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In recent years, new phases of matter that are beyond the Landau paradigm of symmetry breaking have been
accumulating, and to catch up with this fast development, new notions of global symmetry are introduced.
Among them, the higher-form symmetry, whose symmetry charges are spatially extended, can be used to
describe topologically ordered phases as the spontaneous breaking of the symmetry, and consequently unify
the unconventional and conventional phases under the same conceptual framework. However, such conceptual
tools have not been put into quantitative tests except for certain solvable models, therefore limiting their usage in
the more generic quantum many-body systems. In this work, we study Z2 higher-form symmetry in a quantum
Ising model, which is dual to the global (zero-form) Ising symmetry. We compute the expectation value of
the Ising disorder operator, which is a nonlocal order parameter for the higher-form symmetry, analytically in
free scalar theories and through unbiased quantum Monte Carlo simulations for the interacting fixed point in
(2 + 1)d . From the scaling form of this extended object, we confirm that the higher-form symmetry is indeed
spontaneously broken inside the paramagnetic, or quantum disordered phase (in the Landau sense), but remains
symmetric in the ferromagnetic or ordered phase. At the Ising critical point, we find that the disorder operator
also obeys a “perimeter” law scaling with possibly multiplicative power-law corrections. We discuss examples
where both the global zero-form symmetry and the dual higher-form symmetry are preserved, in systems with
a codimension-1 manifold of gapless points in momentum space. These results provide nontrivial working
examples of higher-form symmetry operators, including the direct computation of one-form order parameter
in an interacting conformal field theory, and open the avenue for their generic implementation in quantum
many-body systems.
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I. INTRODUCTION

Global symmetries are instrumental in organizing our
understanding of phases of matter. The celebrated Landau
paradigm classifies phases according to broken symmetries,
which also determines the universality classes of transitions
between phases. Symmetry principles become even more
powerful from the point of view of long-wavelength, low-
energy physics, as the renormalization group fixed points (i.e.,
IR) often embody more symmetries than the microscopic
lattice model (i.e., UV), which is the phenomenon of emer-
gent symmetry [1–5]. A common example is the emergence
of continuous space-time symmetries in the field-theoretical
description of a continuous phase transition [6]. It is even
plausible that a critical point is determined up to finite choices
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by its full emergent symmetry, which is the basic philosophy
(or educated guess) behind the conformal bootstrap program
[7].

Modern developments in quantum many-body physics
have significantly broadened the scope of quantum phases
beyond the Landau classification [8]. For these exotic phases,
more general notions of global symmetry are called for to
completely characterize the phases and the associated phase
transitions. Intuitively, these “beyond Landau” phases do not
have local order parameters. Instead, nonlocal observables are
often needed to characterize them. For a well-known example,
confined and deconfined phases of a gauge theory are distin-
guished by the behavior of the expectation value of Wilson
loop operators [9,10]. To incorporate such extended observ-
ables into the symmetry framework, higher-form symmetries
[11–13], and more generally algebraic symmetries [14,15],
have been introduced. These are symmetries whose charged
objects are spatially extended, e.g., strings and membranes. In
other words, their symmetry transformations only act nontriv-
ially on extended objects. Most notably, spontaneous breaking
of such higher symmetries can lead to highly entangled
phases, such as topological order [13]. Therefore, even though
topologically ordered phases are often said to be beyond the
Landau paradigm, they can actually be understood within a
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similar conceptual framework once higher symmetries are
included. In addition, just as the usual global symmetries,
higher-form symmetries can have quantum anomalies [13],
which lead to strong nonperturbative constraints on low-
energy dynamics [16].

In this work, we make use of the prototypical continuous
quantum phase transition, the Ising transition, to elucidate the
functionality of the higher-form symmetry. The motivation
to reexamine the well-understood Ising transition is the fol-
lowing: in addition to the defining zero-form Z2 symmetry,
the topological requirement that Z2 domain walls must be
closed (in the absence of spatial boundary) can be equivalently
formulated as having an unbreakable Z2 (D − 1)-form sym-
metry, where D is the spatial dimension. The gapped phase on
either side of the transition spontaneously breaks one and only
one of the two symmetries. Therefore, to correctly determine
the full emergent internal symmetry in the Ising conformal
field theory (CFT), the Z2 higher-form symmetry should be
taken into account. For D = 2, the 1-form symmetry man-
ifests more clearly in the dual formulation [17], namely, as
the confinement-deconfinement transition of a Z2 gauge the-
ory, which will shed light on higher-form symmetry-breaking
transitions in a concrete setting.

A basic question about a global symmetry is whether it is
broken spontaneously or not in the ground state. For clarity,
let us focus on the D = 2 case. It is well known that the Ising
symmetric, or “quantum disordered,” phase spontaneously
breaks the higher-form symmetry, and the opposite in the
Ising symmetry-breaking phase. The fate at the critical point
remains unclear to date. To diagnose higher-form symme-
try breaking, we compute the ground-state expectation value
of the “order parameter” for the higher-form symmetry—
commonly known as the disorder operator in the literature
[18–22], which creates a domain wall in the Ising system.
Spontaneous breaking of the Z2 1-form symmetry is signi-
fied by the perimeter law for the disorder operator. In the
dual formulation, the corresponding object is the Wilson loop
operator. Through large-scale quantum Monte Carlo (QMC)
simulations, we find numerically that at the transition, the
disorder operator defined on a rectangular region scales as
lse−a1l , where l is the perimeter of the region, and s > 0 is
a universal constant. We thus conclude that the 1-form sym-
metry is spontaneously broken at the (2 + 1)d Ising transition,
and it remains so in the disordered phase of the model. This
is in stark contrast with the D = 1 case, where the disorder
operator has a power-law decay.

To corroborate the numerical results, we consider generally
a disorder operator corresponding to a zero-form Z2 symme-
try in a free scalar theory in D dimensions, which is a stable
fixed point for D � 3. We show that for the kind of Z2 sym-
metry in this case, the disorder operator can be related to the
second Rényi entropy. Therefore, the disorder operator also
obeys a “perimeter” (i.e., volume of the boundary) scaling,
with possibly multiplicative power-law correction. Whether
the higher-form symmetry is broken or not is determined by
the subleading power-law corrections. We also discuss other
free theories, such as a Fermi liquid, where the decay of
the disorder operator is in between the “perimeter” and the
“area” laws, and therefore there is no higher-form symmetry
breaking.

