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Recent studies proposed parking reservation schemes in a bi-modal transport network to

manage parking competition and traffic congestion. This study proposes a new flexible park-

ing reservation scheme, under which commuters’ reservation can expire and those arriving

later than the reservation expiration time can retain his reservation by paying additional late-

for-reservation fees. Time-varying late-for-reservation fees are also examined. The proposed

reservation scheme is more flexible and practical than those in the literature. Moreover, we

found that, when compared to reservation scheme in the literature, the total social cost can

be further reduced by an appropriately designed flexible reservation scheme in this paper.

We also analytically and numerically quantify the efficiency gain of the proposed flexible

parking reservation scheme.
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1 Introduction

The availability of parking can considerably affect commuters’ travel choices, as reported in

the studies of, e.g., Qian et al. (2011) and Zhang et al. (2011). Shoup (2006) reported that

30% of traffic were cruising for a vacant parking space, based on empirical data of several

cities (e.g., Chicago, San Francisco). Finding a parking space in the downtown areas of big

cities becomes a difficult task for commuters. In this context, many studies combined driving

and parking as an integrated problem, and proposed parking pricing/permit to manage the

parking supply/operation and traffic congestion (e.g., Arnott et al., 1991; Zhang et al., 2005,

2011; Qian et al., 2012; Qian and Rajagopal, 2015; He et al., 2015; Liu et al., 2016; Zheng

and Geroliminis, 2016; Lei and Ouyang, 2017; Jakob et al., 2018). In particular, cruising

for parking and its negative impacts have been extensively studied (e.g., Anderson and

De Palma, 2004; Arnott and Inci, 2006; Qian and Rajagopal, 2014; Inci and Lindsey, 2015;

Liu and Geroliminis, 2016; Tian, 2016). Recently, a growing number of studies developed

parking management strategies with an emphasis on network-wide applications (Lam et al.,

2006; Li et al., 2008; Geroliminis, 2015; Boyles et al., 2015; Zhang et al., 2019a). More

recently, there is a growing interest in modeling the parking problem for autonomous vehicles

(Liu, 2018; Zhang et al., 2019b). For a more comprehensive review of parking studies, one

may refer to e.g., Inci (2015).

Considering that the total parking supply in downtown areas can be insufficient, Zhang

et al. (2011) examined how the inadequate parking supply might reshape the morning com-

mute equilibrium. It is found that the morning peak will be pushed to start earlier due

to competition for parking. Zhang et al. (2011) also introduced a parking permit distribu-

tion and trading scheme to eliminate the external cost arising from competition for parking

spaces. Later, Yang et al. (2013) further considered the hybrid supply of reserved and un-

reserved parking spaces when the total parking supply in the downtown is insufficient. It is

found that an appropriate combination supply of reserved and unreserved parking spaces can

temporally smooth out traffic congestion and hence reduce the total system cost. In recent

years, parking reservation has been proposed for parking management in many studies (e.g.,

Chen et al., 2015, 2016; Shao et al., 2016; Chen et al., 2019). Xiao et al. (2016), Xiao et al.

(2019), and Su and Wang (2019) further extended Yang et al. (2013) by incorporating the

ridesharing or ride-sourcing behaviors into the commuting problem given the limited park-

ing supplies and examined the interaction between parking supply and carpooling. Xu et al.

(2017) examined the allocation of road space to on-street parking for vacant ride-sourcing

vehicles.

In Yang et al. (2013), the parking reservation is valid for the whole day, i.e., no matter
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when the commuter with a reserved parking space chooses to travel, that parking space

will be reserved for him or her. Liu et al. (2014a) further considered the expirable parking

reservation scheme, under which commuters with parking reservation have to arrive at the

parking spaces before a predetermined expiration time, to mitigate both traffic congestion

and competition for available parking spaces. In Liu et al. (2014a), the parking space is no

longer reserved to the commuter once he or she arrives later than the expiration time, and

they assumed that commuters with parking reservation will take advantage of the reservation

and arrive before the expiration time. This consideration eases the analysis of the parking

problem, but can be unrealistic in practice. This study considers a more flexible and operable

case, which is termed as “a flexible expirable parking reservation scheme”, under which a

commuter with a parking reservation arriving later than the expiration time of the reservation

can pay an additional late-for-reservation fee (can be constant or time-dependent) to remain

his reservation valid. We explore and quantify how such a new scheme may affect travel

patterns and potentially improve system traffic efficiency. In particular, we found that giving

this flexibility to commuters, the total system cost can be further reduced. Efficiency of the

flexible parking reservation scheme has been analytically examined. Moreover, we model

departure time choices for both car and public transit commuters in this paper and discuss

how insufficient parking supply might affect the bi-modal commuting patterns.

