fermion parity Pf , which must be preserved. Moreover,
it commutes with all symmetries in Ĝ, i.e., it sits inside the
center of Ĝ. Let Z f

2 = {1, Pf }, where 1 is the identity opera-
tor. Then, there is the question of how Z f

2 is embedded into
G. We will always consider the case that Z f

2 is a subgroup
of U(1) and SU(2), and thereby denote them as U f (1) and
SU f (2). Note that Pf cannot be an element of SO(3), as
it is centerless. More specifically, let Uϕ be an element in
U f (1) with ϕ ∈ [0, 2π ). Then, Pf = Uπ . For SU f (2), group
elements can be represented as Uϕ = exp(i

∑3
i=1 ϕiσi ), where

ϕi ∈ [0, 2π ) and σi are Pauli matrices. Then, Pf = exp(iπσz ).
In addition, there is also a question of whether M2 = 1 or Pf .
We will consider both cases. We will also call them “M2 = 1”
and “M2 = −1” respectively, in analogy to the time-reversal
symmetry.

Second, the total symmetry group Ĝ is a group extension
of ZM

2 by the internal symmetry group G. Mathematically,
group extension is determined by the short exact sequence

0 → G → Ĝ → ZM
2 → 0 (8)

There may exist several different extensions Ĝ, which we
discuss below separately for each G.

(i) For G = U(1), there are three possible extensions, Ĝ =
U(1) × ZM

2 , U(1) � ZM
2 , or [U(1) � ZM

4 ]/Z2. The direct
product “×” corresponds to UϕM = MUϕ , and the semi-
direct product “�” corresponds to UϕM = MU−ϕ . In the
last case, ZM

4 means M2 = Uπ and thereby we need to
take a quotient over Z2 = {1,Uπ }. In the case of direct
product, there is no actual distinction between M2 = 1 and
Uπ . For bosonic system, we consider M2 = 1 only. For
fermionic systems, we consider all three possible extensions.
(In fermionic systems, ZM

4 is denoted as Z fM
4 , since M2 =

Pf .) The three symmetry groups correspond to the AIII, AII,
AI Altland-Zirnbauer symmetry classes [35,39] of noninter-
acting fermions.4

(ii) For G = SU(2), there are two possible extensions, Ĝ =
SU(2) × ZM

2 and [SU(2) × ZM
4 ]/Z2. The latter case again

corresponds to M2 = Uπ . For bosonic cases, we consider
Ĝ = SU(2) × ZM

2 only. For fermionic systems, we consider
both extensions. The two symmetry groups correspond to the
CI and CII Altland-Zirnbauer symmetry classes. Note that
there are different ways to interpret the Altland-Zirnbauer
symmetry classes in the context of interacting systems, e.g.,
see Refs. [7,40,83]. In this paper, we follow the convention of
Ref. [40] (see Table II).

(iii) For G = SO(3), there is only a trivial exten-
sion, namely, SO(3) × ZM

2 . We will only consider it
for bosonic systems. However, understanding properties of
SO(3)-symmetric bosonic systems will be helpful for the
study of fermionic systems with SU f (2) symmetry.

Third, the double-layer system of the left half in Fig. 1(c)
has enhanced symmetries. It is described by the Hamiltonian
HL + HR. Since the two layers are decoupled, each has an in-
ternal symmetry G, giving rise to a G × G symmetry. The total
symmetry group of the double-layer system is an extension of
ZM

2 by G × G. This is relevant because in the derivation of
bulk-boundary correspondences, in particular with the method
of anyon condensation given in Appendices D and E, we find
it convenient to first gauge G (or a subgroup of G) in each
wing of the T junction and then do the folding. This is equiva-
lent to gauge G × G in the double-layer system. Nevertheless,
the right side of Fig. 1(c) respects a single G only. To match
the two sides, it should be understood that G on the right side
of Fig. 1(c) is the diagonal subgroup G of G × G, i.e., the
subgroup of symmetries with a simultaneous action on the two
layers.

Finally, we make a comment on the notation that we will
use for ZM

2 . In the 2D system of Fig. 1(c), M is an internal
symmetry. So, we will drop the superscript M and simply
denote it as Z2 (e.g., in Table IV). Moreover, we will rename
M as x when it is referred to as an internal symmetry in
the following discussions and the symmetry group is often
referred to as Zx

2.

4Altland-Zirnbauer symmetry classes originally concern the time-
reversal symmetry T . We adopt the same notation by replacing T
with M. However, M2 = ±1 is mapped to T 2 = ∓1, which is nec-
essary to have the correct correspondence between the classifications
of mirror and time-reversal topological phases [28,41].
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D. Topological orders

In this work, we assume that surface state is an SET state.
Properties of SET states include their topological and symme-
try properties [24–26]. Here, we briefly review the topological
properties, i.e., physical quantities that characterize a topolog-
ical order. More detailed review can be found in Ref. [84]. The
symmetry properties will be discussed later when we study
specific symmetry groups.

A topological order is characterized by (1) a set of anyon
labels 1, a, b, . . . , where 1 or 1 represents the trivial/vacuum
anyon, (2) their fusion properties and (3) their braiding prop-
erties. We denote the topological order as C. Mathematically
speaking, C is described by a unitary braided fusion cate-
gory [84]. Fusion of anyons are described by the fusion rules

a × b =
∑

c

Nc
abc, (9)

where Nc
ab is a non-negative integer. If N1

ab = 1, anyon b is
the antiparticle of a, denoted as b = ā, and vice versa. Two
important quantities associated with each anyon a are the
quantum dimension da and the topological spin θa. Quantum
dimensions satisfy that dadb = ∑

c Nc
abdc and da � 1. Braid-

ing properties include the so-called S and T matrices, which
are defined as follows:

Ta,b = θaδa,b, Sa,b = 1

D

∑
c

Nc
ab̄

θc

θaθb
dc, (10)

where D = √∑
a d2

a is called the total quantum dimension
of C. If C is Abelian, i.e., da = 1 for all a’s, Ta,a is the
exchange statistics between two identical anyons a and Sa,b

is proportional to the complex conjugate of mutual statistics.
More generally, if either one among a, b is Abelian, they have
an Abelian mutual statistics, given by

Ma,b = S∗
a,bS1,1

S1,aS1,b
. (11)

Another important relation for bosonic topological order is

ei2πc/8 = 1

D

∑
a

d2
a θa, (12)

where c is the chiral central charge associated with the edge
states of the topological order.

In this work, we will also study fermionic topological
orders. Mathematically, fermionic topological orders are de-
scribed by unitary premodular tensor categories [85–87]. One
of the key differences to bosonic topological orders is that
there exists a special fermion f in fermionic topological or-
ders, such that

M f ,a = 1 (13)

for all a’s. That is, f is “transparent” to other anyons in terms
of mutual statistics. In bosonic topological orders, only the
trivial anyon 1 is transparent. Also, anyons always come in
pairs, a and a f , such that a × f = a f and θa f = −θa. That
is C = {1, f , a, a f , b, b f , . . . }. For later convenience, we will
denote the pair {a, a f } as [a]. Another remark is that due
to the existence of f , S matrix is degenerate. In contrast, S

is nondegenerate and unitary for bosonic topological orders.
Fermionic topological orders can be better characterized by
gauging the fermion parity. One may consult Ref. [32] for
some properties after gauging the fermion parity. Finally, we
comment that the relation (12) does not hold in fermionic
topological orders.

E. Gauging symmetries

We will extensively use another method to study the SRE
and SET states, namely the method of gauging symmetries,
first introduced in Ref. [38]. For a quantum many-body system
with internal symmetries of a finite group G, it is always
possible to couple it to a G gauge field such that the resulting
gauged system remains energetically gapped. In our study, G
will be a finite subgroup of the total symmetry group Ĝ. For an
SRE state, the gauged theory becomes a topological order; for
an SET state, the original topological order will be enlarged
after gauging. For details of the gauging procedure at a mi-
croscopic level, we refer the readers to Refs. [38,88]. Here,
we briefly review the topological excitations in the gauged
theory.

For a SRE state with symmetries, there is no anyon be-
fore gauging. After gauging, it becomes a G gauge theory
coupled to matter. The gauged system is topologically or-
dered. It contains two kinds of anyons: gauge charges (or
simply charges) and vortices. Charge excitations have a one-
to-one correspondence to the irreducible representations of
the group G. Vortices carry gauge flux. Gauge fluxes have
a one-to-one correspondence to the conjugacy classes of G.
For a fixed gauge flux, there are distinct vortices that differ
by attaching charges. Let us take the example G = ZN for
illustration. In this case, charges are labeled by an integer
q = 0, 1, . . . , (N − 1), corresponding to the irreducible rep-
resentations of ZN . Fluxes are labeled by 2πk, where k =
0, 1, . . . , (N − 1) corresponding to the conjugacy classes (the
same as group elements in this case). The 2π is incorporated
such that the Aharonov-Bohm phase between a charge and
a vortex is given by qφ = 2πqk. A general vortex is then
labeled by the combination (q, φ), which is frequently named
as dyon. According to Refs. [38,88], different SPT states are
characterized and distinguished by different braiding statistics
of vortices. Topological invariants that uniquely identity the
SPT order can be defined through the topological spins and
mutual statistics of vortices [88]. In Secs. III, VI A, and VII A,
we will make use of these topological invariants to define
anomaly indicators.

The spectrum of topological excitations in a gauged SET
state is more complicated. It contains charges, vortices,
and those excitations originating from the original anyons.
Charges are the same as in SRE state, being labeled by ir-
reducible representations of G. Anyons in the original theory
will be carried over to the gauged theory, however, they may
be split and/or identified. The detailed splitting and identifi-
cation depends on the SET, see e.g., Appendices D and E.
Vortices again carry gauge flux. For a fixed gauge flux, there
exist distinct vortices that differ by attaching charges as well
as those anyons that originate from the original SET. We refer
the readers to Refs. [24,26] for detailed discussions.
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III. DEFINING ANOMALY INDICATORS FOR G = U(1)

In the following three sections, Secs. III–V, we study
bulk-boundary correspondences and anomaly indicators for
G = U(1), i.e., bosonic and fermionic topological crystalline
insulators (TCIs). The main purpose of this section is to define
a set of topological invariants to characterize the SRE state
in the mirror plane in Fig. 1(c) for different total symmetry
groups G, along with which we reproduce the classification
of 3D SPT phases. These invariants will serve as anomaly
indicators.

A. Bosonic systems

We start with 3D bosonic TCIs of symmetries U(1) × ZM
2

and U(1) � ZM
2 . In the mirror plane, M becomes an internal

symmetry, so we rename it as x and denote the symmetry
groups as U(1) × Z2 and U(1) � Z2, respectively. In places
that clarification is needed, we will also use Zx

2 to denote
the group associated with x. For both symmetry groups, we
discuss the following three aspects: (1) classification and
characterization of strictly 2D SRE states, (2) how the SRE
classification reduces to that of the original 3D system un-
der adjoining operations, and (3) definitions of topological
invariants, i.e., anomaly indicators. The classifications are
summarized in Table IV.

1. U(1) × Z2

According to Sec. II A, 3D TCIs with U(1) × ZM
2 can be

reduced to 2D SRE states in the mirror plane with internal
symmetry U(1) × Z2 using finite-depth local unitary transfor-
mations. For strictly 2D SRE states with this symmetry group,
the classification is Z2 × Z2

2 [1]. The four root states and their
basic properties are as follows:

(i) The root state of the first Z classification is the so-called
E8 state [66]. It is an invertible topological order. It hosts
gapless modes on the edge with a chiral central charge c = 8
(or equivalently, a thermal Hall conductance κ = 8 in units of
π2T/3h). The full U(1) × Z2 symmetry acts trivially on this
state.5 Stacking multiple copies of the root state and its time
reversal gives rise to the Z classification.

(ii) The root state of the first Z2 classification is a nonchi-
ral SPT state protected by the symmetry x alone. The U(1)
symmetry acts trivially on this state. Stacking two copies of
the root state gives rise to a trivial state, and thereby the
classification is Z2. According to Ref. [38], Z2 SPT phases
can be characterized by the topological spin of Z2 vortices
after the symmetry is gauged. Let x be a Z2 vortex, which we
will simply call an “x-vortex.” Then, the nontrivial phase is
associated with θx = ±i, while the trivial phase is associated
with θx = ±1. The “±” ambiguity results from the fact that
there exist two kinds of vortices, which differ by a Z2 charge.

(iii) The root state of the second Z classification is the
bosonic integer quantum Hall (IQH) state with Hall con-

5By a trivial symmetry action, we mean at the level of topological
properties. For a specific state, symmetries may have nontrivial ac-
tions (i.e., not identity operators), but these actions are local and do
not give rise to any constraints on topological properties.

ductance σH = 2e2/h. Throughout this paper, we use e to
denote the unit charge of U(1), regardless if the system is
bosonic or fermionic. Bosonic IQH states are protected by
U(1) symmetry alone, and x acts trivially. Note that the small-
est Hall conductance in bosonic IQH states is 2e2/h and these
states are nonchiral [69,89]. (In contrast, fermionic IQH states
have the smallest Hall conductance e2/h and they are chiral.)
Stacking multiple copies of the root state gives rise to the Z
classification.

(iv) The root state of the second Z2 classification is a
nonchiral SPT state protected jointly by U(1) and Z2 sym-
metries. There are several equivalent ways to characterize
this state. (1) If we gauge Z2 and consider x-vortices, they
carry fractional charge e/2 of the U(1) symmetry; (2) if we
also gauge the subgroup Z2 ⊂ U(1), then the associated Z2

vortices—which we will call w-vortices—will have ±i mutual
statistics with respect to x-vortices, versus ±1 in the trivial
state; (3) the topological spin of the composite vortices—
referred to as y-vortices—will be ±i. All “±” ambiguities
result from the existence of multiple vortices that differ by
charge attachments [38,88]. Since we will make use of the Z2

subgroup of U(1) below, we will name it Zw
2 to distinguish it

from the Z2 of the x symmetry, and also refer the latter as Zx
2

occasionally.
A general SRE state can be indexed by an integer vec-

tor μ = (μ1, μ2, μ3, μ4), with μ1, μ3 ∈ Z and μ2, μ4 = 0, 1
modulo 2. It consists of μi copies of the i-th root state. Its
chiral central charge and Hall conductance are

cmp = 8μ1, (14a)

σ
mp
H = 2μ3, (14b)

where the superscript “mp” stands for “mirror plane,” and
we have set the conductance quantum e2/h = 1. If we gauge
the Zw

2 × Zx
2 subgroup, the x-, w-, and y-vortices have the

following properties:

θ2
x = (−1)μ2 , (14c)

θ2
w = (−1)μ3 , (14d)

M2
w,x = (−1)μ4 , (14e)

θ2
y = (−1)μ2+μ3+μ4 , (14f)

where Mw,x denotes the mutual statistics between w- and
x-vortices. All vortices are Abelian anyons. To get rid of
the “±” ambiguity from charge attachment, we have squared
the topological spins and mutual statistics. More details on
braiding statistics in Zw

2 × Zx
2 gauge theories can be found

in Ref. [88]. Note that there is a close relation between the
topological spin of w-vortices and the Hall conductance,

θ2
w = eiπσ

mp
H /2. (15)

This is a well known relation in the ordinary electronic quan-
tum Hall effects [90].

Next, we consider adjoining operations. Both Z’s in the
above classification will reduce to Z2. For a state consisting of
μ1 copies of the root state (i), with μ1 being even, we can ad-
join μ1/2 copies of E8 states on each side of the mirror place
to trivialize it. Similarly, we can trivialize a state consisting
of even copies of the root state (iii) by adjoining IQH states.
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Accordingly, with adjoining, nontrivial states are labeled only
by μ1 and μ3 modulo 2. That is, cmp is meaningful only
modulo 16, and σ

mp
H is meaningful only modulo 4. Therefore

the classification reduces to Z4
2, i.e., 3D bosonic TCIs with

U(1) × ZM
2 symmetry are classified by Z4

2, in agreement with
Ref. [91].

It is worth pointing out that since the Z classification
associated with σH is reduced to Z2, θw now contains the
same amount of information as σH . We observe that θ2

x , θ2
w

and M2
w,x are enough to distinguish the states built from root

states (ii), (iii), and (iv) up to adjoining operations. That is,
w-, x-, and y-vortices contain enough topological information
to characterize root states (ii), (iii), and (iv).

We are now ready to define a set of topological invariants,
which can uniquely specify a SRE state. We define

η̃1 = eiπcmp/8, (16a)

η̃2 = θ2
x , (16b)

η̃3 = eiπσ
mp
H /2, (16c)

η̃4 = M2
w,x. (16d)

These quantities are invariant under adjoining operations.
They are independent, and all are valued at ±1. Note that
“ ˜ ” is put on all the quantities because “η” is reserved for
the anomaly indicators in Eqs. (2). The two sets of indicators,
{ηi} and {η̃i}, are equivalent. Nevertheless, {η̃i} have better
physical meanings as seen above, while {ηi} have simpler
expressions in terms of surface SET quantities which will be
discussed in the next section. Note that η̃3 can alternatively be
expressed as

η̃3 = θ2
w. (16e)

This alternative definition applies more generally, as it re-
quires only the subgroup Zw

2 instead of the full U(1) group.
In addition, we define the fifth topological invariant

η̃5 = θ2
y . (16f)

It is not an independent invariant. From Eqs. (14), one can see
that η̃5 = η̃2η̃3η̃4. All these topological invariants will serve as
anomaly indicators. We will express them in terms of surface
quantities in Sec. IV.

2. U(1) � Z2

3D TCIs with U(1) � ZM
2 symmetry can be reduced to 2D

SRE states with an internal U(1) � Z2 symmetry through the
dimensional reduction procedure. In this case, strictly 2D SRE
states are classified by Z2 × Z2 [1,92]. The three root states
are similar to the state (i), (ii) and (iii) in Sec. III A 1. However,
symmetry actions on root state (iii) are different: x must have a
nontrivial action on it due to the group structure of U(1) � Z2

(see below). In other states, the symmetry actions remain the
same. In addition, there is no SPT state protected jointly by
U(1) and Z2 [i.e., a state similar to root (iv) in Sec. III A 1].
One can easily check that adjoining operations do the same
job as above, reducing each Z in the classification to Z2.
Therefore the final classification becomes Z3

2, i.e., 3D bosonic
TCIs with U(1) � ZM

2 are classified by Z3
2, in agreement with

Ref. [91].

Let μ = (μ1, μ2, μ3) be an integer vector labeling a gen-
eral SRE state in the classification. It consists of μi copies of
the i-th root state. Similarly to U(1) × Z2, gauging the sub-
group Zw

2 × Zx
2 ⊂ U(1) � Zx

2 is useful for characterizing the
state. The chiral central charge, Hall conductance and braiding
statistics of w-, x-, and y-vortices are given as follows:

cmp = 8μ1, (17a)

σ
mp
H = 2μ3, (17b)

θ2
x = (−1)μ2 , (17c)

θ2
w = (−1)μ3 , (17d)

M2
w,x = (−1)μ3 , (17e)

θ2
y = (−1)μ2 . (17f)

We pay special attention to the mutual statistics M2
w,x. In

Appendix A, we prove that the following constraint must hold:

M2
w,xθ

2
w = 1. (18)

It is a consequence of the fact that Zw
2 × Zx

2 has to be lifted
to the full U(1) � Zx

2 group. In the root state (iii), θ2
w is

nontrivial, so M2
w,x must also be nontrivial. This implies that x

must act nontrivially in the root state (iii), as claimed above.
Lastly, we use the same topological invariants η̃1, η̃2, η̃3,

η̃4, and η̃5, given in Eqs. (16), for U(1) � Z2 symmetric SRE
states. They are again invariant under adjoining operations.
While the definitions remain the same, the values that η̃i takes
may be different. In particular, η̃4 and η̃5 are not independent.
We have η̃4 = η̃3 and η̃5 = η̃2 for U(1) � Z2.

B. Fermionic systems

For fermionic systems, we consider 3D TCIs in AIII, AII,
and AI classes. After dimensional reduction, the correspond-
ing 2D SRE states in the mirror plane in Fig. 1(c) have
a symmetry group U f (1) × Z2, U f (1) � Z2, and [Uf (1) �

Z f
4 ]/Z2 respectively. Again, since M becomes internal in

the mirror plane, we rename it as x and refer the corre-
sponding group as Zx

2 when distinction is needed. In the
following discussions, we will frequently use the results from
Refs. [93–95]. The anomaly indicators defined in this section
are summarized in Table II.

1. U f (1) × Z2

By dimensional reduction, 3D fermionic TCIs in AIII class
reduce to 2D fermionic SRE states with internal U f (1) × Z2

in the mirror plane. Strictly 2D SRE states with this symme-
try group are classified by Z2 × Z4. As shown in Ref. [37],
the classification reduces to Z2 × Z8 after taking adjoining
operations into accounts. Below we review this classification.
In addition, we describe properties of these SRE states, from
which we define a set of topological invariants that will serve
as our anomaly indicators.

First of all, the three root states in the Z2 × Z4 classifi-
cation of strictly 2D fermionic SRE states with U f (1) × Z2

symmetry are as follows.
(i) The root state of the first Z classification is the E8 state.

It is the same E8 state as in bosonic systems. In fermionic
systems, one may use two-fermion bound states as bosons to
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construct this state. Both U f (1) and x act trivially on this state.
It is characterized by a chiral central charge c = 8 and Hall
conductance σH = 0.

(ii) The root state of the second Z classification is the
famous electronic IQH state at filling factor 1. It is charac-
terized by the Hall conductance σH = 1 (in units of e2/h) and
the chiral central charge c = 1. While nontrivial topological
properties are manifested by U f (1), this state does not need
protection from U f (1). It is a chiral invertible topological
order, similarly to the E8 state. The x symmetry acts trivially
on this state.