The rest of the paper is organized as follows. In Sec. II we
review higher-form symmetry and its spontaneous breaking,
and its relevance in conventional phases. We also consider
higher-form symmetry breaking in free and interacting con-
formal field theories. In Sec. III we specialize to the setting
of the quantum Ising model in (2 + 1)d and define the disor-
der operator. Section IV presents the main numerical results
from quantum Monte Carlo simulations, which reveal the key
evidence of the 1-form symmetry breaking at the (2 + 1)d
Ising transition. Section V outlines a few immediate directions
about the higher-form symmetry breaking and their measure-
ments in unbiased numerical treatments in other quantum
many-body systems.

II. GENERALIZED GLOBAL SYMMETRY

Consider a quantum many-body system in D spatial dimen-
sions. Global symmetries are unitary transformations which
commute with the Hamiltonian. Typically the symmetry trans-
formation is defined over the entire system, and charges of the
global symmetry are carried by particlelike objects.

An important generalization of global symmetry is the
higher-form symmetry [13]. For an integer p � 0, p-form
symmetry transformations act nontrivially on p-dimensional
objects. In other words, “charges” of p-form symmetry are
carried by extended objects. In this language, the usual global
symmetry is zero-form as the particlelike object is of zero
dimension. The p-form symmetry transformations themselves
are unitary operators supported on each codimension-p [i.e.,
spatial dimension (D − p)] closed submanifold MD−p. In par-
ticular, it means that there are infinitely many symmetry
transformations in the thermodynamic limit. In this work we
will only consider discrete, Abelian higher-form symmetry,
so for each submanifold MD−p the associated unitary opera-
tors form a finite Abelian group G. Physically, higher-form
symmetry means that the certain p-dimensional objects are
charged under the group G, and the quantum numbers they
carry constrain the processes of creation, annihilation and
splitting, etc. In particular, these extended objects are “un-
breakable”; i.e., they are always closed and cannot end on
(p − 1)-dimensional objects.

For a concrete example, let us consider (2+1)d Z2 gauge
theory defined on a square lattice. Each edge of the lattice
is associated with a Z2 gauge field (i.e., a qubit), subject to
Gauss’s law at each site v:

∏
e�v

τ x
e = 1. (1)

Here e runs over edges ending on v.
The divergence-free condition implies that there are no

electric charges in the gauge theory. In other words, all Z2

electric field lines must form loops. An electric loop can be
created by applying the following operator along any closed
path γ on the lattice:

We(γ ) =
∏
e∈γ

τ z
e . (2)
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FIG. 1. (a) The zero-form symmetry charge is a pointlike object,
measured by the symmetry transformation defined on the entire sys-
tem (i.e., at a fixed time slice). (b) The 1-form symmetry charge is a
loop (the solid line), e.g., We, measured by the symmetry transforma-
tion defined on a loop (dotted line), e.g., Wm, when the two loops are
linked.

The corresponding Z2 1-form symmetry operator is defined
as

Wm(γ �) =
∏
e⊥γ �

τ x
e (3)

for any closed path γ � on the dual lattice. Here the subscript
m in Wm indicates that this is actually the string operator for
Z2 flux excitations. In field theory parlance, We is the Wilson
operator of the Z2 gauge theory, and Wm is the corresponding
Gukov-Witten operator [23].

We notice that the Wm(γ �) operator is in fact the product
of Gauss’s law term

∏
v∈e τ x

e for all v in the region enclosed
by γ �. In other words, the smallest possible γ � is a loop
around one vertex v, and the fact that Wm(γ �) is conserved
by the dynamics means that the gauge charge at site v must
be conserved (mod 2) as well. Therefore, the Z2 gauge theory
with electric 1-form symmetry is one with completely static
charges, including the case with no charges at all. For ap-
plications in relativistic quantum field theories, it is usually
further required that the 1-form symmetry transformation is
“topological,” i.e., not affected by local deformation of the
loop γ �, which is equivalent to the absence of gauge charge as
given in Eq. (1).

It is instructive to consider how the 1-form charge of an
electric loop can be measured. This is most clearly done in
space-time: to measure a p-dimensional charge, one “wraps”
around the charge by a (D − p)-dimensional symmetry oper-
ator. Applying the symmetry transformation is equivalent to
shrinking the symmetry operator, and in (D + 1) space-time
because of the linking the two must collide, and the noncom-
mutativity (e.g., between We and Wm) measures the charge
value. We illustrate the process for p = 0 [Fig. 1(a)] and p = 1
[Fig. 1(b)], in three-dimensional space-time.

Now consider the following Hamiltonian of Ising gauge
theory:

H = −J
∑

e

τ x
e − K

∑
p

∏
e∈∂ p

τ z
e , (4)

where J, K > 0. When J � K , the ground state is in the
deconfined phase, which can be viewed as an equal-weight
superposition of all closed Z2 electric loops. In this phase, the
Z2 1-form symmetry is spontaneously broken. When J � K ,
the ground state is a product state with τ x

e = 1 everywhere,
and the 1-form symmetry is preserved. This is the confined
phase. Similar to the usual boson condensation, the expec-

tation value of the electric loop creation operator We(γ ) can
be used to characterize the 1-form symmetry-breaking phase,
which obeys perimeter law in the deconfined phase.

This example shows that higher-form symmetry naturally
arises in gauge theories. In condensed matter applications,
gauge theories are usually emergent [3,24], which means that
dynamical gauge charges are inevitably present and the elec-
tric 1-form symmetry is explicitly broken. Even under such
circumstances, at energy scales well below the electric charge
gap, the theory still has an emergent 1-form symmetry [25].

Let us now discuss more generally the spontaneous break-
ing of higher-form symmetry [13,26,27]. We will assume that
the symmetry group is discrete. For a p-form symmetry, a
charged object is created by an extended operator W (C) de-
fined on a p-dimensional manifold C. When the symmetry is
unbroken, we have

〈W (C)〉 ∼ e−tp+1Area(C), (5)

where Area(C) is the volume of a minimal (p + 1)-
dimensional manifold whose boundary is C. tp+1 can be
understood as the “tension” of the (p + 1)-dimensional man-
ifold. This generalizes the exponential decay of the charged
local operator for the zero-form case. On the other hand, when
the symmetry is spontaneously broken,

〈W (C)〉 ∼ e−tpPerimeter(C), (6)

where Perimeter(C) denotes the “volume” of C itself. Impor-
tantly the expectation value only depends locally on C, which
is the analog of the factorization of the correlation function of
local order parameter 〈O(x)O†(y)〉 ≈ 〈O(x)〉〈O†(y)〉 for zero-
form symmetry. One can then redefine the operator W (C) to
remove the perimeter scaling and in that case 〈W (C)〉 would
approach a constant in the limit of large C [28]. At a criti-
cal point, however, subleading corrections become important,
which will be examined below.