The rest of the paper is organized as follows. Section 2 presents the travel cost for-

mulations and formulates the bi-modal equilibrium under insufficient parking supply and

parking reservation schemes, where departure time choices are considered for both private

car and public transit commuters. In Section 3, the new flexible parking reservation schemes

are introduced and discussed in detail, and the efficiency of the flexible parking reservation

schemes are evaluated and compared against the reservation schemes in the literature. Sec-

tion 4 further introduces a time-varying late-for-reservation fee and quantify the potential

efficiency gains. Section 5 illustrates the theoretical findings through numerical examples

and Section 6 concludes the paper.

2 Morning commute with limited parking supplies

We consider a linear city depicted in Figure 1 with two travel modes: a transit line and a

parallel highway with capacity-constrained bottleneck. Every day there is a total number of

N commuters traveling from home to the Central Business District (CBD). Commuters have

a desired arrival time t∗ at the workplace. Early arrival at the workplace will be penalized.
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Figure 1: The two-mode network

Late arrival at the workplace is not allowed.1 It is assumed that all parking spaces are

located at the destination (i.e., CBD), and the walking time between parking spaces and

workplace is ignored for simplicity. The numbers of car and transit commuters are denoted

by Na and Nb, respectively, where Na +Nb = N .

2.1 Travel cost and bi-modal equilibrium

We now formulate the travel costs for car and transit modes. Travel cost for commuters

includes the travel time cost, schedule delay cost (due to un-punctual arrival at the destina-

tion), and the monetary cost. For the private car commuters departing from home at time

t, the travel cost can be written as

ca(t) = α · Ta (t) + β · [t∗ − t− Ta(t)]+ + τa, (1)

where [·]+ = max {0, ·}, Ta(t) is the travel time experienced by the commuters departing

from home at time t, α is the value of time, β is the penalty for a unit time of early arrival

at the destination for commuters, and τa is the monetary cost for the car mode, which is

assumed to be the parking fee (note that the parking fee is assumed constant for all available

parking spaces). It is assumed that α > β, which is consistent with many empirical evidences

in the literature. Since late arrival is not allowed, t+ Ta (t) ≤ t∗ holds.

In Eq. (1), the travel time Ta(t) contains both the free-flow travel time and the queuing

delay at the highway bottleneck, i.e., Ta(t) = Ta + q(t)
s

, where Ta is the free-flow time for the

highway, q(t) is the queue length experienced by commuters departing from home at time t

and s is the bottleneck capacity.

Given Na and assuming there is sufficient parking supply in the CBD, at user equilibrium,

all commuters should have identical travel cost, i.e., dca(t)
dt

= 0 for t ∈ [tu,as , tu,ae ], where tu,as

1This paper aims to generate analytical insights regarding flexible parking reservation schemes and illus-
trate the potential efficiency gains from giving flexibility to commuters with a parking reservation. To ease
the analysis and avoid tedious algebra, late arrival at the workplace is not considered. Similar treatments
can be found in, e.g., Zhang et al. (2008), Xiao et al. (2013), and Liu et al. (2014b).
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is the departure time of the first car commuter, and tu,ae is the departure time of the last

private car commuter. The departure rate ra(t) from home (as well as the arrival rate at the

bottleneck) for car commuters is

ra(t) =
α

α− β
s. (2)

One can further derive that tu,as = t∗−Ta− Na
s

and tu,ae = t∗−Ta− β
α
Na
s

at equilibrium. One

may refer to Arnott et al. (1990) for similar derivations. The departure time choice problem

has been modeled by many studies with different emphases (van den Berg and Verhoef, 2011;

Liu et al., 2015b; Nie, 2015) since Vickrey (1969) proposed the first bottleneck model. The

equilibrium travel cost of car commuters under given Na is

pa (Na) = αTa + β
Na

s
+ τa. (3)

For transit commuters, following Wu and Huang (2014), the travel cost is assumed to

contain the travel time cost, the schedule delay cost, the crowding cost, and the transit fare.

For commuters departing from home at time t, the transit cost can be written as

cb(t) = α · Tb + β · [t∗ − t− Tb]+ + θδTbrb(t) + τb, (4)

where [·]+, α, β, and t∗ follow those in Eq. (1), and Tb is the constant transit travel time, θ is

a cost parameter for crowding, δ is the transit headway during the peak for transit services,

rb(t) is the departure rate of transit commuters at time t, and τb is the transit fare. The

crowding cost is proportional to the number of commuters in the transit vehicle and the

transit headway. Different from Wu and Huang (2014), the late arrival at the destination is

not allowed in this study.