(iii) The root state of the Z4 classification is an nonchi-
ral SPT state protected by Zx

2 only (the full symmetry is
Z f

2 × Zx
2). According to Ref. [93], fermionic SPT states with

internal Z f
2 × Zx

2 symmetry are classified by Z8. For conve-
nience, let us use ν = 0, 1, . . . , 7 to denote the eight Z f

2 × Zx
2

SPT states. Each state consists of ν pairs of px + ipy and
px − ipy superconductors. The x symmetry behaves as the
fermion parity of the px + ipy superconductors. According to
Ref. [94], the odd-ν states are incompatible with U f (1) sym-
metry. Therefore only the even-ν states can have an enlarged
U f (1) × Z2 symmetry. Equivalently, they consist of ν/2 pairs
of σH = 1 and σH = −1 IQH states. The total chiral central
charge c = 0 and total Hall conductance σH = 0. This leads
to a Z4 classification.

Two remarks are in order. First, by stacking an E8 state
and eight copies of the σH = −1 IQH state, one obtains a
state with c = 0 and σH = −8. It is an SPT state protected by
U f (1) alone, i.e., it becomes trivial in the absence of U f (1).
One may use this state and the IQH state to generate the Z2

classification instead. Second, in contrast to bosonic systems
with U(1) × Z2, there is no SPT state protected jointly by
U f (1) and Z2 in fermionic systems.

A general SRE state can be indexed by an integer vector
μ = (μ1, μ2, μ3), with μ3 defined only modulo 4. It consists
of μi copies of the ith root state. The chiral central charge and
Hall conductance are

cmp = 8μ1 + μ2, (19a)

σ
mp
H = μ2. (19b)

Similarly to bosonic systems, many topological properties are
captured by gauging the Z f

2 × Zx
2 subgroup. Let us again use

w-, x-, and y-vortices to denote the Z f
2 , Zx

2 vortices and their
composite, respectively. According to Refs. [95], all vortices
are Abelian anyons, and they satisfy the following properties:

θ2
x = eiπμ3/2, (19c)

θw = eiπμ2/4, (19d)

M2
w,x = (−1)μ3 , (19e)

θ2
y = eiπ (μ2−μ3 )/2. (19f)

Several remarks are as follows. First, cmp, σ
mp
H , and θ2

x
uniquely specify μ. Second, different from the bosonic case,
there is no ± sign ambiguity for θw, and thereby we do not
need to square it to get a topological invariant [95]. Third,
different from the bosonic case with U(1) × Z2, the mutual
statistics M2

w,x is not independent but determined by θ2
x . It is a

manifestation of the fact that there are no SPT states protected
jointly by U f (1) and Zx

2.
Next, we consider adjoining operations, under which the

classification reduces to Z2 × Z8 [37]. First of all, like in
bosonic systems, the Z classification associated with the E8

state is reduced to Z2 by adjoining. This makes μ1 is un-
ambiguous only modulo 2 under adjoining. Second, the Z
associated with IQH states is also reduced to Z2. However,
the reduced Z2 will extend the Z4 classification associated
with root state (iii), such that they together form a Z8 clas-
sification. This group extension was discussed in Ref. [37]
and reviewed in Appendix B. More specifically, stacking two
μ = (0, 1, 0) states turns into a state with μ = (0, 0,−1).
That is, μ = (0, 2, 0) and μ = (0, 0,−1) are equivalent un-
der adjoining operations, making the overall stacking group
being Z8. Accordingly, 3D fermionic TCIs in AIII class are
classified by Z2 × Z8.

We are now ready to define a set of topological invariants
that are invariant under adjoining operations. We define

η1 f = eiπσ
mp
H /4(θ∗

x )2, (20a)

η2 f = eiπ (cmp−σ
mp
H )/8. (20b)

In terms of the integer vector μ, we have

η1 f = eiπ (μ2−2μ3 )/4, η2 f = eiπμ1 .

We see that η1 f takes a value in 1, eiπ/4, . . . , ei7π/4 and η2 f

takes a value in ±1. The invariant η1 f is defined to comply the
fact that μ = (0, 2, 0) and (0, 0,−1) are equivalent. Instead
of relying on the Hall conductance σ

mp
H , one may also use

θw to define η1 f . Since θw = eiπσ
mp
H /4, we have the alternative

definition

η1 f = θw(θ∗
x )2. (20c)

The invariants η1 f and η2 f uniquely specify a SRE state
in the Z2 × Z8 classification. They will serve as our anomaly
indicators and will be expressed in terms of quantities of the
surface topological order in Sec. V.

We comment that the alternative definition (20c) of η1 f is
exactly the one defined in Ref. [32] for fermionic systems
with M symmetry only. Indeed, 3D fermionic TCIs in the Z8

classification do not need protection from U f (1). On the other
hand, the Z2 classification does rely on U f (1). Indeed, in the
absence of U f (1), root state (i) is equivalent to eight copies of
root state (ii), which can be trivialized by adjoining.

2. U f (1) � Z2

By dimensional reduction, 3D fermionic TCIs in AII class
reduces to 2D SRE states with internal symmetry U f (1) � Z2

in the mirror plane. To our knowledge, the classification of
these 2D SRE states has not been discussed before. We show
that classification of strictly 2D SRE states with U f (1) � Z2

symmetry is Z2 × Z2. The root states are as follows.
(i) The first root state is the E8 state. Both U f (1) and Z2

symmetries act trivially on this state. It is characterized by
c = 8 and σH = 0. Stacking multiple copies of this root state
gives rise to a Z classification.

(ii) The second root state is the IQH state at filling factor
1. It is characterized by c = 1 and σH = 1. Similarly to the
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bosonic case with U(1) � Z2, the symmetry x now must act
nontrivially due to its noncommutativity with U f (1). This
can be seen below from vortex braiding statistics. Stacking
multiple copies of this root state gives rise to the second Z
classification.

(iii) The third root state is a nonchiral SPT state protected
by Zx

2 alone (the full symmetry is Z f
2 × Zx

2). According to
Ref. [93], fermionic SPT phases protected by Z f

2 × Zx
2 have

a Z8 classification. We use ν = 0, 1, . . . , 7 to index these
states. With the full U f (1) � Zx

2 symmetry, however, we show
below that only states with ν = 0 (mod 4) are allowed and
other nontrivial SPTs are incompatible. Accordingly, the root
state is the ν = 4 state and it leads to a Z2 classification. In
comparison, the corresponding root state for U f (1) × Z2 has
ν = 2, as discussed in Sec. III B 1.

We remark that there is no nontrivial SPT state pro-
tected jointly by U f (1) and Zx

2, i.e., all U f (1) � Zx
2 SPT

states are protected solely by U f (1) or Zx
2. We expect that

jointly-protected SPT states should be detected by indepen-
dent mutual statistics between U f (1) vortices and x-vortices.
By “independent,” we mean that the mutual statistics is not
fully determined by individual properties of U f (1) vortices
and x-vortices. However, for U f (1) � Zx

2, one can argue that
the mutual statistics is not independent. To see that, one may
first gauge Z f

2 and turn the SPT state into an SET state with a
remaining U′(1) � Zx

2 symmetry, where U′(1) ≡ Uf (1)/Z f
2 .

Then, information of vortex mutual statistics is included in
(a) those between Z f

2 vortices and x-vortices and (b) those
between U′(1) vortices and x-vortices, after we further gauge
U′(1) � Zx

2. According to Refs. [93,95], the mutual statistics
in (a) is determined by the topological spins of x-vortices.
The mutual statistics in (b) is not independent either, due to
the fact that there is no jointly protected bosonic SPT phases
for U′(1) � Zx

2, as discussed in Sec. III A 2. Closely related
and more detailed discussions along this line can be found in
Appendix A.

A general SRE state is then indexed by an integer vector
μ = (μ1, μ2, μ3), with μ3 defined modulo 2. It consists of μi

copies of the ith root state. The chiral central charge and Hall
conductance are given by

cmp = 8μ1 + μ2, (21a)

σ
mp
H = μ2. (21b)

More properties can be probed by gauging the Z f
2 × Zx

2 sub-
group and studying braiding statistics between w-, x-, and
y-vortices. One complication is that these vortices may be
non-Abelian. Nevertheless, regardless of being Abelian or
non-Abelian, we find that the vortices always satisfy

θ2
x = eiπμ3+iπμ2/4, (21c)

θw = eiπμ2/4, (21d)

M2
w,x = e−iπμ2/2, (21e)

θ2
y = eiπμ3+iπμ2/4. (21f)

More details on vortex braiding statistics can be found in
Appendix A. A few remarks are in order. First, cmp, σ

mp
H and

θx uniquely specify a state in the Z2 × Z2 classification. Other
quantities are not independent. Second, both θ2

x and M2
w,x

depend on μ2. It means that x must have a nontrivial action
on root state (ii), in contrast to the U f (1) × Z2 case. Third, in
Appendix A, we show the following constraint must hold

M2
w,xθ

2
w = 1, (22)

which is the same as Eq. (18) for bosonic systems with
U(1) � Z2. This constraint is important to derive the expres-
sions in (21c)–(21f). In root state (iii) where θw = 1, we
immediately have M2

w,x = 1. For a general Z f
2 × Zx

2 SPT state
with an index ν, the mutual statistics M2

w,x = e−iνπ/2 [93].
Accordingly, we see that ν must be a multiple of 4, as already
claimed above.

Next, we consider reduction of the classification under
adjoining operations. This is very much similar to the case
of U f (1) × Z2. Both Z’s will reduce to Z2 under adjoining.
However, for U f (1) � Z2, the Z2 classification associated
with root state (ii) will not extend the Z2 classification as-
sociated with root state (iii). That is, stacking two copies
of root state (ii) turns into a trivial state. Derivation of this
result is given in Appendix B. Accordingly, under adjoining
operations, the overall classification reduces to Z3

2, i.e., 3D
TCIs in AII class is classified by Z3

2. We remark that mirror
TCIs in this class correspond to the famous 3D time-reversal
topological insulators with T 2 = −1, according to the topo-
logical equivalence principle. Classification of the latter in the
presence of interaction is indeed Z3

2 [96].
Finally, we define topological invariants. The two invari-

ants η1 f and η2 f , defined in Eqs. (20a) and (20b), apply to
U f (1) � Z2 too. With these definitions and Eqs. (21), we have

η1 f = eiπμ3 , η2 f = eiπμ1 .

In addition, we define the third invariant η3 f

η3 f = eiπσ
mp
H = θ4

w. (23)

That is, η3 f = eiπμ2 . All these quantities are invariant un-
der adjoining operations and take values of ±1. Evaluating
η1 f , η2 f and η3 f uniquely specifies the SRE state of the mir-
ror plane. We remark that in the language of Ref. [7] for
time-reversal symmetric topological insulators, the indicators
η1 f , η2 f , and η3 f detect the eT mT , three-fermion and nonin-
teracting electronic topological insulators, respectively.

Similarly the bosonic case, one may define additional topo-
logical invariants using M2

w,x and θ2
y . However, they are not

independent. For both U f (1) × Z2 and U f (1) � Z2, one can
check that M2

w,x = (θ∗
x )4. In addition, one may define

η4 f = θw(θ∗
y )2. (24)

However, η4 f = η∗
1 f holds for both U f (1) × Z2 and U f (1) �

Z2.

3. [U f (1) � Z f
4 ]/Z2

Now we discuss 3D TCIs in AI class, whose symmetry
group is [U f (1) � Z fM

4 ]/Z2. They reduce to 2D SRE states
in the mirror plane with internal symmetry [U f (1) � Z f

4 ]/Z2.
We show that the strictly 2D SRE states are classified by

Z2. First, according to Ref. [94], there is no nontrivial SPT
state protected by Z f

4 alone. Second, there is also no nontrivial
SPT state protected jointly by x and U f (1). It can be argued in
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a similar way as for U f (1) � Z2(see Sec. III B 2). Therefore
the only possible SRE states are stacks of the E8 and IQH
states. This leads to a Z2 classification. Nevertheless, the root
state associated with the second Z is not associated with
the σH = 1 IQH state, but the σH = 2 state. In other words,
the σH = 1 state is incompatible with [U f (1) � Z f

4 ]/Z2 sym-
metry. The reason behind this is the so-called H3(G,Z2)
obstruction [97,98]. We do not give a detailed reasoning here,
but instead refer the readers to Ref. [99], which shows that the
quaternion group, i.e., (Z f

4 � Z f
4 )/Z2, is incompatible with

the σH = 1 IQH state due to H3(G,Z2) obstruction. Since
(Z f

4 � Z f
4 )/Z2 is a subgroup of [U f (1) � Z f

4 ]/Z2, the latter
is incompatible to the σH = 1 IQH state either.

A general state can be indexed by an integer vector μ =
(μ1, μ2). It consists of μi copies of the ith root state. The
chiral central charge and Hall conductance are

cmp = 8μ1 + 2μ2, σ
mp
H = 2μ2. (25)

Under adjoining operations, the Z classification associated
with E8 state again reduces to Z2. On the other hand, the Z
classification associated with IQH states all become trivial.
This is not hard to understand: as the root state has σH = 2,
adjoining a σH = 1 state on each side of the mirror plane can
trivialize the root state. Therefore the overall classification
becomes Z2.

We observe that topological invariant η2 f in (20b) still
applies, and it distinguishes the states in the Z2 classification.
Therefore η2 f will serve as the anomaly indicator for 3D TCIs
in AI class. At the same time, η1 f is not applicable as there is
no Z f

2 × Zx
2 subgroup, and η3 f is always equal to 1.

IV. ANOMALY INDICATORS FOR BOSONIC
SYSTEMS WITH G = U(1)

In this section, we use the folding approach outlined in
Sec. II B to derive expressions for the anomaly indicators
η̃1, η̃2, η̃3, η̃4, and η̃5, defined in Eqs. (16), in terms of SET
quantities for bosonic TCIs. During the derivation, we will
define a set of equivalent anomaly indicators η1, η2, η3, and
η4, which are the ones listed in Sec. I A. Relations between the
two sets of indicators are listed in Table III. Both U(1) × ZM

2
and U(1) � ZM

2 symmetry groups are considered.

A. Surface SETs

Let us first define a few quantities to describe surface topo-
logical orders in the presence of U(1) and M symmetry. The
topological properties are reviewed in Sec. II D, so here we
only discuss symmetry properties. General theories on SET
phases can be found in Refs. [24–26].

Consider a general bosonic topological order C =
{1, a, b, . . . }. Symmetry properties of C consists of two
pieces:6 (i) how a symmetry permutes anyon types and (ii)
what fractional quantum number is carried by certain anyons.
For U(1) group, there is no nontrivial permutation, as all group
members are continuously connected to the identity. Then,

6Strictly speaking, one also need to consider stacking SPT phases.
However, it does not affect our discussions of anomaly.

symmetry properties of C are all encoded in the fractional
quantum number carried by each anyon, which is the frac-
tional charge qa (defined modulo 1) for every a. We will take
the convention 0 � qa < 1. The fractional charges {qa} should
satisfy the following property:

qa + qb = qc (mod 1) (26)

for all a, b, c satisfying Nc
ab �= 0. In particular, since N1

aā = 1,
we have qā + qa = 0 (mod 1), where we understand that the
vacuum anyon can never carry fractional charge.

For the mirror symmetry M, a nontrivial permutation on
anyons is allowed. We denote it as ρC

m, which is an invertible
map from C to itself. It is actually an anti-autoequivalence of
the UMTC C, considering that M reverses the orientation.
Fusion and braiding properties should satisfy the following
relations under the action of ρC

m:

NρC
m (c)

ρC
m (a),ρC

m (b) = Nc
ab, θρC

m (a) = θ∗
a , ρC

m(ā) = ρC
m(a),

(27)

where the complex conjugation is due to the fact that M is
an orientation-reversing symmetry. Since M2 = 1, we also
require that ρC

m(ρC
m(a)) = a.

Anyons may also carry fractional mirror quantum number.
To define it, consider a two-anyon wave function |a, ā〉, where
a and ā are located symmetric on the two sides of the mirror
axis, and ρC

m(a) = ā. This state is symmetric under M,7 so we
have a well defined mirror eigenvalue

M|a, ā〉 = μa|a, ā〉, (28)

where μa = ±1. The quantity μa is the “fractional mirror
quantum number” that describes the mirror SET. If ρC

m(a) �=
ā, there is no physical way to define μa. However, for later
convenience, we define

μa = 0, if ρC
m(a) �= ā. (29)

The quantity μa should satisfy the following property:

μaμb = μc, (30)

if all three anyons have a well defined mirror eigenvalue
and Nc

ab �= 0. Another constraint is that if an Abelian a =
b × ρ̄C

m(b), then we must have μa = θa. These constraints are
believed to be complete for Abelian topological order, but
incomplete for non-Abelian topological orders.

Different choices of (qa, ρ
C
m, μa) describe different SETs

with U(1) and M symmetries. Difference between U(1) ×
ZM

2 and U(1) � ZM
2 lies in the constraints on these quan-

tities. We understand that U(1) charges reverse sign under
M for U(1) � ZM

2 , but not for U(1) × ZM
2 . Accordingly, we

have

qρC
m (a) = ζqa (mod 1), (31)

where ζ = 1 for U(1) × ZM
2 and ζ = −1 for U(1) � ZM

2 .
With this constraint, we see that for U(1) × Z2, if ρC

m(a) = ā,

7Note that not every state |a, ā〉 with ρC
m = ā is an eigenstate of M.

However, one can always modify |a, ā〉 locally around a and ā such
that it becomes a mirror eigenstate.
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then qa = qā, leading to qa = 0 or 1/2. On the other hand, no
such constraint exists for U(1) � Z2. One may also consider
how U(1) flux transforms under M. One can check U(1) flux
flips the sign under M for U(1) × ZM

2 , and does not change
for U(1) � ZM

2 . This is due to the orientation-reversing nature
of M.

Finally, it is worth considering another mirror symmetry

M′ = MUπ . (32)

Like M, we can specify the associated permutation ρC
m′ and

μ′
a. Since U(1) symmetries does not permute anyons, we have

ρC
m′ = ρC

m. The mirror eigenvalue μ′
a can be defined similarly

as above. The key problem is how to relate μ′
a to μa. We note

that the two anyon state |a, ā〉 should be symmetric under both
M and U(1). Let the absolute U(1) charge around a and ā in
this state be Qa and Qā, respectively. Under M, the charge
Qa is mapped to ζQa. To respect M, it is then required that
Qā = ζQa. The action of Uπ on |a, ā〉 is determined by the
total charge of a and ā:

Uπ |a, ā〉 = eiπ (Qa+Qā )|a, ā〉 = eiπ (1+ζ )Qa |a, ā〉. (33)

Accordingly, we have

μ′
a =

{
μaei2πqa , U(1) × ZM

2

μa, U(1) � ZM
2

, (34)

where we have used the relation ei2πQa = ei2πqa .

B. Review on η̃1 and η̃2

Our goal is to express the indicators η̃1, η̃2, η̃3, η̃4, and η̃5

in terms of SET quantities (qa, ρ
C
m, μa) and (da, θa, Nc

ab, S, T ).
The expressions for η̃1 and η̃2 [equivalently η1 and η2

in Eqs. (2a) and (2b)] were previously discussed in
Refs. [29,31,42]. Below we review some basic facts regarding
η̃1, η̃2 and their derivations.

After dimensional reduction and folding discussed in
Sec. II A and II B, the main setup of our systems is shown
in Fig. 1(c). The indicators η̃1 and η̃2 are defined in Eqs. (16a)
and (16b) through quantities of the mirror plane. The left half
of Fig. 1(c) is a double-layer topological order C � C. Since
the two halves of Fig. 1(c) are connected by a gapped domain
wall, we shall have

cmp = 2c, (35)

where c is the chiral central charge associated with the topo-
logical order C and cmp is the chiral central charge of the
mirror plane. Note that this is already a “bulk-boundary rela-
tion”: cmp is a quantity of the bulk and c is a quantity of SET.
Since cmp must be a multiple of 8, we have that c must be a
multiple of 4. Using the relation (12) and the definition (16a),
one obtains the following expression:

η1 ≡ η̃1 = 1

D

∑
a

d2
a θa, (36)

One can easily check that due to the existence of M symme-
try, the right-hand side can only take values ±1, in agreement
with that of η̃1.

The second indicator η̃2 was exhaustively studied in
Ref. [31]. It makes use of anyon condensation theory. The key

point in the derivation is that the x-vortex in the mirror plane
can be lifted to some Z2 vortex X in the left half of Fig. 1(c).
The two vortices must have the same topological spin θx = θX .
Through anyon condensation theory, one is able to identify X
and compute its topological spin. The final result, obtained in
Ref. [31], is that the indicator η̃2 in (16b) can be expressed as

η̃2 = (θX )2 ≡ η2, (37)

where

η2 = 1

D

∑
a

daθaμa, (38)

where η2 can only be ±1 too. If one is interested in more de-
tail, we refer the reader to Ref. [31]. We remark that Ref. [31]
assumes c = 0 in the derivation, but it is easy to generalize
to the case that c �= 0 (see a closely related discussion in the
derivation of η̃5 in Appendix E).

C. η̃3

Now we move on to the indicator η̃3, which is defined in
Eq. (16c). We show that η̃3 = η1η3, and η3 is given in Eq. (2c).
For convenience, we repeat the expression here:

η3 = 1

D

∑
a∈C

d2
a θaei2πqa . (39)

Below we derive this result by considering properties of Hall
conductance. In Appendix D, we make use of the alternative
definition (16e) of η̃3 and derive the same result from anyon
condensation theory.