The Z2 gauge theory is famously dual to a quantum Ising
model [29]. In fact, more generally, there is a duality trans-
formation which relates a system with global Z2 zero-form
symmetry (in the Z2 even sector) to one with global Z2 (D −
1)-form symmetry, a generalization of the Kramers-Wannier
duality in (1 + 1)d .

Let us now review the duality in (2 + 1)d . The dual Ising
spins are defined on plaquettes, whose centers form the dual
lattice. For a given edge e of the original lattice, we denote the
two adjacent plaquettes by p and q, as shown in Fig. 2.

The duality map is defined as follows:

σ z
pσ

z
q ↔ τ x

e , σ x
p ↔

∏
e∈∂ p

τ z
e . (7)

Note that the expression automatically ensures
∏

p σ x
p = 1 in

a closed system, so the dual spin system has a Z2 zero-form
symmetry generated by S = ∏

p σ x
p , and the map can only

be done in the Z2 even sector with S = 1.1 Conversely, the
mapping also implies

∏
v∈e τ e

x = 1, and in fact Wm(γ �) = 1
for any γ ∗, i.e., the Z2 1-form symmetry is strictly enforced.

1In a sense the Z2 symmetry is gauged. In fact one way to derive
the duality is to first gauge the Z2 symmetry and then perform gauge
transformations to eliminate the Ising matter.

033024-3



ZHAO, YAN, CHENG, AND MENG PHYSICAL REVIEW RESEARCH 3, 033024 (2021)

FIG. 2. The square lattice (solid line) and its dual lattice (dashed
line). Z2 gauge fields live on the edges (e.g., e in the figure) of the
original lattice, and the dual Ising spins live on the dual lattice (e.g.,
square plaquette centers p, q).

In the dual model, the electric field line of the Z2 gauge
theory becomes the domain walls separating regions with op-
posite Ising magnetizations. Therefore, a Wilson loop We(γ )
maps to

XM =
∏
p∈M

σ x
p , (8)

where ∂M = γ , i.e., M is the region enclosed by γ . Physically
XM flips all the Ising spins in the region M, thus creating a
domain wall along the boundary γ . It is called the disorder
operator for the Ising system, which will be the focus of our
study below.

Under the duality map, the Hamiltonian becomes

H = −J
∑
〈pq〉

σ z
pσ

z
q − K

∑
p

σ x
p . (9)

The phases of the gauge theory can be readily understood
in the dual representation. For K � J , the Z2 gauge theory is
in the deconfined phase, which means that the ground state
contains arbitrarily large electric loops. For the dual Ising
model, the ground state is disordered, with all σ x

p = 1. If
we work in the σ z eigenbasis (which is natural to discuss
symmetry breaking), the ground-state wave function is given
by

|ψK=∞〉 ∝
∏

p

1 + σ x
p

2
|↑↑ · · · ↑〉 . (10)

Namely, we pick any basis state and apply the ground-state
projector. Expanding out the projector, one can see that the
wave function is an equal superposition of all domain wall
configurations, i.e., a condensation of domain walls. Since
the domain walls carry Z2 1-form charges, the condensation
breaks the 1-form symmetry spontaneously, much like the
Bose condensation spontaneously breaks the conservation of
particle numbers.

In the other limit K � J , the gauge theory is confined.
Correspondingly, the dual Ising model is in the ferromagnet-
ically ordered phase: there are two degenerate ground states
|↑ · · · ↑〉 and |↓ · · · ↓〉. There are no domain walls at all in
the limit K → 0. When a small but finite K/J is turned on,

quantum fluctuations create domain walls on top of the fully
polarized ground states, but these domain walls are small and
sparse.

A. Noninvertible anomaly and gapless states

A notable feature of the duality map is that on either side,
only one of two symmetries, the Z2 zero-form and the Z2

1-form symmetries, is faithfully represented (in the sense that
the symmetry transformation is implemented by a nontrivial
operator, even though the duality is supposed to work only in
the symmetric sector). The other symmetry transformation is
mapped to the identity at the operator level. Physically, only
one of them is an explicit global symmetry, while the other one
appears as a global constraint [e.g., on the Ising side, domain
walls of the zero-form global symmetry are codimension-1
closed manifolds, which is the manifestation that they are
charged under a (D − 1)-form symmetry].

A closely related fact is that the ordered phase for one
symmetry is necessarily the disordered phase of the other, and
any nondegenerate gapped phase must break one and only one
of the two symmetries. This has been proven rigorously in
one spatial dimension [30], and is believed to hold in general
dimensions as well.

It is clear from these results that these two symmetries
cannot be considered as completely independent. Recently,
Ref. [31] proposed that the precise relation between the two
dual symmetries is captured by the notion of a noninvertible
quantum anomaly. Intuitively, the meaning of the noninvert-
ible anomaly in the context of the Z2 Ising model can be
understood as follows: the charge of the Z2 zero-form sym-
metry is an Ising spin flip, while the charge of the Z2 1-form
symmetry is an Ising domain wall. These two objects have
nontrivial mutual “braiding” in the sense that when an Ising
charge is moved across a domain wall, it picks up a minus sign
due to the Ising symmetry transformation applied to one side
of the domain wall. In other words, the charge of the 1-form
symmetry is actually a flux loop of the zero-form symmetry.
Reference [31] suggested that two symmetries whose charged
objects braid nontrivially with each other cannot be realized
faithfully in a local Hilbert space. If locality is insisted, then
the only option is to realize the D spatial dimensional sys-
tem as the boundary of a Z2 toric code model in (D + 1)
spatial dimensions. In this case, the charged objects are in
fact bulk topological excitations brought to the boundary. The
nontrivial braiding statistics between the two kinds of charges
reflects the topological order in the bulk. Such an anomaly
is fundamentally different from the more familiar ’t Hooft
anomaly realized on the boundary of a symmetry-protected
topological phase (which is an invertible state). We refer to
Ref. [31] for more thorough discussions of the noninvertible
anomaly.