Given the number of transit commuters Nb, we can derive that the first transit commuter

departs from home at tu,bs = t∗ − Tb −
√

2θδTbNb
β

and the last transit commuter departs from

home at tu,be = t∗ − Tb. For transit commuters, the departure rate from home is

rb(t) =
β
(
t− tu,bs

)
θδTb

. (5)

The equilibrium travel cost of transit commuters can be written as

pb (Nb) = αTb + τb +
√

2βθδTbNb. (6)

We now turn to discuss the bi-modal equilibrium. We consider an interior bi-modal

equilibrium, where both car and transit modes are used by some commuters, i.e., Na > 0 and

4



Nb > 0. Based on Eq. (3) and Eq. (6), it can be verified that αTa+τa < αTb+τb+
√

2βλδTbN

and αTa + βN
s

+ τa > αTb + τb will ensure an interior bi-modal equilibrium. Following this

consideration, at equilibrium pa (Na) = pb (Nb), where Na +Nb = N . It is straightforward to

find that the equilibrium solution is unique since pa (Na) in Eq. (3) and pb (Nb) in Eq. (6) are

strictly increasing with respect toNa andNb, respectively. The equilibrium solution is further

denoted as N∗a and N∗b , and the corresponding cost is denoted as c∗ = pa (N∗a ) = pb (N∗b ).

2.2 Bi-modal equilibrium under limited parking supplies

We now discuss the bi-modal equilibrium under insufficient parking, i.e., the parking supply

m is less than the equilibrium car demand N∗a (i.e., m < N∗a ). Similar to Zhang et al. (2011),

at equilibrium, Na = m and Nb = N − m. The equilibrium travel cost will be equal to

pb (N −m), which is larger than c∗ = pb (N∗b ) since N − m > N∗b . It implies that due to

the constrained parking supply, the travel cost of commuters is larger when compared to the

case with sufficient parking supply. Different from Zhang et al. (2011), this paper models

departure time choices for both private car and public transit commuters, which is further

analyzed below.

In particular, the car commuters have to depart from home earlier due to the competition

for the limited parking supply. The departure/arrival equilibrium at the car traffic side can be

depicted as that in Figure 2(a) (where the blue, red and black solid lines represent departures

from home, arrivals at the queue, and arrivals at the destination, respectively, the dotted lines

are used to illustrate m′ to be introduced shortly), where m′ = Pb(N−m)−αTa−τa
β

s and m′ > N∗a .

Moreover, it can be verified that tu,as = t∗ − Ta − m′

s
and tu,ae = t∗ − Ta − m′

s
+
(
1− β

α

)
m
s

.

The departure/arrival choice equilibrium of transit commuters under insufficient parking

supply m < N∗a is depicted in Figure 2(b), where the blue, red and black lines represent

departures from home, departures from the transit stop, and arrivals at the destination,

respectively. Moreover, the first public transit commuter in the peak will depart at time

tu,bs = t∗ − Tb −
√

2θδTb(N−m)
β

and the last public transit commuter will depart at time

tu,be = t∗ − Tb.

Proposition 2.1. Given insufficient parking supply m < N∗a , when m decreases, i.e., less

parking, (i) the earliest private car and public transit commuters will depart earlier (the

peaks for highway and public transit both start earlier), i.e., tu,as = t∗ − Ta − m′

s
decreases

and tu,bs = t∗ − Tb −
√

2θδTb(N−m)
β

decreases; (ii) the marginal change of m will result in the

same change in the peak start times tu,as and tu,bs , i.e., dtu,as
dm

= dtu,bs
dm

; (iii) the last private

car commuter will depart earlier while the last transit commuter will depart at the same

time, i.e., tu,ae decreases and tu,be remains constant; (iv) tu,ae − tu,as decreases and tu,be − tu,bs
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increases; (v) the departure rate from home for car commuters in Eq. (2) remains constant

while departure rate from home for transit commuters in Eq. (5) at tu,be increases.

Proposition 2.1 can be readily verified by examining the first derivatives of tu,as , tu,bs , tu,ae ,

and tu,be with respect to m and the departure rates for car commuters and transit commuters

in Eq. (2) and Eq. (5). Proposition 2.1(i) means that under a more severe parking limitation

(a smaller m), the peaks for private car traffic side and public transit side will both be pushed

to start earlier (due to more severe parking competition). Proposition 2.1(ii) further says

that a marginal change in parking supply m would result in equal marginal changes in the

peak start times for both private car traffic side and public transit side. Proposition 2.1(iii)

and Proposition 2.1(iv) indicate that the peak length for private car traffic side decreases and

peak length for transit side increases under a smaller m. Proposition 2.1(v) further indicates

that, besides an earlier peak, a more severe parking limitation can result in temporally more

intensive transit passenger departure during a certain time interval within the peak at the

bi-modal equilibrium. The above results are consistent with the observation that under a

smaller m, there will be less private car commuters and more public transit commuters.

The total user cost (TUC) can be written as:

TUC = N · pb(N −m). (7)

The total social cost (TSC) under a limited parking supply equals the total user cost (TUC)

minus the money transfers, i.e., the parking fees and public transit fares. Then the total

social cost (TSC) can be written as:

TSC = N · pb(N −m)− (N −m)τb −mτa. (8)

2.3 Inflexible expirable parking reservation scheme

We now introduce the parking reservation scheme proposed in Liu et al. (2014a), which

is termed as “inflexible expirable parking reservation scheme” (later we will introduce the

“flexible” scheme, i.e., allowing people to be late for the parking reservation). Note that

different parking reservation schemes to be discussed under a given parking supply m only

manage private car traffic and the traffic pattern at the public transit side remains the same

as those in Figure 2(b).