The right half of Fig. 1(c) is characterized by the Hall
conductance σ

mp
H . The double-layer topological order C � C

on the left is characterized by a Hall conductance 2σH , where
σH is the Hall conductance of a single C. Since the two halves
are connected by a gapped domain, we have

σ
mp
H = 2σH . (40)

With the definition (16c), we obtain

η̃3 = eiπσH . (41)

The is an equation that connects the “bulk” quantity η̃3 to the
surface quantity σH . Since σ

mp
H must be even, Eq. (40) implies

that σH must be an integer. Accordingly, the right-hand side
of (41) can only take values ±1, in agreement of the values
that η̃3 can take.

To proceed, we need to express σH in terms of qa, da, θa,
etc. This problem was studied in Ref. [33] in the context of
time-reversal topological insulators. We repeat their argument
here for the paper to be more self-contained. To proceed, we
make use of a result from fractional quantum Hall (FQH)
states [90]: in FQH systems, adiabatically inserting a 2π flux
will create an excitation m, which is an Abelian anyon in C.
This anyon satisfies

θm = eiπσH . (42)

In general, inserting a flux φ accumulates a charge q =
σHφ/2π and the topological spin of this flux is 1

2 qφ =
σHφ2/4π . The mutual statistics between m and any other
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anyon a is given by

Mm,a = ei2πqa , (43)

which is the usual Aharonov-Bohm phase. Equation (43) can
also be written in terms of the S matrix, through the general
relation (11):

Sm,a = da

D
e−i2πqa , (44)

where the fact that m is Abelian is used.
With these results, one first notices that

δb,m =
∑

a

S†
b,aSa,m = 1

D

∑
a

Sb̄,adae−i2πqa . (45)

Then, the indicator η̃3 follows

η̃3 = θm =
∑

b

θbdbδb,m

= 1

D

∑
a,b

θbdbSb̄,adae−i2πqa

= 1

D2

∑
a,b

θbdbdae−i2πqa
∑

c

Nc
ab

θc

θaθb
dc

= 1

D2

∑
a,c

θcθ
∗
a dcdae−i2πqa

∑
b

Nb
ācdb

=
(

1

D

∑
c

d2
c θc

)(
1

D

∑
a

d2
a θ∗

a e−i2πqa

)

= η1η
∗
3, (46)

where in the second line, we have inserted (45); in the third
line, we have used the definition of S matrix; in the fourth
line, we used the property that dadc = ∑

b Nb
ācdb; finally, the

expressions of η1 and η3 are used. Since η1 and η̃3 only take
values ±1, so is η3. Accordingly, the complex conjugation on
η3 in (46) does not matter.

A few comments are in order. First, the above derivation
holds for both U(1) × ZM

2 and U(1) � ZM
2 . Second, the fact

that η3 = ±1 can also be seen by SET properties. To see that,
for U(1) × ZM

2 , we can replace the summation in (39) with a
summation over ρC

m(ā), and then

η3 = 1

D

∑
ρC

m (ā)

d2
ρC

m (ā)θρC
m (ā)e

i2πq
ρCm (ā)

= 1

D

∑
a

d2
a θ∗

a e−i2πqa = η∗
3 . (47)

Accordingly, η3 must be real. Considering η3 = η1η̃
∗
3 must

be a phase, we obtain η3 = ±1. For U(1) � ZM
2 , it can be

argued similarly by replacing the summation in (39) with a
summation over ρC

m(a) instead. Third, the Abelian anyon m
is the footprint left on the surface by a U(1) monopole, when
it travels from the vacuum into the 3D bulk. We will discuss
more about properties of m in Sec. IV E

D. η̃4 and η̃5

In this section, we derive expressions for η̃4 and η̃5. For
U(1) � ZM

2 , the two indicators are not independent: η̃4 = η̃3

and η̃5 = η̃2 (Sec. III A 2). There is no need to derive their ex-
pressions. Therefore we focus on U(1) × ZM

2 in this section.
Among η̃4 and η̃5, only one is independent once other

indicators are given. They are related by η̃5 = η̃2η̃3η̃4. Here,
we claim that η̃5 = η4, and the expression of η4 in terms
of SET quantities is given in Eq. (2d). For convenience, we
repeat the expression here:

η4 = 1

D

∑
a∈C

daθaμaei2πqa . (48)

This claim will be proved shortly. The indicator η4 takes
values of ±1. At the same time, we obtain η̃4 = η̃2η̃3η̃5 =
η1η2η3η4. In Appendix E, we will derive the expressions of
η̃4 and η̃5 from anyon condensation theory, which provides an
alternative understanding.

The proof of the above claim is straightforward. We will
make use of the y-vortices, which correspond to the mirror
symmetry M′ defined in (32). Since η̃5 = θ2

y , we can directly
use the formula of η̃2 by replacing the quantities (ρC

m, μa) with
(ρC

m′ , μ
′
a). Given ρC

m′ = ρC
m and μ′

a = μaei2πqa [see Eq. (34)],
we immediately obtain the result η̃5 = η4, where η4 follows
from η2 by replacing μa with μ′

a. We remark that if we apply
this proof to U(1) � Z2, we will see that η̃5 and η̃2 have the
same expression. This verifies the relation η̃5 = η̃2 from a
surface viewpoint.

E. Properties of m

As mentioned above, the anyon m in (43) is a surface
avatar of the bulk U(1) monopoles. Properties of monopoles
in U(1) gauge theory are widely studied for the purpose of
detecting topological phases (see, e.g., Refs. [7,58,100,101]).
The connection between m and monopoles can be established
by this thought experiment [13,100]: imagine that a monopole
adiabatically moves from the outside to the inside of a 3D
SPT system and leaves a footprint on the surface. Since this
is a process equivalent to adiabatically inserting a 2π flux, the
footprint on the surface is the anyon m. Due to this connection,
below we discuss properties of m and express its topological
spin θm, U(1) charge Qm, and mirror fractionalization μm in
terms of the anomaly indicators.

As discussed above in Sec. IV C, the topological spin is

θm = η1η3. (49)

Next, following Laughlin’s flux insertion argument, the charge
accumulated by adiabatically inserting a 2π flux is σH . Ac-
cordingly, the U(1) charge Qm = σH . Note that Qm is tied to
the specific state with the 2π flux being adiabatically inserted.
However, the surface Hall conductance σH can be modified
by attaching 2D bosonic IQH states, which does not affect
any SET properties. Since σH of bosonic IQH states is an
even integer, Qm is well defined only modulo 2. So, it is more
convenient to consider eiπQm . Due to the relation (42), we have

eiπQm = eiπσH = θm = η1η3. (50)
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TABLE V. Different SETs of the toric code topological order
with U(1) × ZM

2 or U(1) � ZM
2 . The quantity σe = eiπqe and σm =

eiπqm . In the SET names, we have followed the notation of Ref. [13]:
“C” represents that the anyon has a fractional charge 1/2 and “M”
represents that the anyon carries a mirror eigenvalue −1. We note
that η4 only applies to U(1) × ZM

2 but not U(1) � ZM
2 ; otherwise,

all quantities are the same for the two symmetry groups. The last row
is the “eFmF” example from Ref. [12].

Phase σe σm μe μm η1 η2 η3 η4

e0m0 1 1 1 1 1 1 1 1
eM 1 1 −1 1 1 1 1 1
eC −1 1 1 1 1 1 1 1
eCM −1 1 −1 1 1 1 1 1
eCmM −1 1 1 −1 1 1 1 −1
eMmM 1 1 −1 −1 1 −1 1 −1
eCMmM −1 1 −1 −1 1 −1 1 1
eCMmCM −1 −1 −1 −1 1 −1 −1 1
eCMmC −1 −1 −1 1 1 1 −1 1
eCmC −1 −1 1 1 1 1 −1 −1
eFmF 1 1 1 1 −1 −1 −1 −1

To see how m is permuted by mirror symmetry M, we con-
sider the mutual statistics

MρC
m (m),a = M∗

m,ρC
m (a) = e−i2πq

ρCm (a) = e−i2πζqa , (51)

where the first equality is due to the fact ρC
m is an anti-auto-

equivalence, the second equality is due to (43) and the last
equality is due to (31). Due to braiding nondegeneracy of C, it
is not hard to see

ρC
m(m) =

{
m̄, ζ = 1
m, ζ = −1 . (52)

This agrees with the intuition that U(1) fluxes are flipped by
M for U(1) × ZM

2 , but are unchanged under M for U(1) �

ZM
2 . Accordingly, for ζ = 1, i.e., U(1) × ZM

2 , we can further
define the mirror eigenvalue μm. We show in Appendix E that
μm = η̃4 [see discussions around Eq. (E56)]. Accordingly, we
have

μm = η̃4 = η1η2η3η4. (53)

We remark that all above properties hold for the time-reversal
counterparts. In particular, μm corresponds to the Kramers
degeneracy T 2

m .

F. Examples

In this section, we explore a few examples for the anomaly
indicators. We consider the SET examples in Ref. [13] for the
toric code topological order,

C = {1, e, m, ε}, (54)

where e and m are bosons, and ε = e × m is a fermion. All
anyons are Abelian with da = 1, and the total quantum dimen-
sion is D = 2. We consider the symmetry group U(1) × ZM

2
or U(1) � ZM

2 . Following the notation of Ref. [13], we list
various SET states for C in Table V, according to different
values of qe, qm, μe, and μm. The SET data of ε are determined

by using Eqs. (26) and (30). We can easily obtain all the in-
dicators of different SETs by using Eq. (2) and the results are
shown in Table V. We note that, in Table V, η4 only applies to
U(1) × ZM

2 but not U(1) � ZM
2 . One can see that “eCmM” is

anomaly-free with U(1) � ZM
2 , but anomalous with U(1) ×

ZM
2 . For other SETs, they show the same anomaly character-

istic with either U(1) × ZM
2 or U(1) � ZM

2 group.
In addition, we list the example of “eFmF” SET in Ta-

ble V [12]. It contains the same four Abelian anyons as the
toric code topological order. However, e and m are fermions
instead. We have considered the case that all qe, qm, μe, and
μm are trivial, and obtained the anomaly indicators ηi. With
the relations between ηi and η̃i in Table III, we have

η̃1 = η̃2 = η̃5 = −1, η̃3 = η̃4 = 1. (55)

Then, θ2
x = η̃2 = −1. Accordingly, the mirror symmetry, that

corresponds to the x-vortices, must have a nontrivial action on
the “eFmF” state. On the contrary, both mirror permutation
and mirror fractionalization are “trivial” on every anyon. This
example demonstrates that there is no well-defined concept of
“a trivial SET state.”

V. ANOMALY INDICATORS FOR FERMIONIC
SYSTEMS WITH G = U f (1)

In this section, we use the folding approach to derive the
expressions for the indicators η1 f , η2 f and η3 f in fermionic
systems. We mainly discuss the symmetry groups U f (1) ×
ZM

2 and U f (1) � ZM
2 . The case of [U f (1) � Z fM

4 ]/Z2 is
slightly different and will be discussed separately in Sec. V E.
We remark that many technical parts of our derivations are
simply repetitions of those in Ref. [33], which derived ex-
pressions of anomaly indicators for time-reversal topological
insulators. Nevertheless, it is still worth studying them in the
context of topological crystalline insulators and providing an
alternative viewpoint.

A. Surface SETs

Consider a fermionic topological order C =
{1, f , a, a f , . . . }. We denote the pair {a, a f } as [a]. Similarly
to the bosonic case, symmetry properties of C contain two
pieces of data: (i) permutation of anyons by the symmetries
and (ii) fractional quantum numbers carried by anyons.
Again, U f (1) does not permute anyons. Fractionalization of
U f (1) is described by the fractional charge qa. Compared to
the bosonic case, the charge qa can be defined in the range
0 � qa < 2. This is because the unit charge is the fermion f ,
which is viewed as an anyon in our notation. The fractional
charges satisfy

qa + qb = qc (mod 2) (56)

whenever Nc
ab �= 0. In particular, qa f = qa + 1 (mod 2) and

qā + qa = 0 (mod 2).
The mirror symmetry M can permute anyons in a nontriv-

ial way. Like in the bosonic case, we denote the permutation
as ρC

m. It is an invertible map that maps C to itself. It sat-
isfies ρC

m ◦ ρC
m = 1, ρC

m(1) = 1 and ρC
m( f ) = f . The fusion

and braiding properties satisfy the same relations in (27).
Mirror symmetry fractionalization is defined in the same way
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as in the bosonic case, using a two-anyon state. Differently
from the bosonic case, we now have two kinds of two-anyon
states to consider: |a, ā〉 and |a, ā f 〉. The latter is well-defined
state because f is a local excitation, and it is a state of odd
fermion parity. To respect the mirror symmetry, we must have
ρC

m(a) = ā and ρC
m(a) = ā f , respectively. Note that for a given

a, at most one of the two conditions can be satisfied. So, let us
define

ξa =

⎧⎪⎨
⎪⎩

1, if ρC
m(a) = ā

−1, if ρC
m(a) = ā f

0, otherwise

. (57)

Then, as long as ξa �= 0, we define the mirror fractionalization
as follows:

M
∣∣a, ρC

m(a)
〉 = μa

∣∣a, ρC
m(a)

〉
, (58)

where μa = ±1. For convenience, we also define μa = 0 if
ξa = 0. The property (30) is still satisfied in the fermionic
case. Note that the above discussions on M do not apply to
the AI class, where M2 = Pf . We will discuss it separately in
Sec. V E.

Different choices of (qa, ρ
C
m, μa) describe different SET

states with U f (1) and M symmetries. Like in the bosonic
case, the difference between U f (1) × ZM

2 and U f (1) � ZM
2

is the following condition on fractional charge

qρC
m (a) = ζqa (mod 2), (59)

where ζ = 1 for U f (1) × ZM
2 and ζ = −1 for U f (1) � ZM

2 .
This condition puts a very strong constraint on the possible
permutations in the case of U f (1) � ZM

2 : it forbids those
with ξa = −1. If ξa = −1, we have qρC

m (a) = qā f = −qa + 1.
Meanwhile, Eq. (59) leads to qρC

m (a) = −qa. The two equations
can never be satisfied simultaneously. Accordingly, ξa = −1
is forbidden for U f (1) � ZM

2 .

B. η1 f

The first indicator η1 f was defined and studied in Ref. [32]
by two of us, with the expression given in (3a). The time-
reversal counterparts were previously studied in Refs. [29,30].
For convenience, we repeat the expression here:

η1 f = 1√
2D

∑
a∈C

daθaμa. (60)

It was derived through the folding approach and anyon con-
densation theory with the definition (20c), for systems with
only M symmetry. In that case, the indicator can take 16
distinct values 1, eiπ/8, . . . , ei15π/8, both by its definition and
by evaluating the right-hand side of (60). As the derivation
is technically complicated, we do not repeat it here and refer
readers to Ref. [32].

In the presence of U f (1) symmetry, possible values that
η1 f can take will be reduced. According to Sec. III B, η1 f

takes values in 1, eiπ/4, . . . , ei7π/4 for U f (1) × ZM
2 , and takes

values ±1 for U f (1) � ZM
2 . Here, we show that the same

results can be obtained from (60) by using constraints on the
SET quantities (qa, ρ

C
m, μa).

First, we show that the presence of U f (1) forbids η1 f to
take the values eiνπ/8 with odd ν. To do that, we cite a result

from Ref. [32]: to take eiνπ/8 with an odd ν, the topological
order C must allow Majorana-type vortices after gauging Z f

2 .
A Majorana-type vortex v carries fermion-parity flux and
satisfies a fusion rule of the following form:

v × v̄ = 1 + f + . . . , (61)

where “. . . ” represents other anyons in C. After gauging Z f
2 ,

C is enlarged to a bosonic topological order B and there
remains a global symmetry U′(1) ≡ Uf (1)/Z f

2 . Let q′
α be the

fractional charge of α ∈ B associated with the U′(1) symme-
try. The charge q′

α is measured in units of 2e, which is the
elementary charge of U′(1). In particular, we have q′

1 = 0 and
q′

f = 1/2. If there exists a Majorana-type vortex v, then q′
v +

q′
v̄ = q′

1 and q′
v + q′

v̄ = q′
f , according to the constraint (26).

However, q′
1 �= q′

f , so Majorana-type vortices cannot exist.
Therefore eiνπ/8 with an odd ν can not be taken by η1 f .

Second, for U(1) � ZM
2 , we further show that η1 f can only

take ±1. According to the discussions in Sec. V A, ξa = −1
is not allowed for U(1) � ZM

2 . Accordingly, to have nonzero
μa, only ξa = 1 is allowed, i.e., ρC

m(a) = ā. In this case, we
must have θa = ±1, following from θρC

m (a) = θ∗
a = θa. With

this, the right-hand side of (60) must be real. Then, we con-
clude that η1 f can only be ±1 for U(1) � ZM

2 .

C. η2 f

Next we derive the bulk-boundary relation associated with
η2 f using the folding approach. First, we recall that η2 f is
defined in (20b) through the chiral central charge cmp and Hall
conductance σ

mp
H of the mirror plane. We need to express them

in terms of SET quantities. Using the fact that the left and right
parts of Fig. 1(c) are connected by a gapped domain wall, we
immediately have

cmp = 2c, σ
mp
H = 2σH , (62)

where c and σH are the chiral central charge and Hall con-
ductance of a single layer of topological order C. Then, the
definition (20b) of η2 f gives rise to

η2 f = eiπ (c−σH )/4. (63)

This expression establishes a bulk-boundary relation: η2 f is
a bulk quantity, and c, σH are quantities of the surface SET.
Since both cmp and σ

mp
H must be integers, the surface c and σH

are multiples of 1/2.
The above relation is identical to the counterpart obtained

in Ref. [33] for time-reversal topological insulators. In addi-
tion, Ref. [33] shows that the right-hand side of (63) can be
further expressed in terms of da, θa and qa in (3b). We repeat
expression here:

η2 f = 1√
2D

∑
a

d2
a θaeiπqa . (64)

To be self-contained, we briefly sketch the derivation of η2 f .
The basic idea is to gauge Z f

2 and extend the fermionic
topological order C into a bosonic topological order B. Let
us denote B = C ⊕ C1, where C1 contains fermion-parity vor-
tices. Due to the presence of U f (1), there exists a special
Abelian vortex V ∈ C1—the one obtained by adiabatically
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inserting a π flux of U f (1). Following the usual quantum Hall
physics [90], V satisfies the following properties

θV = eiπσH /4, MV,a = eiπqa , (65)

where the latter is simply the Aharonov-Bohm phase. All
other vortices can be obtained by fusing V with a ∈ C. We
denote them as Va such that V × a = Va. The total quantum
dimension of B is DB = √

2D. Since B is a bosonic topolog-
ical order, we employ the formula (12) for the chiral central
charge:

eiπc/4 = 1√
2D

(∑
a∈C

d2
a θa +

∑
Va∈C1

d2
Va

θVa

)

= 1√
2D

∑
a∈C

d2
a θaθV MV,a

= eiπσH /4 1√
2D

∑
a∈C

d2
a θaeiπqa , (66)

where we have used the fact that the first term on the right-
hand side of the first line vanishes and have inserted (65) in
the third line. Then, the expression (64) immediately follows.

Two remarks are in order. First, the above derivation ap-
plies for both U f (1) × ZM

2 and U f (1) � ZM
2 . In fact, it works

for AI class too (see Sec. V E). Second, the fact that the right-
hand side of (64) can only take values ±1 can be proven using
constraints of SET quantities. The argument is very similar
to that for η3 in the bosonic case; see the last paragraph in
Sec. IV C.

D. η3 f

The indicator η3 f can be obtained similarly to η2 f . Follow-
ing the relation σ

mp
H = 2σH and the definition (23) of η3 f , we

immediately have

η3 f = ei2πσH (67)

As above, this equation is a bulk-boundary relation. Be-
cause of the properties (65) of the special vortex V , we may
rewrite (67) as η3 f = (θV )8. Alternatively, we may consider
adiabatically inserting a 2π flux into the fermionic topological
order C, which creates an anyon m. We should have V × V =
m. Accordingly,

η3 f = θ2
m, (68)

where θm = θ4
V is used.

The next task is to express (67) or (68) in terms of SET
quantities. This is again done in Ref. [33]. The expression is
given in (3c) and we repeat here:

η3 f = 1

2D

∑
a,b∈C

dadbei2πqa ei2πqbSab. (69)

Let us briefly review the derivation to be self-contained. The
starting point is the following relation:

Mm,a = ei2πqa , (70)

which is the Aharonov-Bohm phase between anyon a and the
2π vortex m. It is the same as the bosonic counterpart (43).
A special case is that Mm,m = θ2

m = ei2πqm . Accordingly, (68)

can be rewritten as η3 f = ei2πqm . To proceed, we make use
of the following property of fermionic topological order:
Ŝ[a],[b] ≡ √

2Sa,b is a unitary matrix, where [a] denotes the
pair {a, a f }. With the property that qa f = qa + 1 and the
relation (11), Eq. (70) can be rewritten as

Ŝ[m],[a] =
√

2da

D
ei2πq[a] , (71)

where we have denoted q[a] = qa (mod 1). The unitarity of Ŝ
leads to

δ[m],[b] =
∑
[a]

Ŝ∗
[m],[a]Ŝ[a],[b] =

∑
[a]

√
2da

D
Ŝ[a],[b]e

i2πq[a] (72)

Then, the indicator η3 f follows as

η3 f = θ2
m = ei2πqm =

∑
[b]

δ[m],[b]dbei2πq[b]

=
√

2

D

∑
[a],[b]

dadbei2πq[a] ei2πq[b] Ŝ[a],[b]

= 1

2D

∑
a,b

dadbei2πqa ei2πqbSa,b. (73)

This proves the expression of η3 f .
We remark that the above expression applies to all topo-

logical crystalline insulators, as the mirror symmetry does
not appear explicitly. Nevertheless, M guarantees that η3 f

can at most take two values, +1 or −1. This can be shown
through the expression (69) by replacing the summation as an
alternative summation over ρC

m(a) or ρC
m(ā), similarly to the ar-

gument for η3 and η2 f . However, as discussed in Sec. III B, the
following relations are imposed: η3 f = η4

1 f in AIII class and
η3 f = 1 in AI class. There should exists certain way to show
these relations from constraints on surface SET quantities,
which we have not figured out yet unfortunately. Similarly
to the bosonic case, one can alternatively derive η3 f using
anyon condensation theory. The derivation is similar to that
in Appendix D and Ref. [32], and we will not describe the
details.