Since any gapped state must break one of the two sym-
metries, it is a very natural question to ask whether there
are gapless states that preserve both symmetries. An obvious
candidate for such a gapless state is the symmetry-breaking
continuous transition. At the transition, the two-point correla-
tion function of the Ising order parameter decays algebraically
with the distance, implying that the Z2 zero-form symmetry
is indeed unbroken. For the dual (D − 1)-form symmetry, the
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Kramers-Wannier duality maps the disorder operator, which is
a string operator in the Ising basis, to the two-point correlator
of the Ising order parameter. Therefore, the expectation value
of the disorder operator also exhibits power-law correlation,
and the dual zero-form symmetry is preserved. Therefore,
the Ising conformal field theory in (1 + 1)d indeed provides
an example of a symmetric gapless state with noninvertible
anomaly [31]. But for the case of D > 1, the situation is far
from clear and that is what we will address in this paper. First
we analyze the expectation value of the disorder operator in a
free field theory.

B. Scaling of disorder operator in field theory

We now discuss the scaling form of the disorder operator at
or near the critical point from a field-theoretical point of view.
The natural starting point is the Gaussian fixed point, i.e., a
free scalar theory, described by the following Hamiltonian:

H[φ] =
∫

dDr
[
π2

2
+ 1

2
(∇φ)2

]
. (11)

The real scalar φ can be thought of as the coarse-grained
Ising order parameter, and π is the conjugate momentum of
the real scalar φ. The Z2 symmetry acts as φ → −φ. The
disorder operator XM is basically defined as the continuum
version of Eq. (8), where the Z2 symmetry is applied to a finite
region M.

Interestingly, for the free theory the expectation value of
the disorder operator can be related to another well-studied
quantity, the second Rényi entanglement entropy S2. More
precisely, for a region M, we have

e−S2(M ) = 〈XM〉. (12)

Here S2(M ) is the second Rényi entropy of the region M.
To see why this is the case, recall that the second Rényi

entropy S2 for a region M of a quantum state |
〉 is given by

e−S2(M ) = Tr ρ2
M, (13)

where ρM is the reduced density matrix for the region M,
obtained from tracing out the degrees of freedom in the com-
plement M: ρM = TrM |
〉 〈
|. In the following we denote
the ground wave functional of the state |
〉 by 
(φ):

|
〉 =
∫

Dφ 
(φ) |φ〉 . (14)

The Rényi entropy can be calculated with a replica trick,
which we now review in the Hamiltonian formalism. Consider
two identical copies of the system, in the state |
〉 ⊗ |
〉.
In the field theory example, the fields in the two copies are
denoted by φ(1) and φ(2), respectively. We denote the basis
state with a given field configuration φ(i) in the ith copy by
|φ(i)

M , φ
(i)
M

〉, where φ
(i)
M is the field configuration restricted to M

and similarly φ
(i)
M

for the complement of M. Since the two
copies are completely identical, there is a swap symmetry
R acting between the two copies, R : φ(1) ↔ φ(2). RM then
swaps the field configurations only within the region M:

RM

∣∣φ(1)
M , φ

(1)
M

〉 ⊗ ∣∣φ(2)
M , φ

(2)
M

〉 = ∣∣φ(2)
M , φ

(1)
M

〉 ⊗ ∣∣φ(1)
M , φ

(2)
M

〉
.

(15)

The expectation of RM on the replicated ground state |
〉 ⊗
|
〉 is then given by

(〈
| ⊗ 〈
|)RM (|
〉 ⊗ |
〉)

=
∫ ∏

i=1,2

Dφ
(i)
M Dφ

(i)
M



(
φ

(1)
M , φ

(1)
M

)

∗(φ(2)

M , φ
(1)
M

)
× 


(
φ

(2)
M , φ

(2)
M

)

∗(φ(1)

M , φ
(2)
M

)
=

∫
Dφ

(1)
M Dφ

(2)
M ρM

(
φ

(1)
M , φ

(2)
M

)
ρM

(
φ

(2)
M , φ

(1)
M

)
= Tr ρ2

M . (16)

Therefore, the Rényi entropy is the expectation value of the
disorder operator for the replica symmetry.

For a free theory, we rotate the basis to φ± = 1√
2
(φ(1) ±

φ(2) ). In the new basis, the swap symmetry operator becomes

R : φ± → ±φ±. (17)

It is straightforward to check that the Hamiltonian of the
replica takes essentially the same form in the new basis:

H[φ(1)] + H[φ(2)] = H[φ+] + H[φ−]. (18)

The ground state again is factorized: |
〉 ⊗ |
〉 = |
〉+ ⊗
|
〉−, where |
〉± is the state of the φ± field, with the
same wave functional as φ, 〈φ±|
〉± = 
(φ±) as defined in
Eq. (14).

We can now compute the expectation value of RM :

(〈
|+ ⊗ 〈
|−)RM (|
〉+ ⊗ |
〉−) = 〈XM〉 , (19)

where we used the fact that R acts as the identity on φ+. For
φ−, RM is nothing but the disorder operator XM .

The second Rényi entropy of a free scalar has been well
studied [32–38] and we summarize the results below.

It is important to distinguish the case where the boundary
is smooth and the case with sharp corners on the boundary.

First consider a smooth boundary. For a sphere of radius R,
in D = 1, 2, 3 we have

S2 =
⎧⎨
⎩

1
6 ln R, D = 1
a1

R
ε

− γ , D = 2

a2
(

R
ε

)2 − 1
192 ln R

ε
, D = 3.

(20)

Here ε is a short-distance cutoff, e.g., the lattice spacing,
a1, a2 nonuniversal coefficients, and γ a universal constant.
For a more general smooth entangling boundary, in two
dimensions the same form holds although the constant correc-
tion γ depends on shape of the region. In three dimensions,
it is known that the coefficient of the logarithmic divergent
part of the Rényi entropy can be determined entirely from
the local geometric data (e.g., curvature) of the surface in a
general CFT [39,40].

If the boundary has sharp corners then there are additional
divergent terms in the entropy. The prototypical case is D = 2
when the entangling region has sharp corners. In that case

S2 = a1
l

ε
− s ln

l

ε
, (21)

where l is the perimeter of the entangling region and s is a
universal function that only depends on the opening angles
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(a)

(b)

FIG. 3. Disorder operator X applied on regions with different
shapes: (a) M is a square region with size R × R and perimeter l .
(b) M is a rectangular region with size R × 2R.

of the corners. For a real free scalar, the coefficient of the
logarithmic correction is s ≈ 0.0260 for a square region (so
four π/2 corners, as those in Fig. 3) [33,36].