In particular, under such an inflexible reservation scheme, commuters with a reservation

have to arrive at the parking spaces before a predetermined expiration time. Otherwise the

parking spaces will be no longer reserved to them. To take advantage of the reservations,
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Figure 2: The departure/arrival equilibrium for car and public transit commuters under
parking limitation

commuters with reservations need to arrive at the parking spaces in time so as to minimize

their costs given that the reservation scheme is appropriately designed. To ease the presen-

tation, we denote those with a reservation as “r-commuter” and those without a reservation

as “u-commuter”.

We consider a general parking reservation scheme where reservations expire at n different

time points. The total number of parking spaces for reservation is mr ≤ m (note that

m < N∗a , i.e., parking is insufficient). The number of parking spaces open for competition

(unreserved) is mu = m −mr. The number of reserved parking spaces associated with the

ith expiration time tri is denoted by mr
i , where mr

i > 0 for i = 1, 2, 3, ..., n, tr1 < tr2 < · · · < trn,

and
∑n

i=1m
r
i = mr. There are n groups of parking reservations in total.

This paper will not enumerate all the possible commuting equilibrium patterns under

different expirable reservation schemes (different combinations of mr
i and tri ). Instead, we

only describe appropriately designed parking reservation schemes (i.e., relatively efficient),

which are discussed as follows for n = 1 and n ≥ 2. For the parking reservation schemes

to be relatively efficient (i.e., tends to yield small total social cost), (i) the arrival of r-

commuters (those with parking reservations) should be continuous (no capacity waste); (ii)

the last r-commuter should arrive at the destination at t∗ in order to reduce schedule delay

cost; (iii) some parking spaces might have to be open for competition (but not reserved)

in order to separate departures of r-commuters (those with reservation) and u-commuters

(those without reservation) and temporally reduce congestion. Note that these principles

still hold when we introduce the proposed flexible reservation schemes.
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2.3.1 The expirable reservation scheme with n = 1

We start with an identical expiration time for all the reserved parking spaces, i.e., n = 1. The

number of reserved parking spaces should not exceed the cumulative capacity of the highway

bottleneck between tu,ae + Ta + mu

s
and tr1, i.e., mr

1 = mr ≤
(
tr1 − tu,ae − Ta −

β
α
mu

s

)
s, where

tu,ae is the departure time from home of the last u-commuter using car and tu,ae + Ta + β
α
mu

s

is the arrival time (at the CBD) of this u-commuter. This consideration ensures that all the

commuters with a parking reservation can drive through the highway bottleneck before the

expiration time. This is necessary for an optimal design of the parking reservation scheme.

As discussed in Yang et al. (2013), the optimal expiration time should be set large enough if

all the reserved spaces have an identical expiration time, i.e., tr1 ≥ t∗ in this paper. Under the

optimal combination of mu and mr
1, the car departure/arrival equilibrium can be depicted

as that in Figure 3, where there are two sub-peaks: one for u-commuters (blue solid lines:

departure from home and arrival at bottleneck) and one for the r-commuters (red solid lines:

departure from home and arrival at bottleneck). The black solid lines represent the arrivals

at the destination. The exact values of mu, mr
1 should be determined by minimizing the

total system cost under the flow pattern depicted in Figure 3.2

Based on the bi-modal equilibrium conditions, the time points in Figure 3 can be derived,

i.e., the departure time of the first car commuter without a parking reservation tu,as =

t∗ − Ta − pb(N−m)−(αTa+τa)
β

, the departure time of the last car commuter without a parking

reservation tu,ae = t∗ − Ta − pb(N−m)−(αTa+τa)
β

+ mu

ra
, and the departure times of the first and

last commuters with a parking reservation trs = t∗ − Ta − mr

s
and tre = t∗ − Ta − β

α
mr

s
. To

economize the notation, subscript/superscript a is omitted for the notation of the time points

associated with car commuters with reservation (r-commuters).

We now further present the system efficiency metrics for the case with an identical ex-

piration time for all the reserved parking spaces, i.e., n = 1. The total cost of all the car

commuters with parking reservations can be written as

TCr
a = mr ·

(
αTa + β

mr

s
+ τa

)
. (9)

2It is noteworthy that, when mu > 0, in Figure 3 there exists a time interval
[
tu,ae + Ta + β

α
mu

s , t∗ − mr

s

]
during which the bottleneck service capacity is wasted. Note that m < N∗

a (insufficient parking) results
in t∗ − mr

s > tu,ae + Ta + β
α
mu

s , i.e., parking competition due to limited supply forces commuters without
reservation to depart much earlier than those with reservation at the bi-modal equilibrium. This capacity
waste can still occur even if we introduce more advanced parking reservation schemes later on as long as
m < N∗

a and mu > 0. However, there should be no capacity waste during the arrival of r-commuters under
an efficient reservation scheme (as discussed earlier), i.e., the arrival is continuous between t∗ − mr

s and t∗

in Figure 3.
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Figure 3: The departure/arrival equilibrium for car commuters under inflexible parking
reservation (n = 1)