E. Indicators for AI class

The AI class deserves a special attention. In this case,
the mirror symmetry satisfies M2 = Pf . Accordingly, the
description of mirror symmetry properties of the SETs are
slightly different from that in Sec. V A. The permutation ρC

m
satisfies the same properties as in the case M2 = 1. For exam-
ple, ρC

m ◦ ρC
m = 1 still holds, as fermion parity cannot permute

anyons. However, the mirror symmetry fractionalization will
be different. For the two-anyon state |a, ā f 〉 with ρC

m(a) = ā f ,
we should have M2 = Pf = −1. Accordingly, μa shall take
values ±i. Accordingly, μa is generally given by

μa =

⎧⎪⎨
⎪⎩

±1, if ξa = 1

±i, if ξa = −1

0, otherwise

. (74)

Since the expression (60) of the indicator η1 f explicitly in-
volves μa, it is not applicable any more in the AI class. In
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fact, this inapplicability has already been clear in its bulk
definition, as discussed in Sec. III B 3.

Alternatively, the expression (64) of η2 f and the expres-
sion (69) of η3 f only involve the fractional charge qa, so they
are still applicable. This agrees with their definitions from the
viewpoint of the mirror plane, discussed in Sec. III B 3. The
indicator η2 f takes values +1 and −1, which distinguishes
the Z2 classification of topological crystalline insulators in AI
class. On the other hand, η3 f must be equal to 1, according
to the result in Sec. III B 3. There should exists certain way to
prove this from constraints on surface SET quantities, which
we have not figured out yet unfortunately.

F. Properties of m

Because of the connection between monopole physics and
its surface avatar m, it is again interesting to discuss the
properties of m and relate them to the indicators. First of all,
we see that Eq. (70) can only determine [m] but not m itself.
Equivalently, it means that the SET quantities θa, μa, qa, etc,
cannot determine m, so are the indicators. This ambiguity can
also be seen from the fact that attaching a 2D IQH state with
unit Hall conductance, which does not change SET quantities,
changes m to m f . Accordingly, only θ2

m and ei2πqm can be
determined by the anomaly indicators. With (68), (70), and
Mm,m = (θm)2, we immediately have

θ2
m = ei2πqm = η3 f . (75)

Nevertheless, we always have

θm = eiπqm (76)

which is not affected by the ambiguity. It follows from (65)
that θm = eiπσH = eiπqm .

Next, we consider mirror properties of m. Following the
same line of calculation as in (51), one can show that [m] is
invariant under ρC

m in AI and AII classes, and [m] is mapped
to [m̄] in AIII class. Moreover, for AIII class, further consid-
ering (59), we obtain

ρC
m(m) =

{
m̄, if σH is integer

m̄ f , if σH is half-integer
. (77)

For either cases, we can further define μm. However, similarly
to θm and qm, μm is ambiguous due to possible stacking of 2D
IQH states on the surface, which effectively changes it to m f
such that μm changes the sign. Nevertheless, one can show
that the product of μm and θm is determined by the anomaly
indicator η1 f :

μmθm = η2
1 f . (78)

To see that, we first notice from Eqs. (19) that η2
1 f =

eiπσ
mp
H /2M2

w,x. With the relation that σ
mp
H = 2σH and θm =

eiπσH , we have η2
1 f = θmM2

w,x. Furthermore, one can show that
M2

w,x = μm. The proof, which we do not discuss in detail here,
is similar to the discussion in the bosonic case in Appendix E 4
and one needs to use the results from anyon condensation
theory in Ref. [32]. Combining all, we derive (78).

G. Examples

We consider the mirror version of the T-Pfaffian± topolog-
ical order as examples, which are first proposed in Refs. [4,6].
These examples are already illustrated in Ref. [33]. The sym-
metry group is U(1) � ZM

2 . The topological and symmetry
data of the “M-Pfaffian±” states are as shown in Table VI. The
S matrix of the T-Pfaffian topological order can be found in
Ref. [4]. We calculate the indicators by using the expressions
in Eq. (3) and obtain the following:

η1 f η2 f η3 f

T-Pfaffian+ 1 1 −1
T-Pfaffian− −1 1 −1

For the same symmetry group, we also consider fermionic
SETs, “eMmM+f,” “eCmC+f,” “eFmF+f,” which are ob-
tained by appending the trivial electron “f” to the “eMmM,”
“eCmC,” and “eFmF” bosonic SETs in Table V. Using ex-
pressions in (3), we easily obtain

η1 f η2 f η3 f

eCmC+f 1 −1 1
eMmM+f −1 1 1
eFmF+f −1 −1 1

More examples can be found in Refs. [3–7,33] and we do
not bother to list more.

VI. BOSONIC SYSTEMS WITH G = SU(2) OR SO(3)

We now move on to SU(2) and SO(3). We study bosonic
systems in this section, and study fermionic systems in the
next section. For bosonic systems, we will consider two cases,
SU(2) × ZM

2 and SO(3) × ZM
2 . We begin with definitions

of anomaly indicators in the two cases, and then derive
bulk-boundary relations and explicit expressions of anomaly
indicators in Secs. VI B and VI C, respectively.

A. Defining indicators

We first discuss the physics on the mirror plane. The clas-
sification is summarized in Table IV.

1. SU(2) × Z2

Let us first study the classification of 2D SRE states on
the mirror plane. Our strategy is to find invertible topological
orders, SPT states protected by x alone, SPT states protected
by SU(2) alone, and SPT states protected jointly by SU(2)
and x. We show that the SRE states with SU(2) × Z2 internal
symmetry are classified by Z2 × Z2. The three root states are
similar to those in Sec. III A.

(i) The root state associated with the first Z in the classi-
fication is the E8 state. The full symmetry group SU(2) × Z2

acts trivially on the state.
(ii) The root state associated with the Z2 classification is

the nontrivial SPT state protected by x only. Again, we denote

075111-19



NING, MAO, LI, AND WANG PHYSICAL REVIEW B 104, 075111 (2021)

TABLE VI. Topological and symmetry data of T-Pfaffian±. The empty entries of μa correspond to the fact that these anyons are not
invariant under ρ̄C

m .

I0 I2 I4 I6 ψ0 ψ2 ψ4 ψ6 σ1 σ3 σ5 σ7

θa 1 i 1 i −1 −i −1 −i 1 −1 −1 1
qa 0 1/2 1 3/2 0 1/2 1 3/2 1/4 3/4 5/4 7/4
μa(T-Pfaffian+) 1 −1 1 −1 1 −1 −1 1
μa(T-Pfaffian−) 1 −1 1 −1 −1 1 1 −1

M as x on the mirror plane. The SU(2) symmetry acts trivially
on this state.

(iii) The root state associated with the second Z is the
“IQH state” protected by SU(2). The mirror symmetry M
acts trivially on this state. These IQH states were discussed
in Ref. [102]. One may understand it by considering the U(1)
subgroup

USU(2)(1) = {
eiαŜz ∣∣α ∈ [0, 4π )

}
, (79)

where Ŝz = σ z/2 is the z-component of spin. Since the angle α

has a periodicity 4π , the unit charge associated with USU(2)(1)
is “1/2”. At the same time, the Hall conductance σH is an
integer, instead of even integer like in the regular U(1) case
where the angle periodicity is 2π . It can be seen from the
fact that σH is equal to the amount of charge accumulated
after inserting a flux quantum. In bosonic IQH states, the
accumulated charge is twice of the unit charge, which is an
integer in the current convention.

We remark that there is no SPT state protected jointly by
SU(2) and x. It can be understood as follows. We first gauge
Z2 and obtain an SU(2)-enriched Z2 gauge theory. There are
four anyons in Z2 gauge theories 1, e, x, xe, where e denotes
the Z2 charge and x is a Z2 vortex. If there is any nontrivial
SPT phase protected mutually by SU(2) and Z2, the vortex x
should carry a fractional quantum number of SU(2). However,
as we will discuss below in Sec. VI B, no nontrivial symme-
try fractionalization exists for SU(2) symmetry. Accordingly,
there is no mutual SPT state.

Let μ = (μ1, μ2, μ3) be an integer vector indexing a gen-
eral state in the Z2 × Z2 classification. It consists of μi copies
of the i-th root state. Similarly to the discussions in Sec. III,
this state can be characterized by the chiral central charge
cmp, Hall conductance σ

mp
H and braiding statistics of w-, x-,

and y-vortices of the Zw
2 × Zx

2, where Zw
2 = {1, ei2πSz } is a

subgroup of SU(2). These quantities are given by

cmp = 8μ1, (80a)

σ
mp
H = μ3, (80b)

θ2
x = (−1)μ2 , (80c)

θ2
w = (−1)μ3 , (80d)

M2
w,x = 1, (80e)

θ2
y = (−1)μ2+μ3 , (80f)

where (80e) follows from the fact that there is no nontrivial
mutual SPT state. All the quantities are very similar to those
in Sec. III, except σ

mp
H due to a different convention of the

angle periodicity.
Under adjoining operations, the Z2 classification associ-

ated with E8 and IQH states reduces to Z2
2, similarly as

before. Therefore the final classification of 3D systems with
SU(2) × ZM

2 is Z3
2. Similarly to the indicators in (16), we

define

η̃1 = eiπcmp/8, (81a)

η̃2 = θ2
x , (81b)

η̃3 = eiπσ
mp
H , (81c)

η̃4 = M2
w,x, (81d)

η̃5 = θ2
y . (81e)

All the quantities are invariant under adjoining operations. We
remark that η̃4 = 1 due to (80e), and η̃5 = η̃2η̃3. Also, we note
that the definition (81c) differs from that in (16c) by a factor
of 2 in the exponent. Regardless of this difference, we use the
same symbol “η̃3” to denote the indicator.

2. SO(3) × Z2

Under dimensional reduction, 3D crystalline insulators
with SO(3) × ZM

2 symmetry reduce to 2D SRE states with
SO(3) × Z2 internal symmetry. We show that the latter are
classified by Z2 × Z2

2. Our classification strategy is the same
as above. The four root states are the following.

(i) The root state associated with the first Z in the classi-
fication is the E8 state. The full symmetry group SO(3) × Z2

acts trivially on the state.
(ii) The root state associated with the Z2 classification

is the nontrivial SPT state protected by x only. The SO(3)
symmetry acts trivially on this state.

(iii) The root state associated with the second Z classifica-
tion is the ν = 1 bosonic IQHE protected by SO(3) symmetry.
The symmetry x acts trivially on this state. Similarly to the
SU(2) case, this state can be understood by considering the
U(1) subgroup

USO(3)(1) = {
eiαŜz ∣∣α ∈ [0, 2π )

}
, (82)

where Ŝz is the z-component spin operator associated with
integer spins. We emphasize that angle periodicity is 2π . Ac-
cordingly, the unit charge is “1” and the conductance quantum
is σH = 2.

(iv) The root state associated with the second Z2 classifi-
cation is an SPT state protected jointly by SO(3) and x. One
way to understand the state is to gauge Z2 and obtain a SO(3)-
enriched Z2 gauge theory. The root SPT state is characterized
by the fact that the x-vortex carries a half-integer spin—a
fractional quantum number of SO(3) symmetry (see Sec. VI C
below). Alternatively, we may gauge Z2

2 × Zx
2, where Zw

2 =
{1, eiπSz }. The root state is characterized by M2

w,x = −1.
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These SRE states have a one-to-one correspondence to
those in the U(1) × Z2 case in Sec. III A 1. One just simply
identify U(1) with USO(3)(1) in this section. Then, all prop-
erties follow from our discussions in Sec. III A 1, including:
(a) the chiral central charge cmp, Hall conductance σ

mp
H , and

properties of w-, x-, and y-vortices are given by Eq. (14); (b)
under adjoining operations, the classification reduces to Z4

2;
and (c) the anomaly indicators η̃1, η̃2, η̃3, η̃4, and η̃5 are
defined by Eq. (16).

B. Indicators for SU(2) × ZM
2

We now turn to expressing the anomaly indicators in (81)
through surface SET quantities. We need to introduce quanti-
ties that characterize SET phases with SU(2) × ZM

2 . Mirror
symmetry properties are characterized by the permutation ρC

m
and mirror fractionalization μa, as introduced in Sec. IV A.

Accordingly, we only need to study SU(2) symmetry prop-
erties. As all group elements are connected to the identity in
SU(2), no permutation on anyons is allowed. Moreover, the
second cohomology group H2(SU(2), A), which characterizes
SU(2) fractionalization on anyons, is trivial for any finite
Abelian group A [22,24]. Accordingly, there is no symmetry
fractionalization data either. That is, given a topological order,
there is only one kind of symmetry enrichment by SU(2).
While anyons may carry integer or half-integer spins, both
are considered as “integer quantum numbers” of SU(2). In
addition, there is no distinct phase enriched mutually by M
and SU(2). A consequence is that no surface SET supports a
3D bulk SPT that needs protection from SU(2) symmetry. In
the current context, the root state (iii) in Sec. VI A 1 cannot
support surface SETs. Accordingly, the only option is gapless
surface states. This point has already been emphasized previ-
ously in Refs. [7,67].

The above discussion means that η̃3 = 1 for any SU(2) ×
ZM

2 surface SETs. That is, while η̃3 = −1 is valid in the
bulk, evaluating expressions in Eqs. (2) always gives η̃3 = 1.
Indeed, with all qa’s associated with USU(2)(1) being 0, we
always have η3 = η1. Similarly, we have η4 = η2. The remain-
ing indicators η̃1 and η̃2 only involve the mirror symmetry, so
are the same as before, which are discussed in Sec. IV B.

C. Indicators for SO(3) × ZM
2

Next, we consider anomaly indicators for SO(3) × ZM
2

SET states. Again, we only need to study symmetry enrich-
ment by SO(3). Like U(1) and SU(2), anyon permutation is
not allowed by SO(3). Symmetry fractionalization is charac-
terized by a “fractional spin” sa of anyon a ∈ C under SO(3)
action. We understand that SO(3) supports either integer or
half-integer spins. The latter are “fractional spins,” as they are
projective representations of SO(3). We take the convention
that sa = 0 or 1/2. Like the fractional charge qa, the spins
{sa} satisfy

sa + sb = sc (mod 1) (83)

when Nc
ab �= 0. The fractional spin is actually fully charac-

terized by its z component sz
a, which is understood as the

fractional charge under USO(3)(1). Since we have the relation

sz
a = sa (mod 1), (84)

the two quantities are equivalent in terms of characterizing
fractionalization in the SET phase.

With the above understanding, we now express the indi-
cators in terms of SET quantities. The indicators η̃1 and η̃2

only involve mirror symmetry properties and so are the same
as those in Sec. IV B. By interpreting U(1) in Sec. IV as
USO(3)(1), making the substitution qa → sz

a in (39) and (48),
and using the relation (84), we immediately obtain the follow-
ing expressions:

η3 = 1

D

∑
a∈C

d2
a θaei2πsa (85)

η4 = 1

D

∑
a∈C

daθaμaei2πsa (86)

Also, we have η̃3 = η1η3, η̃4 = η1η2η3η4, and η̃5 = η4, the
same as before. Note that sa is the spin of an anyon under
the action of SO(3), which should be distinguished from the
topological spin θa. The latter is often denoted as θa = ei2πsa ,
so readers should not be confused with the two kinds of spins.

VII. FERMIONIC SYSTEMS WITH G = SU f (2)

In this section, we study 3D fermionic systems in CI and
CII classes. In interacting systems, the two classes corre-
spond to symmetry groups SU f (2) × ZM

2 and [SU f (2) ×
Z fM

4 ]/Z2, respectively [40]. We begin with defining the in-
dicators, and then derive the bulk-boundary correspondence
and explicit expressions of anomaly indicators in Secs. VII B
and VII C, respectively.

A. Defining indicators

We discuss the physics on the mirror plane first. The clas-
sification is summarized in Table IV.

1. SU f (2) × Z2

Let us first study the 2D SRE states on the mirror plane. We
claim that the SRE states with SU f (2) × Z2 internal symme-
try are classified by Z2 × Z2. The three root states are similar
to those in Sec. III B 1:

(i) The root state of the first Z classification is the E8 state.
The full symmetry group SU f (2) × Z2 acts trivially on this
state. It is characterized by a chiral central charge c = 8 and
Hall conductance σH = 0.

(ii) The root state of the second Z classification is the “IQH
state” at a filling factor ν = 2. One way to understand these
IQH states8 is to use the U(1) subgroup

USU f (2)(1) = {
eiαŜz ∣∣α ∈ [0, 4π )

}
, (87)

8Strictly speaking, these states should be called “spin quantum Hall
states” [102,103], because USU f (2)(1) corresponds to spin conser-
vation rather than charge conservation. However, in this work, we
refer to all the states associated with U(1) symmetry as IQH states,
regardless of the microscopic origin of the U(1) symmetry. Also,
the U(1) Chern number is referred to as the “Hall conductance,”
regardless if it is associated with spin or charge.
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where Ŝz is the z component of spin. The special element
ei2π Ŝz = −1 is the fermion parity Pf . The full SU f (2) group
imposes the condition that the root state must have a filling
factor ν = 2. Intuitively, the root state can be viewed as an
SU f (2)-symmetric spinful IQH state with the spin-up and
spin-down fermions individually form a ν = 1 IQH state. The
rigorous reason is similar to the AI class. In fact, the symmetry
group [U f (1) � Z f

4 ]/Z2 of the AI class (after dimensional
reduction) is a subgroup of SU f (2), with “U f (1)” being iden-
tified with USU f (2)(1) and “Z f

4 ” being generated by eiπ Ŝx
.

Since AI class forbids the ν = 1 state, so is SU f (2). The Zx
2

symmetry acts trivially on this root state. Similarly to bosonic
SU(2) × ZM

2 case in Sec.VI A 1, the unit charge is 1/2 due to
the 4π angle periodicity. Accordingly, the Hall conductance
σH = 1/2 for the state at filling factor ν = 1. Then, the root
state is characterized by σH = 1. The chiral central charge of
this state is c = 2.

(iii) The root state of the Z2 classification is an nonchi-
ral SPT state protected by Zx

2 only (the full symmetry is
Z f

2 × Zx
2). Fermionic SPT states with internal Z f

2 × Zx
2 sym-

metry are classified by Z8 [93], and we use ν = 0, 1, . . . , 7
to label these eight states. We show that, to be compatible
with SU f (2), the root state must be the ν = 4 state, which
then leads to the Z2 classification. To see that, we gauge the
Zx

2 symmetry, giving rise to an SU f (2)-symmetric Zx
2 gauge

theory. The x-vortex may carry spin 0 or 1/2 under SU f (2),
both of which correspond to “integer” charges of USU f (2)(1).

Therefore, if we gauge Z f
2 × Zx

2, the mutual statistics M2
w,x

between w- and x-vortices must be 1. According to Ref. [95],
only the ν = 0 and 4 states have M2

w,x = 1. Therefore the root
state is the ν = 4 SPT state. This argument also shows that
there is no SPT state protected jointly by SU f (2) and Z2 in
fermionic system.

A general SRE state can be indexed by an integer vector
μ = (μ1, μ2, μ3), with μ3 defined only modulo 2. It consists
of μi copies of the ith root state. The chiral central charge and
(spin) Hall conductance are

cmp = 8μ1 + 2μ2, (88a)

σ
mp
H = μ2. (88b)

Similarly to Sec. III B 1, we can capture many topological
properties by gauging Z f

2 × Zx
2 subgroup. We still use w-,

x-, and y- vortices to denote the Z f
2 , Zx

2 vortices and their
composite, respectively. According to Refs. [95], all these
vortices are Abelian anyons. Similarly to Eqs. (19c)–(19f), we
have

θ2
x = (−1)μ3 , (88c)

θw = eiπμ2/2, (88d)

M2
w,x = 1, (88e)

θ2
y = (−1)μ2−μ3 . (88f)

We remark that all quantities here are squares of those in in
Eqs. (19c)–(19f).

Next we consider the adjoining operations, under which the
classification reduces to Z2 × Z4. First, under adjoining, the
Z classification associated with the E8 state reduces to Z2. The

argument is similar as before. Secondly, the Z classification
associated with the IQH states reduces to Z2. However, this
reduced Z2 will extend the Z2 classification associated with
the root state (iii), such that they together form the Z4 classi-
fication. The reason behind this extension is the same as that
for U f (1) × ZM

2 in Sec. III B 1. Therefore the classification of
3D SPT states with SU f (2) × ZM

2 is Z2 × Z4, in agreement
with Ref. [40] under crystalline equivalence principles.