Qualitatively, it is important that for D = 2, 3 the lead-
ing term in S2 always obeys a “perimeter” law; i.e., it only
depends on the “area” (length in two dimensions) of the
entangling boundary. If instead we view S2 as the disor-
der operator for the Z2 replica symmetry, the nonuniversal,
cutoff-dependent perimeter term can be removed by redefin-
ing the disorder operator locally along the boundary, and the
remaining term is universal. For D = 2, the subleading term
is either a negative constant when the boundary is smooth,
or a ln l correction with a negative coefficient. So according
to Eq. (12), the disorder parameter 〈XM〉, after renormalizing
away the perimeter term, does not decrease with the size of
M, and therefore the corresponding (D − 1)-form symmetry
is spontaneously broken. This is consistent with the fact that

the replica symmetry itself must be preserved as there is no
coupling between the two copies.

Although the free Gaussian theory is unstable against quar-
tic interactions below the upper critical dimension, and the
actual critical theory is the interacting Wilson-Fisher fixed
point, results from the free theory can still provide useful
insights. It is well known that for D = 1, for M an interval
of length R, the disorder operator 〈XM〉 ∼ R−1/4, the same
power-law decay as that of the Ising order parameter due
to Kramers-Wannier duality. For D = 2, we will resort to
numerical simulations below to address the question.

Notice that the relation between 〈X 〉 and S2 essentially
holds for all free theories, including free fermions. For exam-
ple, the disorder operator associated with the fermion parity
symmetry is also equal to S2. Interestingly, for a Fermi liq-
uid, it is well known that ln〈X 〉 = −S2 ∼ −lD−1 ln l [41,42],
where here l is the linear size of the region. This is an ex-
ample of a gapless state where the (D − 1)-form symmetry
is preserved. Similar results hold for noninteracting bosonic
systems with “Bose surface” [43], an example of which in two
dimensions is given by the exciton Bose liquid [44,45]:

H =
∫

d2r
[
π2

2
+ κ (∂x∂yφ)2

]
. (22)

In other words, to preserve both the zero-form symmetry
and the dual (D − 1)-form symmetry, it is necessary to have a
surface of gapless modes in the momentum space.

While analytical results discussed in this work are limited
to free theories, we conjecture that similar scaling relations
hold for interacting CFTs as well. To see why this is plausible,
we notice that the entanglement Hamiltonian of a CFT is
algebraically “localized” near the boundary of the subsystem
[46], which suggests that even for a nonlocal observable, such
as the disorder operator, the major contribution is expected to
come from the boundary, and hence a perimeter law scaling.
We leave a more systematic study along these lines for future
work. In Sec. IV we numerically confirm our conjecture for
the Ising CFT in (2 + 1)d .

We now briefly discuss what happens if a small mass is
turned on in Eq. (11). Suppose we are in a gapped phase, and
denote by ξ the correlation length. In general, we expect that
S2 obeys a perimeter scaling in the gapped phase; namely, the
leading term in S2 is given by a R

ε
. In two dimensions for a disk

entangling region of radius R, we have [47]

S2 = ac
R

ξ
+ f

(
R

ξ

)
. (23)

Here ac is the value of a at the critical point [which was
denoted by a1 in Eq. (20)]. The function f (x) satisfies

f (x) →
{

rx, x → ∞
−γc, x → 0.

(24)

Here r is a universal constant (once the definition of ξ is
fixed). Suppose the transition is tuned by an external pa-
rameter g and the critical point is reached at gc. Since ξ ∼
(g − gc)−ν where ν is the correlation length exponent, one
finds that

a − ac ∼ (g − gc)ν . (25)
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III. ORDER AND DISORDER IN ISING SPIN MODELS

In the following we study 1-form symmetry breaking in
the transverse field Ising (TFI) model which gives rise to the
(2 + 1)d Ising transition. We have reviewed the connection
with the Z2 gauge theory in Sec. II, as well as the 1-form
symmetry in the Ising spin system. We will now focus more
on the quantitative aspects of the TFI model. Even though the
TFI model and the Z2 lattice gauge theory are equivalent by
the duality map, we choose to work with the TFI model here
because the numerical simulation is more straightforward.

We will now consider a square lattice with one Ising
spin per site, and the global Ising symmetry is generated
by S = ∏

r σ x
r . There are, generally speaking, two phases: a

“disordered” phase, where the Ising symmetry is preserved
by the ground state,2 and an ordered phase, where the ground
states spontaneously break the symmetry. They are separated
by a quantum phase transition, described by a conformal field
theory with Z2 symmetry. It is well understood how to char-
acterize the Ising symmetry breaking (and its absence) in the
three cases: consider the two-point correlation function of the
order parameter σ z

r . The asymptotic forms of the correlation
function 〈σ z

r σ z
r′ 〉 for large |r − r′| distinguish the three cases:

〈
σ z

r σ z
r′
〉 ∼

⎧⎪⎨
⎪⎩

e− |r−r′ |
ξ (disordered)

1
|r−r′ |2� (critical)
const (ordered).

(26)

In both the disordered phase and the quantum critical point,
the Ising symmetry is preserved because of the absence of
long-range order. The prototypical lattice model that displays
all these features is the TFI model defined on a square lattice:

H = −
∑
〈rr′〉

σ z
r σ z

r′ − h
∑

r

σ x
r , h � 0. (27)

Note that this is the same as Eq. (9), but we have set J = 1 and
renamed K by h, to align with the standard convention in the
literature. The model is in the ordered (disordered) phase for
h � 1 (h � 1). The precise location of the critical point varies
with dimension, hc = 1 in D = 1 and hc = 3.044 in D = 2
[48,49].

We will be interested in the disorder operator:

XM =
∏
r∈M

σ x
r , (28)

where M is a rectangle region in the lattice, illustrated in
Fig. 3. In Ref. [14] this operator is called the patch symmetry
operator.

When XM is applied to, e.g., |↑ · · · ↑〉, a domain wall is cre-
ated along the boundary of the region M. These operators are
charged under the dual Z2 1-form symmetry. One can easily
see that 〈ψh=∞| XM |ψh=∞〉 = 1, and 〈ψh=0| XM |ψh=0〉 = 0.
More generally,

〈ψ | XM |ψ〉 ∼
{

e−alM , h > hc

e−bAM , h < hc,
(29)

2We note that there are in fact two distinct types of Ising-disordered
phases in 2D, one trivial paramagnet and the other one a nontrivial
Ising symmetry-protected topological phase.

when M is sufficiently large compared to the correlation
length. Here l is the perimeter of the boundary of M, and A is
the area of M. The coefficients a and b can be computed per-
turbatively in the limit of large and small h. In two dimensions,
take M to be a square of perimeter l , so Perimeter(M ) = l and
the Area(M ) = l2/16. We can find that for large l

− ln〈X 〉 =
{

l
8h2 , h � hc

1
4 | ln h|l2, h � hc.