The total cost of the commuters without reservation, i.e., the public transit commuters and

car commuters without parking reservations can be specified as:

TCu
b = (N −mr) · pb(N −m). (10)

The total user cost under the inflexible expirable parking reservation scheme when n = 1

can be written as:

TUCin,1 = mr ·
(
αTa + β

mr

s
+ τa

)
+ (N −mr) · pb (N −m) . (11)

The total social cost (excluding the money transfers) under the inflexible expirable parking

reservation scheme when n = 1 can be written as:

TSCin,1 = mr ·
(
αTa + β

mr

s
+ τa

)
+ (N −mr) · pb(N −m)− (N −m)τb −mτa. (12)

By comparing Eq. (11) with Eq. (7), or comparing Eq. (12) with Eq. (8), the total cost

saving, i.e., user cost saving or social cost saving under the inflexible expirable parking

reservation scheme with n = 1 when compared that under no reservation scheme, can be

given as follows:

CSin,1 = mr [pb(N −m)− pa(mr)] . (13)

The optimal mr under a given m to minimize the total social cost, or equivalently to
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minimize the total user cost, or equivalently, to maximize the total cost saving CSin,1 is

derived in Proposition 2.2.

Proposition 2.2. Given m < N∗a , the optimal number of reserved parking spaces mr under

the inflexible expirable parking reservation scheme with n = 1 to minimize Eq. (12) can be

specified as:

mr,∗ =

{
mr,∗
in < m pb(N −m) < pa(2m)

m pb(N −m) ≥ pa(2m)
(14)

where mr,∗
in = s

2β
· (pb(N −m)− τa − αTa).

Proposition 2.2 can be verified by taking the first derivative of Eq. (12) with respect to

mr. Proposition 2.2 is further explained in the following. It can be verified that there is a

unique mc,1 such that pb(N−mc,1) = pa(2mc,1). Moreover, m > mc,1 ⇔ pb(N−m) < pa(2m)

and m ≤ mc,1 ⇔ pb(N −m) ≥ pa(2m). Proposition 2.2 means that when m > mc,1, mr,∗ =

mr,∗
in < m and when m ≤ mc,1, mr,∗ = m. It implies that when parking insufficiency is less

severe (i.e., m > mc,1), we should keep some parking open for competition (i.e., mr,∗ < m or

mu,∗ = m−mr,∗ > 0) to separate car traffic of r-commuters and u-commuters so as to reduce

congestion. Note that mu,∗ = m−mr,∗ > 0 also implies that in order to minimize total social

cost, capacity waste between the arrivals of r-commuters and u-commuters occurs, where the

capacity waste results in additional schedule delay cost for u-commuters. This means that

the benefit from reducing traffic intensity (separating r-commuters and u-commuters) is more

significant than saving schedule delay cost of u-commuters when parking limitation is less

severe. Instead, when parking insufficiency is more severe (i.e., m ≤ mc,1), all parking spaces

should be reserved to avoid large schedule delays due to severe parking competition (the

capacity waste between arrivals of u-commuters and r-commuters does not occur since there

is no u-commuters, i.e., an extreme case of Figure 3 where mu = 0).

We now further discuss how different parameters in the studied bi-modal system are

related to Proposition 2.2. In particular, based on Eq. (3), Eq. (6) and Eq. (14), one can

identify that when α ↓ (VOT is smaller), Tb ↓ (public transit is faster), τb ↓ (public transit

fare is cheaper), θ ↓ (public transit crowding is less valued by commuters), δ ↓ (public transit

headway is smaller), N ↓ (total peak demand is smaller), Ta ↑ (free-flow time on highway is

larger), and τa ↑ (monetary cost for car mode is larger), pb(N −m) < pa(2m) is more likely

to hold and thus mr,∗ < m, i.e., it is more likely that some parking spaces should be open

for public competition in order to reduce congestion and minimize total social cost.
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2.3.2 The expirable reservation scheme with n ≥ 2

We now turn to the case with more than one group of reserved parking spaces with different

reservation expiration times, i.e., n ≥ 2, the reserved parking spaces are divided into at

least two groups with different expiration times. To ease the analysis, it is assumed that

the reserved parking mr is evenly divided into n groups with different reservation expiration

times. Therefore, mr
i = mr

n
, where i = 1, 2, ..., n. In the case with n = 1 discussed in

Section 2.3.1, tr1 ≥ tu,ae + Ta + β
α
mu

s
+ mr

s
, where tu,ae = t∗ − Ta − pb(N−m)−(αTa+τa)

β
+ α−β

α
mu

s

is given in Section 2.3.1. Similarly, to ensure that commuters with parking reservation can

drive through the highway bottleneck before the expiration time, the number of reserved

parking spaces should not exceed the cumulative capacity of the highway bottleneck, which

is summarized in Assumption 1.