We now define a set of topological invariants that are
invariant under adjoining operations, which will serve as
anomaly indicators. First, we define the two invariants η1 f and
η2 f as follows:

η1 f = eiπσ
mp
H /2(θ∗

x )2, (89)

η2 f = eiπ (cmp−2σ
mp
H )/8. (90)

Compared to Eqs. (20a) and (20b), the difference is a factor of
2 ahead of σ

mp
H due to different angle periodicities between

USU f (2)(1) and U f (1) in AIII class. However, the underly-
ing physics does not change, so our notations remain the
same. The alternative expression (20c) of η1 f is still valid, as
θw = eiπσ

mp
H /2 in the current case. With these definitions and

Eqs. (88), we have

η1 f = eiπ (μ2−2μ3 )/2, η2 f = eiπμ1 . (91)

We see that η1 f can take 1, eiπ/2, eiπ , ei3π/2, indicating the Z4

classification. Also, η2 f = ±1, indicating the Z2 classifica-
tion. We can also define the anomaly indicator η3 f , similarly
to (23). However, it is easy to see that η3 f = 1 in the current
case.

2. [SU f (2) × Z f
4 ]/Z2

Now we discuss 3D SPT phases in CII class, whose sym-
metry group is [SU f (2) × Z fM

4 ]/Z2. They reduce to 2D SRE
states in the mirror plane with internal symmetry [SU f (2) ×
Z f

4 ]/Z2.
We show that strictly 2D SRE states are classified by Z2 ×

Z2. The two root states for Z2 classification are the same as
those of SU f (2) × Z2, namely, the E8 state and the IQH state
with filling factor ν = 2. According to Ref. [94], there is no
SPT state protected by Z f

4 alone. However, we claim that there
exists and only exists a nontrivial SPT state protected jointly
by SU f (2) and Z f

4 . It gives rise to a Z2 classification.
To see our claim, we gauge the Z f

4 group and there remains
an SO(3) symmetry. For the moment, we consider SRE states
with cmp = σ

mp
H = 0, i.e., states with no components from root

states (i) and (ii). Then, the gauged Z f
4 is unique, with 16

anyons in total, labeled by xi f j , with i, j = 0, 1, 2, 3. Here,
f is the original fermion, x is a unit Z f

4 vortex. We take a
convention that x is the bosonic vortex, and the other unit
vortices have θx f = −i, θx f 2 = −1 and θx f 3 = i. Then, the
question of classifying the original SRE states becomes clas-
sifying SO(3)-enriched Z f

4 gauge theories. According to our
discussion in Sec. VI C, SO(3) SET phases are distinguished
by spins s f and sx. Because of the fact that SO(3) is extended
to SU f (2) by the fermion parity Z f

2 , we have s f = 1/2. Ac-
cordingly, there are only two SET phases, distinguished by
sx = 0 or 1/2. Back to the language of the original fermionic
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system, the two phases actually differ by the root state (iv)
of SO(3) × Z2 symmetry (see Sec. VI A 2). The latter can
be thought of as formed by strongly bound fermion pairs,
which are spin-singlet or triplet bosons. In the Hilbert space
of the fermion pairs, the group [SU f (2) × Z f

4 ]/Z2 acts like
SO(3) × Z2. Moreover, the root state (iv) of SO(3) × Z2 is
characterized by the property that the bosonic Z2 vortex,
corresponding to x here, carries a spin 1/2. In light of this
idea, one way to construct the third root state is to stack
a trivial fermionic insulator the SO(3) × Z2 root state (iv)
formed by strongly-bound fermion pairs. Stacking the trivial
fermionic insulator does not trivialize the root state (iv) of
SO(3) × Z2 symmetry, which will be clear below after we
define topological invariants.

A generic SRE state can be indexed by an integer vector
μ = (μ1, μ2, μ3), with μ3 defined only modulo 2. It consists
of μi copies of the ith root state. The chiral central charge
and Hall conductance are again given by (88a) and (88b). To
further characterize the SRE states, we consider gauging the
subgroup (Z f

4 × Z f
4 )/Z2 ≡ Z f

4 × Z2. Let p be a unit vortex
of Z f

4 ⊂ SU f (2), and x be a Z f
4 unit vortex originating from

the mirror symmetry. Then, the mixed vortex y is a Z2 vortex.
Note that two x-vortices fuse into the fermion parity vortex w,
so do two p-vortices. Classification and topological invariants
of Z f

4 × Z2 SRE states have been studied in Ref. [95]. It
finds that all vortices are Abelian. Translating the results of
Ref. [95] into the current notation, we have that the SRE states
are characterized by

θ4
x = eiπμ2/2, (92a)

θ4
p = eiπμ2/2, (92b)

θ2
y = (−1)μ3 . (92c)

Since both x and p are now Z f
4 vortices, we need to take the

forth power of their topological spins to make them unam-
biguous to charge attachments. The topological spin θw of a
fermion parity vortex satisfy θw = θ4

x = θ4
p . The quantity θ2

y
can be alternatively written as

θ2
y = θ2

pθ
2
x M2

p,x. (93)

In this form, we can see that the root state with μ = (0, 0, 1)
can be obtained by stacking a trivial fermionic insulator with
either the root state (ii), (iii), or (iv) of bosonic SO(3) × Z2

SRE states in Sec. VI A 2. The case of the root state (iv) is
discussed above.

Next we consider the adjoining operations, under which
the classification reduces to (Z2)3. Firstly, similarly to
Sec.VII A 1, under adjoining, the Z classification associated
to the E8 state reduces to Z2, so the μ1 is only unambigu-
ous modulo 2. Secondly, the Z classification associated to
the IQH states also reduces to Z2. However, different from
that in Sec.VII A 1, this reduced Z2 does not extend the Z2

classification related to the third root state, which can be easily
understood by the fact that there is no nontrivial SPT state
protected by mirror symmetry alone. Therefore both μ2 and
μ3 take values modulo 2.

Now we define the topological invariants that are invariant
under adjoining operations. First of all, η2 f defined in (90) still
applies here. It identifies the root state associated with the E8

state. Similarly to (23), we define the indicator

η3 f = eiπσ
mp
H = θ2

w = θ8
x , (94)

which identifies the root state associated with the IQH state.
To distinguish the third root state, we define the indicator η4 f

η4 f = θ2
y = θ2

pθ
2
x M2

p,x. (95)

In terms of the integer vector μ, they are given by

η2 f = (−1)μ1 , η3 f = (−1)μ2 , η4 f = (−1)μ3 . (96)

Two remarks are in order. First, the indicator η4 f is the
“fermionic version” of the indicator η̃5 for bosonic systems
with SO(3) × Z2. Indeed, y-vortices of [SU f (2) × Z f

4 ]/Z2

becomes those of SO(3) × Z2 after quotient out the fermion
parity Z f

2 . Second, the definition η1 f in (89) – which is
used to identify SPT phases protected by M alone—does
not work for the current symmetry group. Instead, one may
define η̃1 f = eiπσ

mp
H /2(θ∗

x )4. However, we always have η̃1 f = 1
as there is no nontrivial SPT state protected by Z f

4 alone.

B. Indicators for CI class: SU f (2) × ZM
2

Now we express the anomaly indicators in terms of surface
SET quantities. We first discuss quantities that characterize
SET states with SU f (2) × ZM

2 . Mirror symmetry properties
are characterized by the mirror permutation ρC

m and mirror
eigenvalues μa, as introduced in Sec. V A.

Like in the bosonic case, there is no nontrivial anyon per-
mutation for SU f (2) and every anyon a ∈ C carries a spin sa.
The spin sa is either 0 or 1/2, as we will take it modulo 1.
In particular, the local fermion f has s f = 1/2 and the vac-
uum anyon has s1 = 0. The SU f (2) spins respect the fusion
structure,

sa + sb = sc (mod 1) (97)

for any a, b, c ∈ C with Nc
ab �= 0. Accordingly, we always

have sa f = sa + 1/2 (mod 1) and sā = −sa (mod 1). The
z-component spin sz

a associated with USU f (2)(1) is in analogy
to qa of U f (1) in Sec. V A. However, qa is defined modulo
2, while sz

a is defined modulo 1 due to the 4π periodicity of
the USU f (2)(1) angle. The z-component sz

a and the total spin sa

always satisfy

sz
a = sa(mod 1). (98)

Similarly to Eq. (59), under mirror permutation, the spins
should satisfy

sρc
m (a) = sa, sz

ρc
m (a) = sz

a, (mod 1) (99)

An important consequence is that ρC
m(a) cannot be ā f . Indeed,

if ρC
m(a) = ā f , then sa = sρC

m (a) = sā f = −sa + 1/2 (mod 1),
which is impossible for sa = 0 or 1/2. Remarkably, one can
further show [7] that C can be decomposed into {1, f } � Cb,
i.e., a stack of a bosonic topological order Cb and a trivial
fermionic topological order {1, f }. To see that, one pick the
integer-spin anyon out of each pair, a and a f . These integer-
spin anyons are closed under fusion, and therefore form a
topological order, denoted as Cb. Moreover, since ρC

m preserves
SU f (2) spin modulo 1, Cb is also closed under the action
of ρC

m.
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With the above understanding, we now express η1 f and η2 f

in terms of surface SET quantities. The indicator η1 f only
involves mirror symmetry properties, so the expression (60)
in Sec. V B remains valid. We reproduce the expression here,

η1 f = 1√
2D

∑
a∈C

daθaμa. (100)

However, η1 f can only take ±1 in this expression, in contrast
to four possible values ±1,±i through its definition [see
Eq. (91)]. The reason is due to the property that ρC

m(a) can
only be ā but not ā f , as discussed above. For ρC

m(a) = ā,
it is required that θa = θ∗

ρC
m (a) = θ∗

ā = θ∗
a . Therefore θa = ±1.

Accordingly, for μa = ±1, we must have ρC
m(a) = ā and θa =

±1, i.e., all nonvanishing terms in (100) are real. This makes
η1 f a real number, and thereby ±1. Similarly to the bosonic
case in Sec. VI B, it implies that if η1 f = ±i, a symmetric
surface must be gapless, i.e., the so-called symmetry-enforced
gaplessness [7,67].

The indicator η2 f can be obtained from (64) by interpreting
U f (1) there as USU f (2)(1), and substituting qa with 2sz

a. Further
with the relation (98), we have

η2 f = 1√
2D

∑
a

d2
a θaei2πsa . (101)

We note that the substitution of qa by 2sz
a, instead of sz

a, is due
to the fact that the angle period of USU f (2)(1) is 4π instead
of 2π .

C. Indicators for CII class: [SU f (2) × Z fM
4 ]/Z2

We now discuss SU f (2) and mirror properties of the
anyons in CII class. The SU f (2) properties are the same as
in CI class (Sec. VII B). In particular, the fermionic topo-
logical order C can be decomposed into {1, f } � Cb, where
Cb = {1, a, b, c, . . . } forms a modular tensor category, i.e., a
bosonic topological order. In addition, all anyons in Cb carry
integer spins.

Mirror properties again include mirror permutation and
mirror eigenvalues. In CII class, M2 = Pf , for which we
have briefly discussed the mirror permutation ρC

m and mirror
eigenvalues μa in Sec. V E when we study AI class. Generally
speaking, μa can be ±1,±i, as shown in Eq. (74). However,
in the presence of SU f (2) symmetry, the case ρC

m(a) = ā f
does not exist, making μa = ±i impossible. This is due to the
fact that M cannot mix anyon in Cb and f Cb, as discussed
in Sec. VII B. Different to the CI class, the local fermion
has μ f = 1 in CII class. Accordingly, μa f = μa while sa f =
sa + 1/2 (mod 1).

Let us now discuss the anomaly indicators. The indicator
η2 f is exactly the same as in CI class, and the explicit expres-
sion in terms of SET quantities is given by (101). For η3 f , we
claim that it is enforced to be 1 if the surface is an SET state.
This is another example of “symmetry-enforced gaplessness”
if η3 f = −1 in the bulk. To see the claim, we follow the
discussion in Sec. V D and obtain σ

mp
H = 2σH , where σH is

the surface Hall conductance. Therefore

η3 f = ei2πσH . (102)

Due the decomposition C = {1, f } � Cb, we think of the sur-
face as a stack of a fermionic IQH state with [SU f (2) ×
Z f M

4 ]/Z2 symmetry and a bosonic fractional quantum Hall
state with SO(3) × ZM

2 symmetry. The former must have an
integer σH due to SU f (2) symmetry, as argued in Sec. VII A 1.
The latter must also have an integer σH due to the mirror
symmetry, following the argument in Sec. IV C. Combining
the two, we have the total σH must be integer and so η3 f = 1
if evaluated through (102). This fact also implies that the
“monopole” anyon m, generated by adiabatically inserting a
flux quantum of the USU f (2)(1) group, must carry an integer
spin. Another way to see the symmetry-enforced gapless-
ness is that the bulk SPT with η3 f = −1 is an intrinsically
fermionic state, while the surface SET is simply a bosonic
SET stacked with a trivial fermionic insulators. Moreover, the
symmetries do not mix f with anyons in Cb at all. So, the
bosonic surface SET enforces η3 f = 1.

Finally, we study the indicator η4 f in terms of surface SET
quantities. To proceed, we again make use of the decompo-
sition C = {1, f } � Cb. We then evaluate η4 f for Cb and the
trivial fermionic insulator separately, which we denote as η

Cb
4 f

and ηtri
4 f , respectively. For the bosonic topological order Cb, the

symmetry group acts like SO(3) × ZM
2 . Then, the definition

of η4 f reduces precisely to η̃5 of SO(3) × ZM
2 . With the

expression (86), we have

η
Cb
4 f = 1

DCb

∑
a∈Cb

daθaμaei2πsa . (103)

Next, ηtri
4 f for the trivial fermionic insulator can be directly

evaluated. One way is to perform an edge theory analysis,
similar to those in Appendix B. One can show that ηtri

4 f = 1.
A simpler way is to fold the trivial fermionic insulator as
in Fig. 1(c). One can see that the folded trivial fermionic
insulators is the same state as what we apply in the adjoin-
ing operations. Since the adjoined states must have trivial
anomaly indicators, so ηtri

4 f = 1. Taking the product of the two
parts, we have

η4 f = η
Cb
4 f × ηtri

4 f = 1

DCb

∑
a∈Cb

daθaμaei2πsa

= 1√
2D

∑
a∈C

daθaμaei2πsa , (104)

where in the second line we have replaced the summation over
anyons in Cb with a summation over anyons in C. The replace-
ment is valid because θa f = −θa, μa f = μa, ei2πsa f = −ei2πsa ,
and D = √

2DCb , where D is the total quantum dimension
of C.

VIII. DISCUSSIONS

In summary, we have established bulk-boundary corre-
spondences for 3D bosonic and fermionic SPT phases that are
protected by the mirror symmetry M and a Lie group symme-
try G, where G = U(1), SU(2), or SO(3), through the folding
approach. In particular, the mirror cases of Altland-Zirnbauer
symmetry classes that support nontrivial 3D fermionic SPT
phases are explored in the presence of strong interaction. For
each symmetry group, we have defined a set of bulk topolog-
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ical invariants, a.k.a. anomaly indicators, and expressed them
in terms of surface SET quantities. These expressions allow
us to easily determine the type of anomaly for any SET state.
The main results have been summarized in Sec. I A.

For future studies, there are a few directions to explore.
First, it is interesting to explore general Lie group symmetry
protected topological states. In this work, we only explored
the most common groups U(1), SU(2), and SO(3). Recent de-
velopment on classification fermionic SPT phases has focused
on finite groups [98,104,105]. Classification of SPT phases in
the presence of general Lie group symmetries has not been
very clear, in particular in fermionic systems. Second, it is
also interesting to extend the folding approach to other spatial
symmetries, such as rotation. The bulk state of rotation and
other spatial SPT phases have been explored in a similar spirit
to this work recently [106,107]. Extending these studies in
presence of a surface would be interesting.

Note added. Recently, we become aware of the work
Ref. [108], which generalizes Ref. [34] to fermionic SET
phases. While the topics overlap between this work and
Ref. [108], the methods are very different.
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APPENDIX A: CONSTRAINTS ON VORTEX
BRAIDING STATISTICS

In Sec. III, we characterize 2D bosonic U(1) � Z2 SRE
states by gauging its Zw

2 × Zx
2 subgroup and studying the

braiding statistics of vortices. Similarly, we characterize 2D
fermionic U f (1) � Z2 SRE states by gauging its Z f

2 × Zx
2

subgroup. In this Appendix, we show that the full symmetry
group, U(1) � Z2 or U f (1) � Z2, enforces constraints on the
vortex braiding statistics. In particular, in both bosonic and
fermionic cases, the following constraint must be satisfied:

M2
w,xθ

2
w = 1, (A1)

where w is any vortex associated with Zw
2 (or Z f

2 ) and x is
any vortex associated with Zx

2. This constraint is absent for
U(1) × Z2 and U f (1) × Z2.

1. Bosonic SRE states with U(1) � Z2

In general, vortices in a 2D theory obtained by gauging
Zw

2 × Zx
2 SRE states can have eight different types of braiding

statistics, described by the following eight choices:

θ2
w = ±1, θ2

x = ±1, M2
w,x = ±1,

where w is a vortex associated with Zw
2 , x is a vortex as-

sociated with Zx
2, and all quantities are squared to remove

ambiguities from charge attachments. All vortices are Abelian
anyons. These eight types have a one-to-one correspondence
to the eight 2D Zw

2 × Zx
2 SPT phases [1,88]. However, we

show below that an enlarged U(1) � Zx
2 symmetry, with Zw

2 ⊂

U(1), enforces the constraint (A1). It means that, among
the eight Zw

2 × Zx
2 SPT phases, only four can be lifted to

U(1) � Zx
2 SPT phases.

Consider a 2D U(1) � Zx
2 symmetric SRE state. To show

Eq. (A1), we first turn this state into a 2D SET state by
gauging Zw

2 . Since Zw
2 is the center of U(1) � Zx

2, gauging
it does not break any symmetry. The resulting Zw

2 gauge the-
ory contains four anyons {1, e,w,we}, where e is the charge
and w,we are the vortices. The topological order is either
toric-code-like or double-semion-like, depending on if θ2

w = 1
or −1. At the same time, we have θe = 1, Me,w = −1, and
Mw,w = θ2

w. To be more specific, let w be the vortex obtained
by adiabatically inserting a π flux of U(1). Then, w carries
a U(1) charge Qw = σH/2 and we carries a charge Qwe =
1 + σH/2. The gauged theory has a remaining global sym-
metry [U(1) � Zx

2]/Zw
2 ≡ U ′(1) � Zx

2. If group elements of
U(1) are parametrized by Uα with 0 � α < 2π and U0 = U2π ,
then group elements of U′(1) are parametrized by Uα with
0 � θ < π and U0 = Uπ . The unit charge associated with
U′(1) is twice of that of U(1), i.e., 2e. Accordingly, anyons
carries fractional charge of U′(1):

q′
e = 1

2
, q′

w = σH

4
, q′

we = σH

4
+ 1

2
, (A2)

which are measured in units of 2e (general SET properties are
reviewed in Sec. IV A). In fact, for the purpose of obtaining
Eq. (A1), it is enough to consider the subgroup Zp

2 × Zx
2 ⊂

U′(1) � Zx
2, where

Zp
2 = {1, Uπ/2}. (A3)

In other words, we will study Zp
2 × Zx

2 enriched Zw
2 gauge

theory.
Properties of this SET state can be described by further

gauging the Zp
2 × Zx

2 group. It is not hard to see that there is no
anyon permutation by Zp

2 × Zx
2. Then, according to Ref. [20],

the SET state is characterized by the following six quantities.
The first four quantities are

M2
e,p = −1, M2

e,x = 1,
(A4)

M2
w,p = θ2

w, M2
w,x = ±1,

where M2
α,β is the statistical phase obtained by braiding α

round β twice, with α = e,w and β being a p- or x-vortex.
Note that after gauging Zp

2 × Zx
2, the resulting topologi-

cal order may be non-Abelian. Nevertheless, it is shown in
Ref. [20], the quantity M2

α,β is always an Abelian phase and it
is independent of charge attachments. (Note that we have used
different notations from those in Ref. [20].) The quantities
M2

e,p and M2
w,p are determined by Aharonov-Bohm phases

with the fractional charges in (A2) and the relation that θ2
w =

eiπσH /2. The anyon e does not carry fractional charge of x, so
M2

e,x = 1. At the same time, M2
w,x = ±1 is not determined. In

this discussion, we have implicitly used the fact that braiding
statistics of the vortices are the same when we gauge symme-
tries in different orders.

The other two quantities that describe the SET state are
given by

xe = 0, xw = 1. (A5)
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The physical meanings of these two quantities are a bit in-
direct. Consider the anyon exewxw , with xe, xm = 0, 1. If the
mutual statistics between exewxw and a is −1, it signals that
a carries a projective representation of Zp

2 × Zx
2, which is

manifested by a symmetry-protected local twofold degeneracy
on a [69]; otherwise, if the mutual statistics is 1, a does not
carry a protected twofold degeneracy. We claim that in our
SET, e carries a protected twofold degeneracy, while w carries
a protected degeneracy if and only if σH/2 is an odd integer.
One can easily check that this claim leads to (A5). To see the
claim, we note that x behaves as charge conjugation. It maps
a state with a U(1) charge Q to a state with charge −Q and
vice versa, making the two states degenerate. When Q is an
odd integer, the two states form a projective representation of
Zp

2 × Zx
2 after gauging Zw

2 ; on the other hand, if Q is an even
integer, it is not a projective representation of Zp

2 × Zx
2. The

twofold degeneracy associated with a projective representa-
tion cannot be lifted by any local perturbation that preserves
Zp

2 × Zx
2. Accordingly, we see that the unit charge e carries a

protected twofold degeneracy. At the same time, w carries a
charge σH/2. So, if σH/2 is odd, w carries a protected twofold
degeneracy; if σH/2 is even, w does not carry a protected
twofold degeneracy.