(30)

IV. NUMERICAL SIMULATIONS

In this section we study the disorder operator in the (2 +
1)d TFI model. We employ the stochastic series expansion
(SSE) quantum Monte Carlo method [50–53] to simulate the
Hamiltonian in Eq. (27). In particular, to be able to directly
access the disorder operator in Eq. (28), instead of implement-
ing the algorithm in the conventional σ z basis we choose to
work in the σ x basis and construct the highly efficient directed
loop algorithm therein [51]. The implementation details of the
SSE-QMC algorithm are given in the Appendix.

In our numerical simulations, we choose M to be a rect-
angular region of size R1 × R2 (i.e., the region contains R1R2

sites), and denote the perimeter l = 2(R1 + R2). As shown in
Figs. 3(a) and 3(b), for finite-size studies, we fix the aspect
ratio R2/R1 = 1 of square shape and 2 of rectangle shape. The
linear system size of the lattice is L and at the critical point
we scale the inverse temperature β = 1/T ∼ L to access the
thermodynamic limit.

A. Disordered phase h > hc

First we present results in the disordered phase h > hc. As
shown in Eq. (29), we expect that the disorder operator obeys
a perimeter law scaling, and for h � hc the coefficient is given
in Eq. (30).

Figure 4 shows the QMC-obtained ln〈XM〉 as a function of
l for different values of h. The temperature is taken to be β =
10, and we have checked that the results already converge for
this value of β. We observe a clear linear scaling, and the inset
shows that for large field h � hc, the slopes of the ln〈XM〉 are
indeed given by 1/8h2 asymptotically.

Now we consider the other limit, when h is approaching the
critical point hc from the disordered side. To test the scaling
given in Eq. (25), we measure the disorder operator and find
the slope a by a linear fit. Figure 5 shows ac − a as a function
of h − hc in a log-log plot. A clear power law manifests in the
data, and the exponent is found to be ν = 0.63(2). Consider-
ing the finite-size effect, the result agrees very well with the
three-dimensional (3D) Ising correlation length exponent.

B. Critical point h = hc

The central question to be addressed is whether the Z2 1-
form symmetry is spontaneously broken at the critical point.
To this end, we measure the disorder operator 〈X 〉 at h = hc

and scale the inverse temperature β = L in these simulations.
We have also checked that the finite-β effect is negligible in
our calculations.

Figure 6 shows ln〈XM〉 as a function of the perimeter l ,
where M is taken to be a square region, as illustrated in
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FIG. 4. − ln(〈X 〉) versus l at L = 32 for different h in disordered
phases. We use the straight line to fit the data of different external
fields and put the obtained slopes in the inset. One sees that as h �
hc, the fitted slopes (blue circles) approach the predicted relation y =

1
8h2 (red line). The fitting errors are negligible compared to the circle
size.

Fig. 3(a). Results for different system sizes L = 8, 16, 24,
32, and 40 are presented and it is clear that the finite-size
effect is negligible. The data clearly demonstrate a linear
scaling as in Eq. (21) and the slope a1 quickly converges to
0.0394 ± 0.0004.

As we have explained, the boundary of M generally con-
tributes to the disorder operator a term proportional to the
perimeter. To detect 1-form symmetry breaking, we need
to check whether 〈X 〉 depends on the area or not. For this
purpose, we consider rectangular regions with different as-
pect ratios: one with 1:1 [Fig. 3(a)] and the other with 1:2
[Fig. 3(b)], and present the results of 〈X 〉 at the h = hc to-
gether in Fig. 7. It can be seen that the two sets of data

FIG. 5. ln(ac − a) versus ln(h − hc ) in the disordered phase for
L = 24 when h is approaching the critical point. The fitted slope (red
line) is 0.63 ± 0.02, consistent with the correlation length exponent
of the (2 + 1)d Ising transition, as expected in Eq. (25).

FIG. 6. − ln(〈X 〉) versus l at the critical point. We use the
relation of Eq. (21) to fit the data and the fitted curve of the
data up to L = 40 is − ln(〈X 〉) = (0.0394 ± 0.0004)l − (0.0267 ±
0.005) ln(l ) − (0.0158 ± 0.008).

basically fall on the same curve, indicating that the disorder
parameter only depends on the perimeter.

Given the relation between 〈XM〉 and the Rényi entropy in
the free theory, let us examine possible corner contributions
to 〈XM〉, which is parametrized in the coefficient s of Eq. (21).
We fit the data points in Fig. 7 to Eq. (21), which yields
s = 0.0272 ± 0.004, close to the free value. We perform the
same fit for data points with aspect ratio 1:2 and obtain essen-
tially the same results (s = 0.0279 ± 0.003). The agreement
between the fitting results for regions with different aspect

FIG. 7. − ln〈XM〉 versus l at the phase transition point for M
with the shape R × R (already shown in Fig. 6) and R × 2R, for
system size L = 32. The blue line represents the fitted curve of the
data for R × 2R using the relation specified in Eq. (21). The fit-
ted result of R × 2R is − ln〈X 〉 = (0.0397 ± 0.0002)l − (0.0279 ±
0.003) ln(l ) − (0.0192 ± 0.006) and for R × R at L = 32 the
result is − ln〈X 〉 = (0.0399 ± 0.0003)l − (0.0272 ± 0.004) ln(l ) −
(0.0162 ± 0.005). The coefficients are indistinguishable within error
bars.
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FIG. 8. − ln〈X 〉 versus l2 when L = 16 and β = 32. The trans-
verse fields are chosen from inside the ordered phase (h = 2.5) to
near the critical point (h = 3.0). The area law scaling in the disorder
operator clearly manifests, and the slope increases as one moves
deeper in the ferromagnetic phase.

ratios again lends strong support for the perimeter dependence
of 〈XM〉 even beyond the leading order, and consequently the
1-form symmetry breaking at the (2 + 1)d Ising CFT.

The convergence of the coefficients a1, s, and a0 versus the
linear system size L is given in Fig. 9 in Appendix A 3.