Assumption 1. The number of reserved parking spaces should not exceed the cumulative

capacity of the highway bottleneck between tri−1 and tri , i.e., mr
i ≤

(
tri − tri−1

)
s for i ≥ 2, and

tr1 ≥ tu,ae + Ta + β
α
mu

s
+

mr1
s

, where tu,ae = t∗ − Ta − pb(N−m)−(αTa+τa)
β

+ α−β
α

mu

s
.

Under Assumption 1, we can show that it is socially preferable to set tri = t∗ − n−i
n

mr

s

so that the schedule delay cost is minimized for the r-commuters (they arrive as close to

t∗ as possible), and there is no capacity waste, i.e.,
(
tri − tri−1

)
s = mr

n
and the arrivals

of r-commuters are continuous. In this case, the departure/arrival equilibrium is depicted

in Figure 4, where the blue solid lines represent departure from home and arrival at the

bottleneck of u-commuters, the red solid lines represent departure from home and arrival

at the bottleneck of r-commuters, and the black solid lines represent the arrivals at the

destination. There are one small peak for u-commuters and n small peaks (each group has

one) for r-commuters. Note that given m < N∗a , i.e., insufficient parking supply, if mr < m

and mu > 0, capacity waste occurs between the arrivals of the last u-commuter and the first

r-commuter, as shown in Figure 4. All the r-commuters will arrive at the parking before

their expiration time to take advantage of the reserved space (in order to minimize their

travel costs). The system efficiency metrics are further discussed in the following.

The travel cost of car commuters with a group or step i parking reservation, i.e., with a

expiration time tri can be written as:

pa,i = αTa +
n− i+ 1

n
· βm

r

s
+ τa. (15)

The total cost of all the commuters with reservation is the sum of the costs of users with

reservations from reservation step 1 to step n, which is
∑n

i=1m
r
i · pa,i. The total user cost is
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Figure 4: The departure/arrival equilibrium for car commuters under the inflexible reserva-
tion scheme (n ≥ 2)

then

TUCin,n = mr ·
(
αTa +

n+ 1

2n

βmr

s
+ τa

)
+ (N −mr) · pb(N −m). (16)

The total social cost can be written as

TSCin,n = mr ·
(
αTa +

n+ 1

2n

βmr

s
+ τa

)
+ (N −mr) · pb(N −m)− (N −m)τb−mτa. (17)

We now discuss the efficiency gap between any two expirable reservation schemes with the

same number of parking for reservation (i.e., the same total reserved parking supply mr) but

different numbers of parking reservation groups (e.g., n1 6= n2), where different reservation

groups involve, e.g., different reservation expiration times. We have the following result.

Proposition 2.3. The total social cost gap between two inflexible reservation schemes with

the same total reserved parking supply, i.e., the same mr, but different numbers of reservation

groups or steps, i.e., n1 6= n2, can be expressed as follows:

CSin,n1,n2 = TSCin,n1 − TSCin,n2 =
n2 − n1

2n1n2

β(mr)2

s
(18)

Eq. (18) can be verified by comparing the total social costs under n1 and n2 steps in

Eq. (17). It is evident that when n2 > n1, CSin,n1,n2 > 0, i.e., a more differentiated scheme

is more efficient. Moreover, suppose n2 ≥ n1, it can be verified that when n1

n2
is a constant,

CSin,n1,n2 decreases with n2. This means that the cost saving from further differentiating

12



the expirable reservation (n2 ≥ n1) is not proportional to the ratio of n1

n2
. Instead, it is

diminishing when both n1 and n2 increase and n1

n2
remains constant.

The optimal mr to minimize the total social cost or the total user cost under a given m

is derived in the following.

Proposition 2.4. Given m < N∗a , the optimal number of reserved parking spaces mr under

the inflexible expirable parking reservation scheme with n reservation groups or steps to

minimize Eq. (17) can be specified as

mr,∗ =

{
mr,∗
in,n < m pb(N −m) < pa(

n+1
n
m)

m pb(N −m) ≥ pa(
n+1
n
m)

(19)

where mr,∗
in,n = n

n+1
· s
β
· (pb(N −m)− τa − αTa).

Proposition 2.4 can be verified by examining the first derivative of Eq. (17) with respect

to mr under a given m. Proposition 2.4 is a generalization of Proposition 2.2 to n ≥ 2.

Similar to Proposition 2.2, there exists a unique mc,n for a given n such that pb(N −mc,n) =

pa
(
n+1
n
mc,n

)
. When parking insufficiency is less severe, i.e., m > mc,n and thus pb(N−m) <

pa
(
n+1
n
m
)
, it is preferable to keep some parking open for competition (i.e., mr,∗ < m) to

separate car traffic of r-commuters and u-commuters in order to reduce congestion. Instead,

when parking insufficiency is more severe, i.e., m ≤ mc,n and thus pb(N−m) ≥ pa(
n+1
n
m), all

parking should be reserved to avoid large schedule delays due to severe parking competition.