With the above understanding, we now make use of a
result from Ref. [20]. It was shown that if the SET is a valid
two-dimensional state, the following two equations must be
satisfied

1 = (
M2

e,p

)xe
(
M2

w,p

)xw (θe)2xe (θw )2xw , (A6)

1 = (
M2

e,x

)xe
(
M2

w,x

)xw (θe)2xe (θw )2xw . (A7)

Roughly speaking, the two equations are consequences of two
dimensionality of the theory. According to Ref. [20], if the
right-hand side of either equation is not equal to 1, it means
the SET cannot live in strictly 2D but instead only on the
surface of a 3D system. Our theory originates from strictly 2D
SRE state, so Eqs. (A6) and (A7) must be satisfied. Readers
may consult Ref. [20] for details (note that we have adapted
the equations into the current notation). Inserting Eqs. (A4)
and (A5), we find that Eq. (A6) is automatic and Eq. (A7)
leads to the constraint Eq. (A1). This completes our proof.

2. Fermionic SRE states with U f (1) � Z2

A general fermionic SRE state with Z f
2 × Zx

2 symmetry
can be constructed by stacking μ copies of the chiral px + ipy

superconductor and ν copies of the nonchiral root SPT state.
The latter has a Z8 classification [93]. Gauging the symmetry
can result in 128 different types of braiding statistics associ-
ated with the vortices [84,93,95]. They are described by

θw = eiπμ/8, θ2
x = eiπν/4, M2

w,x = e−iπν/2, (A8)

where w denotes a Z f
2 vortex and x denotes a Zx

2 vortex.
Note that the mutual statistics M2

w,x is not independent but
always equal to (θ∗

x )4. We remark that w- and x-vortices may
be nonAbelian depending on the values of μ and ν.

Similarly to the bosonic case, we look for constraints en-
forced on the braiding statistics by an enlarged U f (1) � Zx

2

symmetry group. There are two constraints. First, to lift Z f
2

to U f (1), it is required that μ must be even. This result was
shown in Ref. [94] and extensively used in the main text.
When μ is even, the chiral superconductors are topologically
equivalent to IQH states, with the Hall conductance σH =
μ/2. Second, the constraint (A1) still holds in the fermionic
case. The rest of this section is devoted to showing (A1) for
U f (1) � Z2.

To show Eq. (A1), we take the same strategy as in the
bosonic case. We consider a SRE state with U f (1) � Zx

2

symmetry, then gauge the center Z f
2 and turn it into an

SET state. The resulting gauge theory contains four Abelian
anyons, which we again denote as {1, e,w,we}, where e is the
fermionic charge and w is the fermion parity vortex. We have
θe = −1 and θw = θwe = eiσH π/4. To be more specific, let w

be the vortex that is obtained by adiabatically inserting a π

flux of U f (1). Accordingly, w carries a U f (1) charge qw =
σH/2. The fusion rules depend on whether σH is even or odd.
In particular, for even σH , w × w = 1; for odd σH , w × w =
e. The remaining global symmetry is [U f (1) � Zx

2]/Z f
2 ≡

U′(1) � Zx
2, similarly to the bosonic case. So, we arrive at a

U′(1) � Zx
2 symmetry enriched topological order.

Properties of U′(1) � Zx
2 SET states are generally dis-

cussed in Sec. IV A. First, the symmetry x may do the
permutation w ↔ we. Similarly to Eq. (31), this permutation
is allowed only if q′

w = −q′
we (mod 1), where q′

a is the frac-
tional charge associated with U′(1). The fractional charges
carried by e,w and we are still given by Eq. (A2) (except
that σH is not restricted to be even in fermionic systems). Ac-
cordingly, σH must be an odd integer to allow the permutation
w ↔ we by x. In fact, when σH is odd, x must permute w and
we. This can be proven by contradiction. Assume that w is not
permuted by x and σH is odd. Let us focus on the subgroup
Zp

2 × Zx
2 ⊂ U′(1) � Z2. Similarly to the bosonic case, the

anyon e carries a projective representation of Zp
2 × Zx

2. On the
other hand, for odd σH , we have the fusion rule w × w = e,
which means that the representation on e is a tensor product
of the representations on two w’s. The latter cannot be a
projective representation. So, we arrive at a contradiction. We
summarize the result: When σH is even, x does not permute w

and we; when σH is odd, x does the permutation.
Below we consider even and odd σH separately. When σH

is even, the characterization of SET is very much the same as
the bosonic case. For the Zp

2 × Zx
2 subgroup, the SET is again

described by six quantities

xe = 0, M2
e,p = −1, M2

e,x = 1,

xw = 1, M2
w,p = θ2

w, M2
w,x = ±1,±i. (A9)

All quantities have the same physical meanings as in the
bosonic case. The conditions (A6) and (A7) still apply. Then,
the constraint (A1) follows immediately.

For odd σH , let us first consider σH = 1. We will see
that it is enough to study properties associated with the x
symmetry. In the presence of permutation w ↔ we by x, it
was shown in Ref. [24] that there are four types of Zx

2 SET
phases, characterized by (1) whether the un-permuted anyons
e carries a Zx

2 fractional charge and (2) whether a Zx
2 bosonic

SPT state is glued. However, if e carries a fractional charge of
Zx

2, the original symmetry group should be [U f (1) � Z f
4 ]/Z2.
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Accordingly, the symmetry group U f (1) � Zx
2 results in only

two SETs after gauging Z f
2 , which differs relatively by a Zx

2
SPT state. The two topological orders obtained by further
gauging Zx

2 have been worked out in Ref. [109] (see also
Ref. [24]). Both contain nine anyons in total: 1±, e±, [w],
x±

1 , x±
2 , where 1+ is the new vacuum, 1− is the Zx

2 charge.
Anyons a+ and a− differ by the charge 1−. The anyon [w] is
obtained by identifying w and we after gauging. The anyons
x±

1 and x±
2 are different Zx

2 vortices. The quantum dimensions
and topological spins are as follows:

d1± = de± = 1, d[w] = 2, dx±
1

= dx±
2

=
√

2,

θ1± = 1, θe± = −1, θ[w] = θw = eiπ/4,

θx±
1

= ±κeiπ/8, θx±
2

= ±κ∗eiπ/8,

where κ = 1 or i for the two gauged SETs respectively. We
observe that regardless of the value of κ , we always have θ4

x =
eiπ/2, where x is any of the four x-vortices. From Eq. (A8),
we obtain that M2

w,x = (θ∗
x )4 = e−iπ/2. For general odd σH ,

we make use of a result from Ref. [95] it showed that θw, θ2
x

and M2
w,x are multiplicative under stacking. Accordingly, by

stacking σH copies of the σH = 1 state, we obtain

θw = eiσH π/4, θ2
x = κ2eiσH π/4, M2

w,x = e−iσH π/2. (A10)

We see that Eq. (A1) holds for any odd σH .
Combining our analyses of the even and odd σH cases, we

prove that (A1) holds generally.

APPENDIX B: ADJOINING IQH STATES

In this Appendix, we explicitly show the classification
reduction of the 2D SRE states by adjoining IQH states in
fermionic systems. Unlike the Z classification generated by
the E8 state which always reduces to Z2 under adjoining,
the reduction by adjoining IQH states is more interesting and
differs for different symmetries.

1. U f (1) × ZM
2

As discussed in Sec. III B 1, 2D fermionic SRE states with
internal U f (1) × Z2 symmetry are classified by Z2 × Z4.
A general SRE state is indexed by an integer vector μ =
(μ1, μ2, μ3). Under adjoining operations, the Z classification
associated with root state (ii) collapses to Z2. This Z2 extends
the original Z4 classification, and together they form a Z8

classification. To explicitly show this result, we perform an
analysis from edge theory. Our analysis is not new but basi-
cally a review of that in Ref. [37].

Let us consider adjoining a pair of IQH states on the two
sides of the mirror plane (see Fig. 2). It adds two chiral
fermions ψR1 and ψR2 to the edge of the mirror plane, where
the subscript “R” means “right-moving.” The two edge modes
are described by the Hamiltonian

H = −i
∑

n=1,2

ψ
†
Rn

∂xψRn . (B1)

The U f (1) symmetry has the action ψRn → eiαψRn , where α is
a rotation angle. To have the full symmetry being U f (1) × Z2,
the symmetry x should have the action ψR1 ↔ ψR2 .

We need to read out the index μ for the state with the above
edge. To do that, we define two new fermions:

ψ̃R1 = 1√
2

(ψR1 + ψR2 ),

ψ̃R2 = 1√
2

(ψR1 − ψR2 ). (B2)

Under x action, the new fermions ψ̃R1 and ψ̃R2 transforms as

ψ̃R1 → ψ̃R1 , ψ̃R2 → −ψ̃R2 . (B3)

We see that the x symmetry behaves as the fermion parity of
the right-moving fermion ψ̃R2 . Then, the square of the topo-
logical spin of x-vortices can be easily computed, which is
θ2

x = eiπ/2 [93]. At the same time, we have c = 2 and σH = 2.
Therefore, with the data in (19), we find that the adjoined state
corresponds to μ = (0, 2, 1).

Hence, adjoining IQH states establishes the following
equivalence relation for the index μ:

μ ∼ μ + (0, 2, 1). (B4)

With this relation, we see that a stack of two copies of root
state (ii), i.e. the state indexed by μ = (0, 2, 0), is equivalent
to the state (0, 0,−1)—the inverse state of the root state (iii).
Accordingly, the root state (ii) and (iii) together generate a Z8

classification, after taking adjoining operations into accounts.

2. U f (1) � ZM
2

Strictly 2D fermionic SRE states with U f (1) � Z2 sym-
metry are classified by Z2 × Z2. A general SRE state can
be indexed by an integer vector μ = (μ1, μ2, μ3). Below we
show that adjoining IQH states reduces the Z classification
associated with root state (ii) to Z2, by a similar edge theory
analysis as above.

By adjoining two IQH states, we again obtain an edge
with two chiral fermions ψR1 and ψR2 , described by the
Hamiltonian (B1). Nevertheless, the symmetry actions will
be different to the case of U f (1) × Z2. To have the correct
symmetry group U f (1) � Z2, we shall have the following
symmetry action: under U f (1),

ψR1 → eiαψR1 , ψR2 → e−iαψR2 (B5)

and under x,

ψR1 ↔ ψR2 . (B6)

We now read off the index μ associated with this edge. It is
obvious that c = 2. Also, the Hall conductance σH = 2. This
is somewhat not obvious, as ψR2 is positively charged under
U f (1). Nevertheless, it is not hard to show that a right-moving
positively charged fermion gives σH = 1. The quantity θ2

x can
be obtained exactly the same as in Appendix B 1, which is
equal to eiπ/2. Comparing with the data in (21), we obtain that
μ = (0, 2, 0).

Hence, adjoining IQH states establishes the equivalence
relation

μ ∼ μ + (0, 2, 0). (B7)

So, the Z classification associated with root state (ii) reduces
to Z2.
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FIG. 3. Schematics of a gapped domain wall between topological
orders P and U .

APPENDIX C: REVIEW ON ANYON CONDENSATION

In this Appendix, we review the basics of anyon conden-
sation theory [79,81]. This theory will be extensively used in
Appendices D and E to provide alternative derivations of the
expressions for anomaly indicators η̃3, η̃4, η̃5 and η3 f .

Anyon condensation is an algebraic theory that describes
properties of a gapped domain wall that connects two topo-
logical orders (see Fig. 3). Let P be the topological order
“before” condensation, and U be the topological order “af-
ter” condensation. Intuitively, anyon condensation is such an
event: when parameters of the microscopic Hamiltonian vary
in an appropriate manner, certain anyons in P condense into
the vacuum such that the system takes a topological phase
transition into the topological order U . In theory, such a phase
transition occurs in two steps:

P → T → U , (C1)

where T is the intermediate theory. The real-space version of
the transition is shown in Fig. 3: the left half of the 2D system
is the theory P before condensation, the right half is the
theory U after condensation, and the immediate theory T lives
on the gapped domain wall and characterizes it. Topological
excitations (anyons) and their fusion and braiding properties
in P , T , and U are different but closely connected. Anyon
condensation theory is the theory that establishes the connec-
tion. Below we discuss the connection for bosonic topological
orders. When we study fermionic topological orders, they
will be turned into bosonic topological orders by gauging the
fermion parity. So, the following discussion will be enough
for our purpose.

According to Refs. [79,81], the relation between the
anyons in P and T is described by the restriction map:

r(α) =
∑
t∈T

nα,t t, (C2)

where α ∈ P and the non-negative integer nα,t is called the
restriction coefficient. It means that when α moves to the
domain wall, it can turn into t in nα,t distinct ways. If nα,t = 0,
it means α cannot be turned into t on the domain wall. Specif-
ically to which anyon t and in which way it takes to turn into
t depend on the detail of how α moves to the domain wall.
An important property to remark is that the restriction map
commutes with the fusion of anyons in P . More specifically,
for anyons α, β ∈ P ,

r(α) × r(β ) = r(α × β ). (C3)

The explicit expression is∑
r,s∈T

nα,rnβ,sN
t
rs =

∑
γ∈P

Nγ

αβnγ ,t , (C4)

where Nt
rs and Nγ

αβ are respectively the fusion coefficients in
P and T .

Anyons in the intermediate theory T are divided into two
kinds: confined and deconfined anyons. The confined anyons
are not the usual anyons as the energy cost to pull a pair of
particle and antiparticle depends on the distance. So, they can-
not move freely but are confined on the gapped domain wall.
Fusion involving confined anyons may not commute, i.e.,
ti × t j �= t j × ti. In addition, a confined anyon t does not have
a well-defined topological spin. On the other hand, deconfined
anyons behave as the usual anyons, i.e., they can move freely
out of the gapped domain wall and have commutative fusion
and well-defined braiding properties. The set of deconfined
anyons are closed under fusion and form the topological
order U .

The inverse of the restriction map is called the lifting map
and denoted as

l (t ) =
∑
α∈P

nα,tα, (C5)

where the lifting coefficient nα,t is the same as the restriction
coefficient in r(α). It expresses any anyon t ∈ T as the super-
position of the anyons in P . We can determine the deconfined
anyons in T via the following criterion that: t is deconfined if
and only if all α ∈ l (t ) have the same topological spin. Here,
when we say “α ∈ l (t )”, it means nα,t �= 0. Then, θt = θα for
any α ∈ l (t ) if t is deconfined.

As a subset of anyons in T , the deconfined anyons in U
also satisfy Eq. (C4), i.e., when we restrict r, s to be inside
U in Eq. (C4). Another important constraint for deconfined
anyons is that the matrix n commutes with the modular S and
T matrices, in the following sense:

SPn = nSU , T Pn = nT U . (C6)

The explicit expression for the former equation is∑
β∈P

Sα,βnβ.t =
∑
s∈U

nα,sSs,t , (C7)

where α ∈ P and t ∈ U . Since Tα,β = δα,βθα , the latter equa-
tion in (C6) reduces to that θα = θt as long as nα,t �= 0, for any
α and t , which has already been mentioned above.

APPENDIX D: DERIVATION OF η̃3 FROM
ANYON CONDENSATION

In this Appendix, we use anyon condensation theory to
derive the expression of η̃3 in terms of SET quantities. Com-
pared with the approach used in Sec. IV C, it is technically
more complicated. However, it is still worth carrying out such
an analysis to have an alternative and perhaps better under-
standing of the physics. We will consider U(1) × ZM

2 and
U(1) � ZM

2 simultaneously. As discussed in Sec. III, η̃3 is
related to the SRE state in the mirror plane which only needs
protection from U(1) and its value is determined by the topo-
logical spin of w-vortices. Therefore, to express η̃3 in terms
of SET quantities, it is sufficient to gauge the Zw

2 subgroup of
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U(1). In Appendix E where we discuss derivations of η̃4 and
η̃5, we will gauge the bigger Zw

2 × Zx
2 subgroup. Although η̃3

is independent of the mirror symmetry, our following discus-
sions do assume the presence of mirror symmetry and mirror
symmetry properties will be extensively studied, which paves
the way for deriving η̃4 and η̃5 in the next Appendix.

1. Gauging Zw
2 before folding

We will use Cl and Cr to denote the topological orders
living on the left and right wings of the T-like junction in
Fig. 1(b), respectively, although they are actually the same,
namely, Cl = Cr = C. After gauging Zw

2 , they will be extended
to topological orders Bl and Br , respectively. Unlike Cl and
Cr , the topological orders Bl and Br are not necessarily the
same, as we will discuss below. Later after we establish a few
results, we will drop the subscripts “l” and “r” for notational
simplicity.

First, let us discuss the anyon content of Bl . Anyons in Bl

are divided into two collections Bl,0 and Bl,1. Without any
confusion, we will simply denote this split as Bl = Bl,0 ⊕
Bl,1. The first collection is a set of anyons which we denote
as

Bl,0 = {a+ , a− | ∀a ∈ Cl}. (D1)

Namely, each anyon in Cl splits into two in Bl,0. The special
anyon 1+ is the trivial anyon in Bl , while 1− is the Zw

2
gauge charge, which is an Abelian boson. For general a, the
sign “±” in a± has no absolute meaning of carrying or not
carrying a Zw

2 gauge charge. It only means that a+ and a−
differ relatively by a gauge charge 1−. They satisfy the fusion
rule a± × 1− = a∓. The mutual statistics between a± and
1− is trivial, for every a. The topological spins and quantum
dimensions satisfy

θa± = θa, da± = da. (D2)

To fix our notation, we make use of the full U(1) symmetry to
distinguish a+ and a−. Before gauging Zw

2 , anyon a may carry
a U(1) charge Q = qa + n, where 0 � qa < 1 is the fractional
charge and n is any integer charge. Then, we define a+ as
the one with Q = qa (mod 2), and a− as the one with Q =
qa + 1 (mod 2). Here, “ (mod 2)” is taken because we only
care about Zw

2 charges. For later convenience, we define the
Zw

2 charge carried by aλ,

qaλ
:= qa + 1 − λ

2
, (D3)

where we have interpreted the sign “±” as “±1”. The Zw
2

charges should be conserved modulo 2, upon fusion of
anyons. With this understanding, we obtain the following
fusion rule:

aλ × bμ =
∑

c

Nc
abcσ , (D4)

where the coefficient Nc
ab inherits from C, and the signs

λ, μ, and σ satisfy the following condition:

qaλ
+ qbμ

= qcσ
(mod 2). (D5)

Note that the condition (26) guarantees a unique solution of σ

in (D5), provided that λ and μ are given. By setting cσ = 1+,

we can obtain the anti-particle aλ = āλ′ , where λ′ is fixed by
the condition that qaλ

+ qāλ′ = 0 (mod 2). Below we will also
take the convention that λ̄ = −λ to make some expressions
more compact.

The other collection Bl,1 contains all the Zw
2 vortices. First,

there exists a special Abelian vortex V , whose mutual statis-
tics with anyons a± is determined by the fractional charge
qa [24,90]. The mutual statistics between V and aλ is given
by

MV,aλ
= eiπqaλ = λeiπqa . (D6)

In fact, this vortex is the one obtained by adiabatically insert-
ing a π flux of the U(1) symmetry before gauging, and (D6) is
simply the Aharonov-Bohm phase between the charge carried
by aλ and the π flux. It also means that V itself carries a
U(1) charge σH/2. Second, all other vortices in Bl,1 can be
considered as the composite of V and anyons in Bl,0. We
denote them as Va± , obtained by the following fusion product:

Va± = V × a±. (D7)

Since V is Abelian, the fusion outcome on the right-hand
side is unique. It is understood that V1+ ≡ V . The quantum
dimension and the topological spin are

dVaλ
= daλ

= da, θVaλ
= λθV θaeiπqa . (D8)

The latter follows from the general relation θγ = θαθβMγ

αβ ,
where Mγ

αβ is the mutual statistics between α and β in fusion
channel γ [84]. One can check that the total quantum dimen-
sion is DBl = 2DCl , and the S matrix elements are given by

S(Vaλ
, bμ) = 1

2
M∗

V,bμ
Sa,b = μ

2
e−iπqbSa,b. (D9)

The fusion product of two V ’s will turn out to be important,
which we denote as

V × V = mλ, (D10)

where mλ is an Abelian anyon in Bl,0. Using the U(1) charge
carried by V , we see that the sign λ is determined by the Hall
conductance: if σH is even, λ = +1; if σH is odd, λ = −1.
Note that the anyon m ∈ Cl is the “avatar” of the 2π monopole
in the surface topological order Cl before gauging.

It is worth emphasizing that given Cl and {qa}, the Zw
2 -

gauged theory Bl is not unique. According to the SET
classification [24], there exist two types of gauged theories,
which differ by stacking a Zw

2 SPT state before gauging. If
one theory has θ2

V = α, the other has θ2
V = −α, where the

value of α depends on σH or {qa}. However, this ambiguity
will not affect our derivation of anomaly indicator. Note that
the two types of theories have the same topological properties
for anyons in Bl,0, and the difference appears only for vortices
in Bl,1.

We now move on to discuss the topological order Br .
Since it is obtained from Cr = C with the same fractional
charges {qa} by gauging Zw

2 , Br should also be one of the two
possible Zw

2 gauge theories, like Bl . Nevertheless, we should
keep in mind that the left and right wings of the T-junction
are mirror images of each other, as discussed in Sec. II. So,
upon gauging Zw

2 , the gauged theories Bl and Br should also
be mirror images of each other. Therefore the choices of Bl
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and Br among the two possible Zw
2 -gauged theories are not

independent. (However, whether Bl and Br are the same or
not is a separate question. In fact, the answer to this question
determines whether the mirror plane is a Zw

2 SPT or not.)
To be more precise, the fact that Bl and Br are mirror

images of each other implies that there exists an antiequiv-
alence ρB

m : Bl → Br . That is, each anyon α ∈ Bl is mapped
to ρB

m (α) ∈ Br , such that all fusion and braiding properties are
preserved after complex conjugation. Complex conjugation is
needed because mirror symmetry reverses orientation. Specif-
ically, some of the conditions are

NρB
m (γ )

ρB
m (α),ρB

m (β ) = Nγ

α,β, SρB
m (α),ρB

m (β ) = S∗
α,β,

θρB
m (α) = θ∗

α . (D11)

The first condition means that fusion commutes with the map
ρB

m . Mutual statistics such as the one in (D6) is also preserved
after complex conjugation. Therefore Br is determined by Bl

through the map ρB
m .