C. Ordered phase h < hc

For h < hc where Ising spins order ferromagnetically, our
algorithm becomes inefficient because we choose to work in
the σ x basis to facilitate the computation of the disorder op-
erator. Nevertheless, simulations indeed find that the disorder
parameter decays much more rapidly with the linear size of
the region, consistent with the area law in Eqs. (5) and (29).
− ln〈XM〉 as a function of l2 is shown in Fig. 8 for different
values of h below the critical value. It is clear that as we go
deep into the ordered phase, the slope b increases as expected
and the data points converge to a straight line for large l2. For
h = 3.0 very close to the critical point, one can observe that
for relatively small values of l2 the data points do not scale
linearly, which can be attributed to a subleading perimeter
dependence.

V. CONCLUSION AND DISCUSSION

As discussed in the beginning of the paper, in recent years,
new types of quantum phases and phase transitions that are
“beyond Laudau” are flourishing, exhibiting topological or-
der, emergent gauge field, and fractionalization. Higher-form
symmetries and their spontaneous breaking are new concep-
tual tools introduced to provide a unified framework for both
conventional and exotic phases. A quantum phase, gapped
or gapless, is fundamentally characterized by its emergent
symmetry and the associated anomaly. While the philosophy
went back to the Landau classification of phase transitions, the

power of this perspective has only begun to unfold recently
with the introduction of generalized global symmetries.

Here we reexamine the familiar Ising symmetry-breaking
transition, arguably the simplest conformal field theory, from
the emergent symmetry perspective. A D-dimensional Ising
system has a “hidden” Z2 (D − 1)-form symmetry, whose
charges are Ising domain walls. Gapped phases in this system
are associated to the spontaneous breaking of the enlarged
symmetry [zero-form and (D − 1)-form symmetries]. It is
then of great interest to determine the symmetry-breaking
pattern at the critical point, to complete our understanding of
the global phase diagram from the emergent symmetry point
of view.

In this work we determine the scaling form of the disorder
operator in Ising CFTs when D > 1. The most challenging
case is D = 2 where the transition is described by the inter-
acting Wilson-Fisher fixed point, and we exploit large-scale
quantum Monte Carlo simulations. We use the disorder op-
erator of the Ising system to probe the breaking of the dual
higher-form symmetry. We find numerically that at the critical
point of the two-dimensional (2D) quantum Ising model the
one-form disorder operator exhibits spontaneous symmetry
breaking as in the disordered phase, whereas in the ordered
phase, the 1-form symmetry is intact.

The disorder operator is intimately related to a line defect
(also called a twist operator) in an Ising CFT, around which
the spin operator sees an antiperiodic boundary condition. In
fact, a line defect is nothing but the boundary of a disorder
operator. It is believed that in general such a line defect
can flow to a conformal one at low energy, which is indeed
consistent with a perimeter law scaling for the expectation
value of the disorder operator.3 Local properties of disorder
line defects have been previously investigated in Refs. [54,55].
It will be interesting to understand the relation between the
local properties with the universal corner contributions to the
disorder operator [56].

Our findings, besides elucidating the physics of quantum
Ising systems from a different angle, provide a working exam-
ple of higher-form symmetry at practical use. Similar physical
systems can be studied; for example, the disordered operator
constructed in this work is readily generalized to the (2 + 1)d
XY transition and can be measured with unbiased QMC
simulations. Another important direction is to study other
higher-form symmetry-breaking transitions, such as 1-form
symmetry-breaking transition in 3D systems. It would also be
interesting to investigate the utility of the disorder operator
in the topological Ising paramagnetic phase. More applica-
tions in quantum lattice models are awaiting to be explored,
and will certainly lead to new insight for a new framework
that unifies our understanding of the exotic quantum phases
and transitions going beyond the Landau paradigm and those
within.

Note added. We would like to draw the reader’s attention to
few closely related recent works by Wu, Jian, and Xu [20,22]
and by some of the present authors on scaling of the disorder
operator at (2 + 1)d U(1) quantum criticality [21].

3We are grateful for Shu-Heng Shao for discussions on this point.
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APPENDIX: QUANTUM MONTE CARLO
IMPLEMENTATION OF DISORDER OPERATOR

In this Appendix, we describe the implementation of the
SSE-QMC algorithm of the quantum Ising model, in particu-
lar the implementation of the disorder operator which involves
a change of basis.

1. SSE on σz basis

The Hamiltonian for the transverse field Ising model is

H = −
∑
〈rr′〉

σ z
r σ z

r′ − h
∑

r

σ x
r . (A1)

Then we can decompose the Hamiltonian into site and bond
operators

H0,0 = I,

H−1,a = h(σ+
a + σ−

a ),

H0,a = h,

H1,a = (
σ z

r(a)σ
z
r′(a) + 1

)
, (A2)

with H = −∑1
i=−1

∑
a Hi,a. Here H0,0 denotes the identity

operator and i = −1, 0, 1 indicates different types of operator:
off-diagonal operator on site, diagonal operator on site, and
diagonal operator on bond. The subscript a holds two different
identities: for bond operators H1,a the index a denotes the
bond number (e.g., for the 2D case a = 1, 2, . . . , Nb = 2L2);
and for site operators H0,a and H−1,a the index a denotes the
site number (e.g., for the 2D case a = 1, 2, . . . , N = L2).

Next, the partition function Z = Tr e−βH can be expressed
as a power series expansion:

Z =
∑

α

∑
SM

βn(M − n)!

M!
〈α|

M∏
i=1

Hai,pi |α〉, (A3)

FIG. 9. SSE-QMC configuration of the quantum Ising model.
Golden bars represent Ising bond operators. Solid square plaquettes
are off-diagonal site operators, and open plaquettes denote the diag-
onal site operators. Arrows represent periodic boundary conditions
in the imaginary time direction. The red solid circles and the light
blue open circles indicate spin up and down. Solid and dashed purple
lines illustrate the spin states (spin up or down).

where M is the truncation of the expansion series n. Taking σ z

as a complete set of basis for the system, the nonzero matrix
elements for site operators and bond operators are

〈↑ |H−1,a| ↓〉 = 〈↓ |H−1,a| ↑〉 = h,

〈↑ |H0,a| ↑〉 = 〈↓ |H0,a| ↓〉 = h,

〈↑↑ |H1,a| ↑↑〉 = 〈↓↓ |H1,a| ↓↓〉 = 2.

(A4)

The updating scheme [50] includes the diagonal update
which either inserts or removes a diagonal operator between
two states with probabilities regulated by the detailed bal-
anced condition, and the cluster update which flips all the
spins on the cluster with the Swendsen-Wang scheme. The
configurations of the updating scheme are shown in Fig. 9.

We describe the updating scheme in the following steps.
(1) Diagonal update: We go through the operator strings

and either remove or insert a diagonal operator according to
the following procedures.