Moreover, the discussions regarding how different parameters could affect the likelihood of

pb(N −m) < pa
(
n+1
n
m
)

to occur will still hold. It is also noted that when n ↑, pb(N −m) <

pa
(
n+1
n
m
)

is less likely to hold, which means that when we have more reservation steps

in the reservation scheme, it is more likely that all parking spaces should be reserved to

commuters in order to minimize total social cost. This also indicates that when we have

more reservation steps in the reservation scheme, it is less likely that capacity waste between

the arrivals of u-commuters and r-commuters will occur (refer to Figure 4).

Proposition 2.5. For two inflexible reservation schemes with the same total parking supply

m but different numbers of reservation steps, i.e., n1 6= n2, if n1 < n2, (mr,∗)1 ≤ (mr,∗)2,

where (mr,∗)1 and (mr,∗)2 are given by Eq. (19) with n = n1 and n = n2, respectively.

Proposition 2.5 can be verified by examining Eq. (19). It implies that when the number

of reservation steps n increases (the reservation scheme is more differentiated), the optimal

mr,∗ increases or at least does not decrease. This is because, when n increases, the expirable

reservation scheme is more capable to temporally reduce traffic intensity and and thus reduce

13



congestion, the marginal cost for an additional r-commuter is smaller due to the larger

capability of the more advanced reservation scheme to reduce social cost.

3 Flexible expirable parking reservation scheme with

a constant late-for-reservation fee

This section discusses the flexible expirable reservation scheme, where commuters are allowed

to arrive later than the expiration time with an additional late fee or penalty. In particular,

the additional fee for all the late-for-reservation users is assumed to be constant in this

section. The time-varying late-for-reservation fee (also termed as late fee hereinafter) will

be analyzed in the next section. The late r-commuters should not be too late, i.e., there is

a maximum time gap that is allowed, which is denoted by ∆i for r-commuters in group i.

There will be mr
i r-commuters in group i (the number of commuters is equal to the number

of reserved parking spaces). These r-commuters can pass through the road bottleneck within

a time interval of length
mri
s

. To ensure efficient usage of road bottleneck service capacity,

∆i should be no greater than
mri
s

, i.e., ∆i ≤ mri
s

. If ∆i >
mri
s

, the bottleneck capacity for

a certain time interval within the time length ∆i will be wasted given that only the mr
i

r-commuters will pass the bottleneck during this time duration (with a length of ∆i). For

the group i where i = 1, 2, · · · , n with an expiration time tri , let f ia denote the additional fee

to be paid. Under the above flexible expirable parking reservation scheme, an r-commuter

in group i with a reservation expiration time tri can choose to arrive no later than tri (labeled

as O-type r-commuters, where “O” refers to on-time for parking reservation), and can also

choose to arrive later than tri but earlier than tri + ∆i and pay a late fee of f ia (labeled as

L-type r-commuters, where “L” refers to late for the parking reservation).

Similar to Section 2.3, we do not enumerate all possible commuting patterns under dif-

ferent designs of the flexible expirable parking reservation scheme. Instead, we will focus

on further reducing the total social cost by a properly designed flexible scheme (the three

principles discussed in Section 2.3 still hold), which is governed by the following assumptions.

Assumption 2. The number of reserved parking spaces in reservation group or step i should

be equal to the cumulative capacity of the highway bottleneck between tri−1 +∆i−1 and tri +∆i,

i.e., mr
i =

(
tri + ∆i − tri−1 −∆i−1

)
s, for i ≥ 2. Moreover, (tr1 + ∆1) −

(
tu,ae + Ta + β

α
mu

s

)
≥

mr1
s

, where tu,ae = t∗ − Ta − pb(N−m)−(αTa+τa)
β

+ α−β
α

mu

s
.

Assumption 2 for the flexible expirable reservation scheme is an enhanced version of

that in Assumption 1 for the inflexible reservation scheme. Firstly, since a buffer time
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∆i with a fee is allowed for r-commuters with an expiration time of tri , the buffer time

is taken into account when calculating the cumulative capacity and determining whether

it is sufficient for the “group i” r-commuters. Secondly, since it is socially preferable to

not allow any capacity waste (during the arrival of r-commuters), therefore, we set mr
i =(

tri + ∆i − tri−1 −∆i−1

)
s, i.e., themr

i r-commuters in group i ≥ 2 should arrive at the parking

exactly between tri−1 + ∆i−1 and tri + ∆i, and the mr
1 r-commuters in “group 1” should arrive

between
(
tu,ae + Ta + β

α
mu

s

)
and tr1 + ∆1. Indeed, r-commuters in group 1 will arrive exactly

between tr1 + ∆1 − mr1
s

(≥ tu,ae + Ta + β
α
mu

s
) and tr1 + ∆1 in order to minimize schedule delay

cost.