One understands that ρB
m is an extension of ρC

m : Cl → Cr

into the gauged theory. The latter is given as an input of the
original SET. There is a difference between the two. Since
Cl = Cr = C, the map ρC

m is an anti-auto-equivalence. It can
compose with itself and satisfies ρC

m ◦ ρC
m = 1, the identity

map. On the other hand, Bl is not necessarily the same as
Br . So, ρB

m is an anti-equivalence between two topological
orders. It cannot compose with itself. For later convenience,
we define its inverse map ϕB

m : Br → Bl , such that ϕB
m ◦ ρB

m =
ρB

m ◦ ϕB
m = 1.

We now discuss the map ρB
m more specifically. We consider

anyons in Bl,0 and Bl,1 separately. Anyons in Bl,0 originate
from those in Cl , so ρB

m is mostly determined by ρC
m. For anyon

aσ ∈ Bl,0, the map ρB
m must be given by

ρB
m (aσ ) = ρC

m(a)σ ′ , (D12)

where the right-hand side is an anyon in Br,0. The sign σ ′ is
not arbitrary but determined by the following condition:

qaσ
= ζqρC

m (a)σ ′ = ζ

(
qρC

m (a) + 1 − σ ′

2

)
(mod 2), (D13)

where ζ = 1 for U(1) × ZM
2 and ζ = −1 for U(1) � ZM

2 .
It follows from the fact that U(1) charge changes sign under
M for U(1) � ZM

2 , but does not for U(1) × ZM
2 . The inverse

map ϕB
m is very similar: for aσ ∈ Br , we have

ϕB
m (aσ ) = ρC

m(a)σ ′, (D14)

where σ ′ is again determined by (D13). Since the two maps
looks exactly the same, below we will simply use the conven-
tion that ϕB

m ≡ ρB
m when restricted to anyons in Bl,0 and Br,0.

In the special case a = 1, we obtain ρB
m (1±) = 1±.

For the vortex anyon Vaλ
∈ Bl,1, it is mapped to a vortex

anyon in Br,1 under ρB
m , and vice versa by ϕB

m . Under ρB
m , the

special vortex V ∈ Bl must be mapped to an Abelian vortex in
Vzσ

∈ Br . That is,

ρB
m (V l ) = V r

zσ
, (D15)

where to distinguish the special vortices from Bl and Br , we
have put the superscripts “l” and “r.” The Abelian anyon zσ ∈

Br can be determined by the requirement that, for any aλ ∈ Bl ,

eiπqaλ = MV l ,aλ
= M∗

ρB
m (V l ),ρB

m (aλ ) = M∗
V r ,ρC

m (a)λ′ M
∗
z,ρC

m (a)

= e−iζπqaλ
DC
da

Sz,ρC
m (a).

One can check that the λ dependence on the two sides cancel.
The above equation further simplifies to

Sz,a = da

DC
eiπ (1+ζ )qa , ∀a ∈ C, (D16)

where we have used qρC
m (a) = ζqa (mod 1). Then, because of

modularity in C, we find that z = 1 when ζ = −1; and z = m,
the “avatar” anyon of the bulk monopole defined in (43) when
ζ = 1. Other mirror image of vortices in Bl,1 can be obtained
using the property that ρB

m commutes with fusion map.

2. Folding

Having understood Bl , Br and their relation, we now con-
sider folding. We fold the right wing of the T-junction along
the intersection line to the bottom of the left wing, as shown
in Fig. 1(c). Since folding reverses orientation, let us use Brev

r
to denote the topological order in the bottom layer. Also, let
αrev be the anyon corresponding to α ∈ Br . All fusion and
braiding quantities in Brev

r are complex conjugates of the coun-
terparts in Br . In particular, topological spins satisfy θαrev = θ∗

α

and elements of the S matrix satisfy Sαrev,βrev = S∗
α,β , for any

α, β ∈ Br . Let us define a folding map F from Br to Brev
r :

F : α �→ αrev. (D17)

Like ρB
m , the map F is also an antiequivalence. Accordingly,

the composite map F ◦ ρB
m establishes a usual equivalence

between Bl and Brev
r , under which all fusion and braiding

properties are preserved (without complex conjugation). That
is, α ∈ Bl is mapped to anyon [ρB

m (α)]rev in Brev
r , and the two

anyons have exactly the same topological properties.
The folded system is a double-layer topological order Bl �

Brev
r . Since Brev

r and Bl are equivalent, we find it convenient to
rename anyons in Brev

r using the labels of Bl , i.e.,

[ρB
m (α)]rev rename−−−−−→ α. (D18)

With this new notation, we can now denote the double-layer
topological order as Bl � Bl , whose anyons can be labeled by
(α, β ). The mirror permutation acts simply as exchanging the
anyons in the two layers,

M : (α, β ) → (β, α). (D19)

It becomes an internal symmetry. We observe that the
information of ρB

m disappears in the mirror action after renam-
ing (D18). It turns out that it is encoded in properties of the 1D
gapped domain wall between the double-layer system and the
mirror plane in Fig. 1(c), which will be discussed soon.

Without causing confusion, below we will simply omit the
subscript l regarding to the notations Cl , Bl , Bl,0, Bl,1 etc. and
denote them as C,B,B0,B1 etc. The double-layer topological
order will be denoted as as B � B.

Before proceeding, we make a comment on the “Zw
2 gauge

charge” carried by (aλ, bμ) in the double-layer topological
order B � B after renaming (D18). The anyon aλ in the top
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layer carries a Zw
2 gauge charge qaλ

as defined in (D3). At the
same time, bμ originates from the anyon ρB

m (bμ) in Br before
renaming. It carries a Zw

2 charge qρB
m (bμ ) = ζqbμ

. Since folding
does not modify charge, we have that (aλ, bμ) carries a total
Zw

2 charge

q(aλ,bμ ) = qaλ
+ ζqbμ

. (D20)

This property will be useful below when we discuss anyon
condensation on the gapped domain.

3. Anyon condensation

With the above understanding, we now study the 1D
gapped domain wall in Fig. 1(c). The left side to the domain
wall is the double layer topological order B � B, while the
right side is the mirror plane. Since we have gauged Zw

2 , the
mirror plane supports a Zw

2 gauge theory, which we denote
as U . It is either the toric code or double semion topological
order. There are four anyons in U , denoted as {1,1−,w,w−},
where w is the π flux vortex and 1− is the Zw

2 gauge charge.
The two kinds of Zw

2 gauge theories are characterized by
θ2
w = θ2

w− = 1 and −1 respectively (see Sec. III A). Our goal
is to determine U , out of the two possibilities, by analyzing
properties of the gapped domain wall through anyon conden-
sation theory.

Following Refs. [31,32], we claim that the symmetric
gapped domain wall is described by the following anyon con-
densate:

L =
∑

aλ∈B0

(aλ, ρ̄m(aλ)), (D21)

where aλ goes through all anyons in B0, and ρ̄m(α) ≡ ρB
m (α)

for notational simplicity. Below, we will also use ρm to denote
ρB

m or ρC
m for simplicity, where the precise meaning will be

self-explaining by the involving anyon.
A few explanations are in order. First, to see the form of L,

we consider an anyon aλ ∈ Bl in the left wing and bμ ∈ Br in
the right wing of Fig. 1(b). When they meet in the intersection
line, they can annihilate each other into the vacuum if and
only if (1) b = ā and (2) the total Zw

2 charge is zero, i.e.,
qaλ

+ qbμ
= 0 (mod 2). That means, bμ = aλ according to the

fusion rule (D5). (Strictly speaking, aλ is an anyon in Bl,0.
However, anyons in Bl,0 and Br,0 are exactly the same, so
we abuse the anyon labels.) That means, after folding and
renaming (D18), the anyon (aλ, ρm(aλ)) condenses into the
vacuum on the gapped domain. Indeed, according to (D20),
it carries a Zw

2 charge qaλ
− ζqρm (aλ ) = qaλ

− ζ 2qaλ
= 0. Sec-

ond, the condensate is mirror symmetric. This is because
that both (aλ, ρ̄m(aλ)) and (ρ̄m(aλ), aλ) are contained in L.
Mirror properties will be discussed in more details in the next
Appendix. Third, the anyon (1−,1−) belongs to L. It is very
important. Strictly speaking, in the double-layer topological
order B � B, we have gauged Zw

2 in each layer, i.e., a total
Zw

2 × Zw
2 group is gauged. The Zw

2 symmetry in the mir-
ror plane should correspond to the diagonal Z2 subgroup of
Zw

2 × Zw
2 . Condensing (1−,1−) effectively “ungauges” the

off-diagonal Z2 symmetry.

The category T that lives on the domain wall consists of
the following anyons:

T = B0 ⊕ {w1
±,w2

±, . . . } ⊕ others, (D22)

where wi
± are various Zw

2 vortices and “others” are additional
confined anyons. To see this constitution, one may first con-
sider the case before gauging. In that case, it is not hard to
see that T = C on the gapped domain wall, with the braiding
information in C omitted. Then, the actual T should be a
Zw

2 -gauged version of C. That is, T contains anyons in B0 and
Zw

2 vortices. Moreover, the gapped domain wall is obtained by
condensing (1−,1−) after gauging the Zw

2 × Zw
2 in the double

layer, T also contains defects associated with the off-diagonal
Z2, which are denoted as “others” in (D22).

With that, we claim that the restriction maps of the anyons
in B � B are as follows:

r{(aλ, bμ)} =
∑
c∈C

Nc
aρm (b)cσ , (D23a)

r{(aλ,Vbμ
)} = confined anyons only, (D23b)

r{(Vaλ
, bμ)} = confined anyons only, (D23c)

r{(Vaλ
,Vbμ

)} =
∑
wi

σ

naλ,bμ;wi
σ
wi

σ , (D23d)

where σ on the right-hand side of (D23a) is fixed by the
charge conservation condition qaλ

+ ζqbμ
= qcσ

(mod 2). A
few special cases of (D23a) are

r{(1+,1+)} = r{(1−,1−)} = 1+,

r{(1+,1−)} = r{(1−,1+)} = 1−. (D24)

To see (D23b) and (D23c), we notice that both (aλ,Vbμ
) and

(Vaλ
, bμ) have the mutual statistics being −1 with respect to

(1−,1−). Since the latter condenses to the vacuum, (aλ,Vbμ
)

and (Vaλ
, bμ) must be confined. The restriction map (D23d)

is to be determined. We have only included wi
± only on the

right-hand side, as one can show that (Vaλ
,Vbμ

) is a Zw
2 vortex

by checking its mutual statistics with the charges (1±,1±).
Using the commutativity between fusion and restriction and
the special restrictions in (D24), one can show that

r
{(

Vaλ
,Vbμ

)} = r
{(

Vaλ̄
,Vbμ̄

)}
and

r
{(

Vaλ
,Vbμ

)} × 1− = r
{(

Vaλ
,Vbμ̄

)} = r
{(

Vaλ̄
,Vbμ

)}
.

These relations imply

naλ,bμ;wi
σ

= naλ̄,bμ̄;wi
σ

= naλ̄,bμ;wi
σ̄

= naλ,bμ̄;wi
σ̄
,

(D25)
naλ̄,bμ̄;wi

σ̄
= naλ̄,bμ;wi

σ
= naλ,bμ̄;wi

σ
= naλ,bμ;wi

σ̄
,

where “¯” on the indices λ,μ, σ means the opposite.
The lifting maps can be easily read off from the restriction

maps. We only list the lifting maps for deconfined anyons:

l (1) =
∑

aλ

(aλ, ρ̄m(aλ)), (D26a)

l (1−) =
∑

aλ

(aλ̄, ρ̄m(aλ)), (D26b)
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l (w) =
∑
aλ,bμ

naλ,bμ;w(Vaλ
,Vbμ

), (D26c)

l (w−) =
∑
aλ,bμ

naλ,bμ;w− (Vaλ
,Vbμ

), (D26d)

where the summations go through all aλ (and bμ) in B0, and
naλ,bμ

is a short-hand notation for naλ,bμ;w. Note that we have
used the short-hand notation w ≡ w1

+ and w− ≡ w1
−.

Our goal is to determine θ2
w, which further determines

the topological order U . To do that, we consider the relation
SB�Bn = nSU , where n is the matrix of lifting coefficients.
More explicitly, we have∑

β∈B
Sα,βnβ,t =

∑
s∈U

nα,sS̃s,t . (D27)

Let us take t = 1 ∈ U and α = (Vbμ
,Vcσ

). Then, we have the
equation∑

aλ

S[(Vbμ
,Vcσ

), (aλ, ρ̄m(aλ))] = nbμ,cσ ;w + nbμ,cσ ;w−

2
.

The left-hand side can be further simplified as follows:

l.h.s =
∑

aλ

SVbμ ,aλ
SVcσ ,ρ̄m (aλ )

=
∑

aλ

1

2
e−iπqaλ Sb,a × 1

2
e−iπqρ̄m (aλ ) Sc,ρ̄m (a)

= 1

4

∑
aλ

e−iπ (1−ζ )qaλ Sb,aSc,ρ̄m (a)

= 1

2

∑
a

e−iπ (1−ζ )qa Sb,aS∗
ρ̄m (c),a

=
{

1
2δb,ρm (c̄), for U(1) × ZM

2
1
2δmb,ρm (c̄), for U(1) � ZM

2

. (D28)

In the second line, we used the expression (D9) of S matrix
in B. From the third to fourth line, we used the fact that the
expression is independent of λ. To obtain the last line, we use
the definition (43) of the Abelian anyon m. Therefore we have

nbμ,cσ ;w + nbμ,cσ ;w− =
{
δb,ρm (c̄) if U(1) × ZM

2

δmb,ρm (c̄) if U(1) � ZM
2

. (D29)

The δ function on the right-hand side is 1, when one and
only one between nbμ,cσ ;w and nbμ,cσ ;w− is nonzero. Precisely
which one is nonzero can be further determined by matching
the topological spins of (Vbμ

,Vcσ
) and w±. However, it is not

important for our later discussions.

4. Anomaly indicator η̃3

The anomaly indicator is given by η̃3 = θ2
w = θ2

w− . The
topological spin θ2

w is equal to that of (Vbμ
,Vcσ

) in the lifting
map l (w) with a nonzero lifting coefficient nbμ,cσ ;w, and sim-
ilarly for θ2

w− . When the δ function is equal to 1 in (D29), we
observe that (Vbμ

,Vcσ
) must have a nonzero lifting coefficient

either in l (w) or l (w−). Accordingly, we have

η̃3 = θ2
(Vbμ ,Vcσ ) = θ2

Vbμ
θ2

V cσ
= θ4

V θ2
b θ2

c ei2π (qb+qc ), (D30)

where (D8) is used. The anyons b and c satisfy δb,ρm (c̄) = 1 for
U(1) × ZM

2 , or δmb,ρm (c̄) = 1 for U(1) � ZM
2 . In the former

case,

θ2
b = θ2

ρm (c̄) = (θ∗
c )2, qb = qρm (c̄) = −qc (mod 1). (D31)

Then, (D30) simplifies to η̃3 = θ4
V . In the latter case,

θ2
b = θ2

m̄ρm (c̄) = (θ∗
c )2e−i4πqc ,

(D32)
qb = qm̄ρm (c̄) = qc (mod 1),

where we used the facts that θ2
m̄ = 1 and qm̄ = 0 (mod 1).

Inserting them into (D30), we again obtain η̃3 = θ4
V . Therefore

we obtain

η̃3 = (θV )4 = θV ×V = θmσ
= θm, (D33)

where V × V = mσ is used. This is exactly the relation ob-
tained in Sec. IV C using Hall conductance argument. Then,
expressing θm in terms of surface quantities, we obtain η̃3 =
η1η3, which is discussed in the main text.

APPENDIX E: DERIVATION OF η̃4 AND η̃5

FROM ANYON CONDENSATION

In this Appendix, we continue to use the anyon conden-
sation theory to derive the expressions of η̃4 and η̃5. Both
indicators are related to the SRE state that needs joint protec-
tion from M and U(1). Therefore we need to gauge both the
Zx

2 and Zw
2 symmetries. Again, we will discuss the cases of

U(1) × ZM
2 and U(1) � ZM

2 simultaneously. The Zw
2 gauged

theory is discussed in Appendix D. So, we only need to further
gauge Zx

2 in this section.
Before proceeding, we make a remark first. The group

Zw
2 × Zx

2 is not a normal subgroup of U(1) � Zx
2. The con-

sequence is that the gauged system does not preserve the
quotient group [U(1) � Zx

2]/[Zw
2 × Zx

2]. That is, gauging
breaks the remaining symmetries in the case of U(1) � ZM

2 .
On the contrary, the remaining symmetries are preserved in
the case of U(1) × Zx

2. Nevertheless, as discussed in Sec. III,
all information about the anomaly indicators η̃4 and η̃5 are
encoded in the vortices of the Zw

2 × Zx
2 subgroup. Accord-

ingly, breaking the remaining symmetries in the U(1) � Zx
2

case does not lose information for our purpose.

1. More on Zw
2 -gauged theory

In Appendix D, we have already discussed many topologi-
cal and mirror properties of the Zw

2 -gauged theory B. Here, we
specialize to properties of the anyons that satisfy ρC

m(a) = ā,
which will be useful later for studying anyon condensation.

Recall from Sec. IV A that the mirror fractionalization
μa = ±1 is defined as the mirror eigenvalue of a two-anyon
state |a, ā〉, where the two anyons are located symmetrically
on two sides of the mirror axis and they satisfy ρC

m(a) = ā.
Also, the two anyons are in the vacuum fusion channel. When
a and ā move towards the mirror axis and annihilate each
other, it results in a local mirror charge μa on the axis.

We would like to see the total U(1) charge Qtot of the two-
anyon state |a, ā〉. The presence of M symmetry constrains
the possible total charge. Let Qa be the absolute U(1) charge
carried by a in this state, which may differ by states. Then,
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ā must carry a charge ζQa to fulfill the mirror symmetry,
where ζ = 1 for U(1) × Z2 and ζ = −1 for U(1) � Z2. Ac-
cordingly, the total charge is

Qtot = (1 + ζ )Qa. (E1)

The total Zw
2 charge qtot = Qtot (mod 2) is then given by

qtot = (1 + ζ )qa =

⎧⎪⎨
⎪⎩

0, ζ = −1

0, ζ = 1 and qa = 0

1, ζ = 1 and qa = 1/2

, (E2)

where we have used the fact that qa can only be 0 or 1/2 for
ρC

m(a) = ā in the case of U(1) × ZM
2 .

When Zw
2 is gauged, a turns into aλ ∈ B0 with the sign λ

determined by requiring qaλ
= Qa (mod 2) (see Appendix D 1

for our convention). Similarly, ā turns into āλ′ with qāλ′ =
ζQa (mod 2). By definition (D12) of ρB

m , we have āλ′ =
ρB

m (aλ). Also, we know āλ′ is either aλ or aλ̄, where λ̄ = −λ.
Then, depending on qtot, we have the following relation:

ρB
m (aλ) =

{
aλ, ζ = −1, or ζ = 1 and qa = 0

aλ̄, ζ = 1 and qa = 1/2
, (E3)

where the sign λ varies as the charge Qa varies. In other words,
when aλ and āλ′ move towards the mirror axis, they fuse into
either the vacuum 1 or the Zw

2 charge 1−, depending on the
values of ζ and qa.

For later convenience, we introduce the set I to collect all
the anyons in C that satisfy ρm(a) = ā, i.e.,

I = {
a ∈ C

∣∣ρC
m(a) = ā

}
. (E4)

Furthermore, I splits into two subsets I0 and Ī0, defined as

I0 = {
a ∈ I

∣∣aλ = ρB
m (aλ)

}
, (E5)

Ī0 = {
a ∈ I

∣∣aλ̄ = ρB
m (aλ)

}
. (E6)

From (E3), we see that for U(1) � ZM
2 , I0 = I while Ī0 is

empty. On the contrary, both I0 and Ī0 might not be empty
for U(1) × ZM

2 .

2. Further gauging Zx
2 symmetry

As discussed in Appendix D, after gauging Zw
2 , folding and

renaming, the left side of Fig. 1(c) is described by the double-
layer topological order B � B. The mirror symmetry M acts
just as the layer exchange in (D19). In this section, we further
gauge ZM

2 , i.e., Zx
2 after renaming. We will denote the Zx

2-
gauged theory as E . It has already been obtained in Ref. [31].
Below, we review some of the results that are useful to us. We
also discuss the topological order Ũ of the right-hand side of
Fig. 1(c), obtained by gauging both Zw

2 and Zx
2.