(a) For a diagonal operator (H0,a or H1,a), we removed
it with probability

P = min

(
M − n + 1

β(hN + 2Nb)
, 1

)
, (A5)

where N denotes the number of lattice sites, and Nb denotes
the number of bonds.

(b) For a null operator (H0,0), we substitute it with a
diagonal operator H1,a or H0,a by the procedures below.

(i) First we make the decision of which kind of
diagonal operators to insert. We choose the type of H1,a

with probability

P(h) = 2Nb

hN + 2Nb
(A6)

or the type H0,a with probability 1 − P(h).
(ii) After the decision is made, we accept the inser-

tion of an operator with probability

P = min

(
β(hN + 2Nb)

M − n
, 1

)
, (A7)

and after that we choose a random and appropriate site
or bond to insert the operator. If the chosen bond to
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insert a bond operator has an antiparallel configuration,
then the insertion of a bond operator at this place is
prohibited.
(c) For an off-diagonal operator, we ignore it and go to

the next operator in the operator strings.
(2) Cluster update:

(a) We generally follow two rules to construct the clus-
ters: (1) clusters are terminated on site operators H−1,a or
H0,a; and (2) the four legs of a bond operator H1,a belong
to one cluster. Carry out this procedure until all the clusters
are built, and a configuration of clusters is shown in Fig. 9.

(b) Clusters identified from the above rules are then
flipped with probability 1/2 (which is the Swendsen-Wang
cluster updating scheme).
Since the disorder operator is a product of σ x, i.e., 〈XM〉 =

〈∏r∈M σ x
r 〉, it is a measurement of an off-diagonal operator in

the {σ z} basis. In the σ z basis, the off-diagonal operator can
be measured if the operator is a product of operators in the
Hamiltonian. It is proved in Ref. [51] that〈

m∏
i=1

Ĥki

〉
= 1

(−β )m

〈
(n − 1)!

(n − m)!
N (k1, . . . , km)

〉
W

, (A8)

where N (k1, . . . , km) denotes the number of ordered sub-
sequences k1, . . . , km in Sn. However, this measurement
becomes practically impossible when the length of the prod-
ucts becomes sufficiently large, because 1

(−β )m
(n−1)!
(n−m)! would

grow to a very large value as m increases; thus N (k1, . . . , km)
would be too small to measure within the limited computing
power. So the measurement of 〈X 〉 in the {σ z} basis seems
hopeless. To solve this problem, we need to change the basis
to make σ x diagonal.

2. SSE on σx basis

Since we need to measure the disorder operator which is
defined as the nonlocal product of off-diagonal operators, and
it is extremely hard to measure it in the traditional σ z basis,
we then turn to the σ x basis as the complete set of basis of
the system, and we can use directed loop algorithms [51,52]
to simulate this model.

For convenience, we now write the σ x(z) above as σ z(x) in
the following; the Hamiltonian can be rewritten as

H = −
∑
〈rr′〉

σ x
r σ x

r′ − h
∑

r

σ z
r + Nb�. (A9)

Here 〈rr′〉 refers to the nearest neighbors. Nb is the number
of bonds. Nb� is a constant added to the Hamiltonian to en-
sure that the matrix elements defined in Eq. (A14) are positive
definite. Rewriting Sx with S+ + S−, we can decompose the
Hamiltonian as

H = −
Nb∑

b=1

Hb, (A10)

with

Hb = −H1,b − H2,b + H3,b. (A11)

Here b refers to the bond number, and H1,b, H2,b, H3,b are
defined as follows:

H1,b = σ+
r(b)σ

+
r′(b) + σ−

r(b)σ
−
r′(b),

H2,b = σ+
r(b)σ

−
r′(b) + σ−

r(b)σ
+
r′(b),

H3,b = � − ah(σ z
r(b) + σ z

r′(b) ).

(A12)

Note that a = N
2Nb

and N is the number of lattice sites. For the

one-dimensional (1D) case a = 1
2 , and for the 2D case a = 1

4 .
The nonzero matrix elements for the diagonal operators are

〈↑↑ |Hb| ↑↑〉 = � − 2ah,

〈↓↓ |Hb| ↓↓〉 = � + 2ah,

〈↑↓ |Hb| ↑↓〉 = 〈↓↑ |Hb| ↓↑〉 = �.

(A13)

In the simulation we set � = 2ah + 1 to make sure Hb is
positive definite. The off-diagonal matrix elements are

〈↑↑ |Hb| ↓↓〉 = 〈↓↓ |Hb| ↑↑〉
= 〈↑↓ |Hb| ↓↑〉 = 〈↓↑ |Hb| ↑↓〉 = 1.

(A14)

Then the updating scheme becomes as follows.
(1) Diagonal update: The purpose of the diagonal update

which either inserts or removes a diagonal between two basis
states is to change the expansion order n by ±1. The corre-
sponding acceptance probability is

P(insert) = Nbβ〈α(p)|H1,b|α(p)〉
M − n

,

P(remove) = M − n + 1

Nbβ〈α(p)|H1,b|α(p)〉 .
(A15)

(2) Directed loop update: We can construct the loop as
follows. First, select randomly one of the vertex legs as an
initial entrance leg. The exit vertex leg is chosen with the
probability as Eq. (A17), and both the entrance and exit spins

FIG. 10. Finite-size convergence of the coefficients of the dis-
order operator at the (2 + 1)d Ising critical point, for the case of
M = R × R.
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are flipped. The probability of the exit leg is defined with
matrix elements obtained by flipping spins in a vertex. The
elements are defined as

W

(
g3, g4

g1, g2

)
= 〈

g3Sz
i , g4Sz

j

∣∣Hb

∣∣g1Sz
i , g2Sz

j

〉
, (A16)

where gi = −1 if the spin on leg i is flipped and gi = +1 if it
is not flipped. For example, the probability of exiting at leg 3
if the entrance is at leg 1 is given by

P3,1 = W (−+
−+)

W (++
++) + W (++

−−) + W (−+
−+) + W (+−

−+)
. (A17)

Then let it visit the next vertex. The loop goes on in this
way one vertex by one until it closes. Also we use the
Swendsen-Wang scheme to flip the clusters after all clusters
are identified.

3. Curve fitting

Lastly, we show the details of fitting results of Figs. 6
and 7. We fit the disorder operator according to Eq. (21) and
obtain the coefficients a1, s, and a0 for different system sizes.
Figure 10 demonstrates the convergence of the fitting results
as the system size increases.
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