First we discuss the anyon content of the topological
order E and some useful relations that were obtained in
Ref. [31]. (Here we only briefly illustrate the results. For
those who are interested in the derivations, we refer them
to Ref. [31].) Anyons in E are divided into two collec-
tions E0 and E1. The first collection E0 contains the set of
anyons that are inherited from B � B. Following the notation
in Ref. [31], they are denoted as (α, α)± for ∀α ∈ B, and
[α, β] for α �= β ∈ B. The superscript of (α, α)± denotes the

ZM
2 gauge charge. In particular, (1,1)− is the pure ZM

2
gauge charge. The anyon [α, β] is the symmetrization of
two anyons (α, β ) and (β, α) in B � B that are interchanged
under mirror symmetry. The quantum dimension of (α, α)±
is d2

α , while that of [α, β] is 2dαdβ . The topological spin of
these anyons can be related to the ones of anyons in B by
θE

(α,α)± = (θB
α )2 while θE

[α,β] = θB
α θB

β where we use the super-
script E,B to reflect in what topological order the topological
data are defined. As for the S matrix, there are relations that
are SE

(α,α)±,(β,β )± = 1
2 (SB

α,β )2, SE
(α,α)±,[β,γ ] = SB

α,βSB
α,γ , and also

SE
[α,ρ],[β,γ ] = SB

α,βSB
ρ,γ + SB

α,γ SB
ρ,β .

The second collection E1 is the set of Zx
2 vortices, denoted

as X ±
α , ∀α ∈ B. The sign of X ±

α does not have absolute mean-
ing but reflects that X +

α and X −
α differ by a Zx

2 gauge charge.
The quantum dimension of X ±

α is dαDB and DB is the total
quantum dimension of B. For the topological spin, we have
the relation

θX ±
α

= ±eicπ/8
√

θα (E7)

where c is the chiral central charge of the topological order.
For the S matrix, we have the following relations:

SE
X ±

α ,[β,γ ] = 0, (E8)

SE
X ±

α ,(β,β )μ = 1
2μSB

α,β, (E9)

where μ = ±.
A few useful fusion rules are listed as follows:

(α, α)± × (1+,1+)− = (α, α)∓,

[α, β] × (1+,1+)− = [α, β],

X ±
α × (1+,1+)− = X ∓

α ,

(α, α)± × (1−,1−)+ = (α × 1−, α × 1−)±,

[α, β] × (1−,1−)+ = [α × 1−, β × 1−],

X ±
α × [1+,1−] = X +

α×1− + X −
α×1− , (E10)

where α × 1− is an anyon determined by the fusion rules
of B.

Secondly, we discuss the anyon content of the topological
order Ũ on the mirror plane. It is a Zw

2 × Zx
2 gauge theory,

obtained by further gauging Zx
2 in U . In Appendix D, we have

used the subscript ± to denote that Zw
2 gauge charge in U .

Here, we use the superscript ± to denote the gauge charge
of Zx

2. We use w to label Zw
2 vortices, x to label the pure Zx

2
vortices, and y to label the composite of w and x vortices. The
anyons in Ũ are

Ũ = {1±
±,w±

±, x±
±, y±

±},
where 1+

+ ≡ 1 is the vacuum. We also take the short-hand
notations that x+

+ ≡ x, y+
+ ≡ y, and w+

+ ≡ w. All anyons in
Ũ are Abelian. Some of the fusion rules are

x × 1+
− = x+

−, x × 1−
+ = x−

+, x × w = y. (E11)

The topological spins of w-vortices take two possible kinds
of values ±i or ±1, where the ± signs come from the dif-
ferent gauge charge contents of the vortices. Similarly, x-
and y-vortices also can take two possibilities. The total eight
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combinations reflect the (Z2)3 classification of Z2 × Z2

gauge theories in bosonic systems.
As discussed in Sec. III A, the indicators are η̃4 = M2

w,x

and η̃5 = θ2
y . To determine their values, we need to know

Ũ is which of the eight possible Z2 × Z2 gauge theories.
The latter is determined by the nature of E and properties
of the gapped domain wall in Fig. 1(c). In the next section,
we study properties of the gapped domain wall using anyon
condensation theory.

3. Anyon condensation

Here we discuss the anyon condensation on the gapped
domain wall, which will help us to establish the boundary-
bulk correspondence and obtain expressions for the anomaly
indicators.

Following Refs. [31,32], we claim that the gapped domain
wall is associated with the following condensate:

L =
∑

aλ=ρ̄m (aλ )

(aλ, aλ)μa +
∑

aλ �=ρ̄m (aλ )

[aλ, ρ̄m(aλ)]. (E12)

For notational simplicity, we use ρm to denote either ρB
m or ρC

m
if no confusion is caused. That is, anyons in L can be annihi-
lated by local operators at the domain wall. A few remarks are
listed as follows. First, the first summation is over all aλ ∈ B0

that satisfy aλ = ρ̄m(aλ), while the second summation is over
all pairs {aλ, ρ̄m(aλ)} that satisfy aλ �= ρ̄m(aλ), or equivalently,
it is over only one of the two aλ and ρ̄m(aλ). Second, compared
to (D21), the condensate (E12) can be understood as the Zx

2-
gauged version of (D21). If aλ �= ρ̄m(aλ), the pair (aλ, ρ̄m(aλ))
and its mirror image (ρ̄m(aλ), aλ) in (D21) are combined
into [aλ, ρ̄m(aλ)] in (E12). If aλ = ρ̄m(aλ), only one between
(aλ, aλ)+ and (aλ, aλ)− is condensed; the other turns into the
Zx

2 charge 1−
+ instead. Our claim is (aλ, aλ)μa is the condensed

one. To see the claim, we recall that before gauging Zw
2 × Zx

2,
the pair (a, a) corresponds to the two-anyon state |a, ρ̄m(a)〉
(before renaming in (D18)), which carries mirror eigenvalue
by μa. Since the condensate should be mirror neutral, the pair
(a, a) shall be condensed on the domain wall together with a
mirror charge μa to respect the mirror symmetry. Accordingly,
it is (aλ, aλ)μa appears in the condensate (E12). Thirdly, the
special anyon (1−,1−)+ is in L as μ(1) = 1.

To better describe the anyon condensation, we study more
details on the fusion category T̃ that lives the domain wall.
We claim that it contains anyons as follows:

T̃ = B̃0 ⊕ {w1±
± ,w2±

± , . . . } ⊕ {x1±
± , x2±

± , . . . }
⊕ {y1±

± , y2±
± , . . . } ⊕ others, (E13)

where

B̃0 = {1±
±, a±

±, . . . }. (E14)

Several remarks are as follows. First of all, T̃ is the Zx
2-

gauged version of T in (D22). Specifically, B̃0 is a Zx
2-gauged

version of B0 in (D22) such that every anyon a± ∈ B0 is
further decorated with a superscript ±, representing the Zx

2
charge. Similarly, Zw

2 vortices in T are further decorated by
a superscript ±, representing the Zx

2 charge. In addition, new
vortices are introduced, including Zx

2 vortices and compos-
ites of Zw

2 and Zx
2 vortices, which are labeled as xi±

± and

yi±
± , respectively. Most of these w-, x-, and y-vortices will

be confined, except those in Ũ . We will take the convention
that w1±

± = w±
± , x1±

± = x±
± , and y1±

± = y±
±, which are discussed

in Appendix E 2. The “others” are extra confined vortices
associated with the off-diagonal Z2 of the Zw

2 × Zw
2 group

and their composites with other vortices. Since all of them are
confined, they are not important for our following discussions.

Next, we study more details of the anyon condensation. We
claim that the restriction maps are given as follows:

r{[aλ, bγ ]} =
∑

c

Nc
a,ρm (b)(c

+
σ + c−

σ ), (E15a)

r{(aλ, aλ)+} =
∑

c

Nc
a,ρm (a)c

μ[a,ρm (a);c]
σ , (E15b)

r{(aλ, aλ)−} =
∑

c

Nc
a,ρm (a)c

−μ[a,ρm (a);c]
σ , (E15c)

r
{[

aλ,Vbγ

]} = confined anyons only, (E15d)

r
{[

Vaλ
,Vbγ

]} = w-vortices only, (E15e)

r
{(

Vaλ
,Vaλ

)±} = w-vortices only, (E15f)

r
{
X ±

Vaλ

} = confined anyons only, (E15g)

r
{
X ±

aλ

} = x and y anyons only. (E15h)

Some explainations are listed as follows. First of all, the
restriction map (E15a)–(E15f) are closely related to (D23a)–
(D23d). The sign σ of c±

σ in (E15a)–(E15c) are determined
in the same way as that in (D23a), i.e., by the condition
qaλ

+ ζqbγ
= qcσ

(mod 2). The summations over c in (E15a)–
(E15c) are over the anyons in C. In general, we do not know
the expression of the funcion μ[a, ρm(a); c]. However, in the
special case that a = ρ̄m(a), the sign μ(a, ā;1) = μa, the mir-
ror eigenvalue defined in Sec. IV A. This can be understood
following the discussion below (E12). The sign difference
in (E15b) and (E15c) can be understood from the fact that
(aλ, aλ)− = (aλ, aλ)+ × (1,1)− and the property (C4), i.e.,
the restriction map commutes with fusion. Secondly, to un-
derstand (E15g) and (E15h), we consider the mutual statistics
between (1−,1−)+ and X ±

α . According to (E9), the mutual
statistics is given by

M(1−,1− )+,X ±
α

= M1−,α =
{−1, if α ∈ B0

1, if α ∈ B1
. (E16)

The anyon (1−,1−)+ is condensed at the domain wall. Ac-
cordingly, any anyon that has nontrivial mutual statistics with
(1−,1−)+ will be confined, which gives rises to (E15g).

The restriction map (E15h) is a very important one, so we
expand it as follows:

r
(
X +

aλ

) = naλ
x+
+ + paλ

y+
+ + n′

aλ
x+
− + p′

aλ
y+
− + · · · (E17)

where nα , pα and n′
α , p′

α are unknown non-negative in-
teger, and “. . . ” denotes the confined x and y vortices.
The superscript signs on the two sides are chosen to be
the same as our convention for the mirror charges on
the x- and y-vortices in Ũ . The restriction map r(X −

aλ
) is

determined by r(X −
aλ

) = r(X +
aλ

) × r((1+,1+)−). Finally, we
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consider r(X +
aλ

× [1+,1−]) = r(X +
aλ

) × r([1+,1−]). It results
in the relations

naλ
= n′

aλ̄
, (E18)

paλ
= p′

aλ̄
. (E19)

Therefore, among the two sets of data {naλ
, paλ

} and {n′
aλ

, p′
aλ

},
only one is independent.

With these restriction maps, we obtain the following useful
lifting maps:

l (1) =
∑

aλ=ρ̄m (aλ )

(aλ, aλ)μa +
∑

aλ �=ρ̄m (aλ )

[aλ, ρ̄m(aλ)], (E20)

l (1+
−) =

∑
aλ=ρ̄m (aλ̄ )

(aλ, aλ)μa +
∑

aλ �=ρ̄m (aλ̄ )

[aλ, ρ̄m(aλ̄)], (E21)

l (x±
+ ) =

∑
aλ∈B0

naλ
X ±

aλ
, (E22)

l (y±
+ ) =

∑
aλ∈B0

paλ
X ±

aλ
, (E23)

l (x±
− ) =

∑
aλ∈B0

n′
aλ

X ±
aλ

, (E24)

l (y±
− ) =

∑
aλ∈B0

p′
aλ

X ±
aλ

, (E25)

where the λ̄ denote the opposite of λ. The second summation
in the lifting map l (1) is only over one out of the pair aλ and
ρ̄m(aλ), and similarly for l (1+

−). An important remark is that
for U(1) � ZM

2 the lifting map l (1+
−) contains only the second

summation, since there is no anyon aλ ∈ B0 such that aλ =
ρ̄m(aλ̄), which has been discussed in detail in Appendix E 1.

So far, the integers naλ
and paλ

are completely unknown.
Below we show that they are related to the symmetry and
topological data of the surface topological order through the
following expressions:

nbλ
+ nbλ̄

=
∑
a∈C

μaSC
b,a, (E26)

pbλ
+ pbλ̄

=
∑
a∈C

eiπ (1+ζ )qaμaSC
b,a, (E27)

where μa is set to 0 for a �= ρ̄m(a) according to our convention
Eq. (29) in Sec. IV A. We further define

nb = nb+ + nb−, (E28)

pb = pb+ + pb− , (E29)

Then, (E26) and (E27) become

nb =
∑
a∈C

μaSC
b,a, (E30)

pb =
∑
a∈C

ei(1+ζ )πqaμaSC
b,a. (E31)

Below we prove the two relations (E26) and (E27) in two
steps. First, we show that

1

2

(
nbλ

+ pbλ
+ n′

bλ
+ p′

bλ

) =
∑
a∈I0

μaSC
b,a, (E32)

1

2

(
nbλ

− pbλ
+ n′

bλ
− p′

bλ

) =
∑
a∈Ī0

μaSC
b,a. (E33)

We note that I0 and Ī0 are defined in (E5) and (E6). To
derive (E32), we make use of the property that restriction
maps commute with S matrices, i.e., Eq. (C7). In the current
context, it is ∑

β∈E
SE

α,βnβ,t =
∑
s∈Ũ

nα,sS
Ũ
s,t . (E34)

By setting α = X +
aλ

and t = 1, we have

r.h.s. =
∑
s∈Ũ

nX +
aλ

,sS
Ũ
s,1

= 1

4

(
nX +

aλ
,x+

+ + nX +
aλ

,y+
+ + nX +

aλ
,x+

− + nX +
aλ

,y+
−

)

= 1

4

(
naλ

+ paλ
+ n′

aλ
+ p′

aλ

)
, (E35)

where we have used SŨ
s,1 = 1/4 for any s. Meanwhile,

l.h.s. =
∑
β∈E

SE
X +

aλ
,βnβ,1

=
∑

bγ ∈B0

&bγ =ρ̄m (bγ )

SE
X +

aλ
,(bγ ,bγ )μb

=
∑

bγ ∈B0
&bγ =ρ̄m (bγ )

1

2
μbSB

aλ,bγ

=
∑
b∈I0

1

2
μbSC

a,b, (E36)

where, from the first line to the second line, we have used the
restriction map (E21) and the relations (E8); from the second
to the third line, we have used the relation (E9); from the third
to the fourth, we have used the relation∑

γ=±
SB

aλ,bγ
=

∑
γ=±

1

2
SC

a,b = SC
a,b (E37)

and the definition (E5) of I0. Combining expressions of l.h.s
and r.h.s gives rise to Eq. (E32).

To derive (E33), we apply (E34) by setting α = X +
aλ

, t =
1+

−. The calculation is very similar to the derivation of (E32),
as follows:

r.h.s. =
∑
s∈Ũ

nX +
aλ

,sS
Ũ
s,1−

= 1

4

(
nX +

aλ
,x+

+ − nX +
aλ

,y+
+ + nX +

aλ
,x+

− − nX +
aλ

,y+
−

)

= 1

4

(
naλ

− paλ
+ n′

aλ
− p′

aλ

)
(E38)
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and

l.h.s. =
∑
β∈E

SE
X +

aλ
,βnβ,1− =

∑
bγ ∈B0

&bγ =ρ̄m (bγ̄ )

SE
X +

aλ
,(bγ ,bγ )μb

=
∑

bγ ∈B0
bγ =ρ̄m (bγ̄ )

1

2
μbSB

aλ,bγ
=

∑
b∈Ī0

1

2
μbSC

a,b. (E39)

Combining the two expressions, we obtain (E33).
Secondly, by adding the equations (E32) and (E33) and

using the relation (E18), we immediately obtain (E26). To
obtain (E27), we consider subtracting (E32) with (E33) and
using (E19), and obtain

pbλ
+ pbλ̄

=
∑
a∈I0

μaSC
b,a −

∑
a∈Ī0

μaSC
b,a

=
∑
a∈I

ei(1+ζ )πqaμaSC
b,a, (E40)

where we have used the property (E3) of anyons in I. In fact,
pb can be further expressed as

pb =
∑

a ∈ C
μ′

aSC
b,a, (E41)

where μ′
a = ei(1+ζ )πqaμa is given in (34) in Sec. IV A and the

convention that μa = 0 for a /∈ I.
Finally, we make two remarks on properties of nb and pb.

First, for U(1) � ZM
2 , we have

pb = nb = nb̄. (E42)

The first equality is easily seen from Eqs. (E30) and (E31), and
the second equality can be obtained by combining the fact that
μa = μā and Eq. (E30). On the other hand, for U(1) × ZM

2 ,
we have

pb = nmb = nm̄b = nm̄b̄. (E43)

where m is the monopole anyon defined with the relation (43).
These equalities can be easily obtained by combining the re-
lations SC

bm,a = SC
b,aM∗

m,a, Mm,a = ei2πqa , Mm̄,a = e−i2πqa , and
ei(1+ζ )πqaμa = e−i(1+ζ )πqaμa for all anyons in C for U(1) ×
ZM

2 , Eqs. (E30) and (E31).
Second, we claim that∑

a∈C
nada = DC, (E44)

∑
a∈C

pada = DC, (E45)

where DC is the total quantum dimension of C. These proper-
ties follow from a general result [82] of anyon condensation∑

α∈P
nα,1dα = 1

dt

∑
α∈P

nα,t dα, (E46)

where P is the parent topological order, t is any deconfined
anyon and nα,t is the restriction or lifting coefficient. Taking
P = E and lifting map (E20), we have the left-hand side
equal to 2D2

C . Then, it is straightforward to check that (E44)
and (E45) can be obtained from (E46) by taking t = x+

+ and
y+
+, respectively.

4. Anomaly indicator η̃4 and η̃5

We now derive the expressions of the anomaly indicators
η̃4 and η̃5 in terms of SET data. First, we define

η4 = 1

DC

∑
a∈C

daθaμaei(1+ζ )πqa , (E47)

which reduces to η4 in (2d) in the main text for ζ = 1. For
ζ = −1, it reduces to η2. With this definition, we will show

η̃4 = η1η2η3η4, (E48)

η̃5 = η4, (E49)

where the expressions of η1, η2, η3 are given in Eqs. (2a), (2b),
and (2c). These results have been derived in Sec. IV and here
we will derive them from the anyon condensation theory de-
scribed above. In addition, we derive an alternative expression
for η̃4:

η̃4 = 1

DC

∑
a,b

μaSa,bdbei2πqb, (E50)

which is certainly equivalent to (E48). This expression is also
given in Ref. [33] the time-reversal systems.

We start by relating η̃4 and η̃5 to properties of anyons
in C. By definition, we have η̃5 = θ2

y , where y ≡ y+
+ is the

deconfined anyon in Ũ whose the lifting map is (E23). Using
the fact that topological spin remains the same for deconfined
anyons before and after anyon condensation, we have that, for
any a with pa �= 0, i.e., either pa+ �= 0 or pa− �= 0,

η̃5 = θ2
X +

aλ

= eicπ/4θaλ
= eicπ/4θa, (E51)

where λ is either “+” or “−,” and (E7) for the topological spin
of X +

aλ
is used to obtain the second equality. Meanwhile, the

relations (E42) and (E43) imply that nb �= 0 if pa �= 0, where
b = am̄ for U(1) × ZM

2 and b = a for U(1) � ZM
2 . By the

definition of η̃2 and the lifting map (E22), we then have

η̃2 = θ2
X +

bλ

= eicπ/4θbλ
= eicπ/4θb. (E52)

We note that since b = a for U(1) � ZM
2 , the equality η̃5 = η̃2

is justified from anyon condensation. Then, we recall the rela-
tion η̃5 = η̃2η̃3η̃4 from Sec. III A 1 and the result η̃3 = θm from
Appendix D 4. Putting them together with (E51) and (E52),
we obtain

η̃4 = θa

θbθm
=

{
θ∗

m, U(1) � ZM
2

Mb,m, U(1) × ZM
2

. (E53)

That means, we establish η̃4 = η̃∗
3 = η̃3 for U(1) � ZM

2 from
anyon condensation theory.

Next, we prove (E49). Starting with (E51), we have

η̃5 = eicπ/4θa

= eicπ/4 1

DC

∑
b∈C

pbdbθb

= eicπ/4 1

DC

∑
b∈C

(∑
a∈C

μ′
aSC

b,a

)
dbθb
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= eicπ/4 1

D2
C

∑
a,b

μ′
adbθb

∑
c∈C

Nc
ab̄

θc

θaθb
dc

= eicπ/4 1

D2
C

∑
a,c

μ′
aθ

∗
a dcθc

∑
b

dbNb
ac̄

= eicπ/4 1

D2
C

∑
a,c

μ′
aθ

∗
a dcθcdcda

= eicπ/4

(
1

DC

∑
c

d2
c θ∗

c

)(
1

DC

∑
a

μ′
aθada

)

= η4. (E54)

In the second line, we use the relation (E45) and the fact that
θa is the same for any a with pa �= 0. In the third line, we insert
the expression (E41). In the fourth line, the definition of S ma-
trix is inserted. In the fifth line, we use the fact that Nc

ab̄
= Nb

ac̄.
In the sixth line, we use the property that

∑
b Nb

ac̄db = dadc. In
the seventh line, we use (12) to cancel the factor eicπ/4, and
finally with the definition of μ′

a, we obtain the relation that

η̃5 = η4. With this, Eq. (E48) follows directly from the rela-
tion η̃4 = η̃2η̃3η̃5 and the facts that η̃2 = η2 and η̃3 = η1η3.

The expression (E50) can be obtained from (E53). In the
case of U(1) × ZM

2 , for any b with nb �= 0, we have

η̃4 = Mb,m = 1

DC

∑
b

nbdbMm,b

= 1

DC

∑
a,b

μaSa,bdbei2πqb . (E55)

For the first to the second equality, we used the relation (E44).
From the second to third equility, we have used the rela-
tions (E30) and Mm,b = ei2πqb . A corollary is

η̃4 = μm. (E56)

To see that, from (E30), we have

μm =
∑

b

SC†
m,bnb = 1

DC

∑
b

Mm,bnbdb (E57)

which is exactly the second line of (E55). Hence, (E56) holds.
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