Based on the above settings, for group i r-commuters, they are split into two sub-groups:

(i) (1−λi)mr
i , i.e., those arriving between tri−

(1−λi)mri
s

and tri ; and (ii) λim
r
i , i.e., those arriving

between tri and tri + ∆i, where λi = ∆is
mri
≤ 1. To minimize the total queuing delay for the r-

commuters in group i, the first commuters among the (1−λi)mr
i and λim

r
i should encounter

zero queuing delay. The late-for-reservation fee for λim
r
i is specified in Assumption 4, which

is similar to the coarse toll in Arnott et al. (1990) for early arrival commuters.

Assumption 3. For a flexible expirable reservation scheme with n reservation steps (or

groups), we set trn + ∆n = t∗, i.e., the last r-commuter can arrive at the destination just

on-time.

Assumption 3 is similar to tr1 ≥ t∗ for the expirable reservation scheme with n = 1 in

Section 2.3.1. It simply ensures that the last r-commuter can arrive at the destination at

time t∗ and thus the total schedule delay cost of r-commuters can be reduced.

Assumption 4. The late-for-reservation fee for a parking reservation with an expiration

time tri should be f ia = β
s

(
1− s∆i

mri

)
mr
i = β

s
(1− λi)mr

i .

Under the Assumptions 2-4 for the flexible expirable reservation scheme, we now can

analyze the socially preferred flow patterns under such a reservation scheme.

3.1 Flexible parking reservation with n = 1

We first start with n = 1, the departure/arrival equilibrium for car commuters under the

flexible expirable parking reservation scheme is shown in Figure 5, where the blue solid lines

represent departure from home and arrival at the bottleneck for u-commuters, the red solid

lines represent departure from home and arrival at the bottleneck for r-commuters, the black

solid lines represent the arrivals at the destination. Note that for the transit commuters, the

equilibrium flow pattern is the same as that in Figure 2(b).
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Figure 5: The departure/arrival equilibrium for car commuters with flexible parking reser-
vation (n = 1)

We let ∆1 = ∆t, where ∆t = λm
r

s
and λ ∈ [0, 1]. Moreover, based on Assumption 4, we

have f 1
a = β

s
(1− λ)mr. As shown in Figure 5, there are three small peaks associated with

u-commuters choosing car mode, r-commuters choosing to be no later than the expiration

time, and r-commuters choosing to be later than the expiration time. Similar to those under

the inflexible reservation schemes, given m < N∗a , i.e., insufficient parking supply, if mr < m

and mu > 0, capacity waste occurs between the arrivals of the last u-commuter and the first

r-commuter, as shown in Figure 5. The efficiency metrics can be further determined based

on the bi-modal equilibrium conditions. The cost of u-commuters is equal to pb (N −m).

The travel cost of r-commuters arriving no later than tri is

poa,1 = αTa + β
mr

s
+ τa (20)

The travel cost of r-commuters arriving later than tri is

pla,1 = αTa + λβ
mr

s
+ τa + f 1

a (21)

The total user cost is denoted by TUCf,1, which is

TUCf,1 = (αTa + τa)m
r + (λ2 − λ+ 1)

β(mr)2

s
+ λmrf 1

a + (N −mr) · pb(N −m). (22)
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The total social cost TSCf,1 excludes the monetary cost in the total user cost, which is

TSCf,1 = (αTa + τa)m
r+(λ2−λ+1)

β(mr)2

s
+(N−mr) ·pb(N−m)−(N−m)τb−mτa (23)

Proposition 3.1. If we can vary λ = s∆t
mr

by changing ∆t, the total social cost is minimized

when λ = 1
2
.

Proposition 3.1 can be verified by examining the first derivative of Eq. (23) with respect

to λ. It indicates that we should split mr into two equal sub-groups to minimize the social

cost (as well as the queuing delay cost). Note that since r-commuters arriving at the parking

later than tr1 have to pay a late fee of f 1
a = β

s
(1− λ)mr, when varying ∆t (as well as λ), the

total user cost does not change (i.e., the fee replaces the queuing cost).

Proposition 3.2. The total social cost reduction of the flexible expirable parking reservation

scheme under n = 1 when compared to the inflexible expirable parking reservation scheme

under n = 1 can be written as

CSf,1 = TSCin,1 − TSCf,1 = λ(1− λ)
β(mr)2

s
, (24)

where TSCin,1 and TSCf,1 are given in Eq. (12) and Eq. (23), respectively. Moreover, the

cost reduction is maximized when λ = 1
2
.

By comparing the total social cost in Eq. (23) with the total social cost in Eq. (12),

Eq. (24) can be readily verified. Moreover, one can verify that λ(1 − λ) is maximized at

λ = 0.5, and so is CSf,1. The optimal mr under given m for the flexible expirable parking

reservation scheme is further examined in Proposition 3.3.

Proposition 3.3. Given m < N∗a , the optimal number of parking for reservation mr under

the flexible expirable parking reservation scheme with n = 1 can be specified as:

mr,∗ =

{
mr,∗
f,1 < m pb(N −m) < pa(2m(λ2 − λ+ 1))

m pb(N −m) ≥ pa(2m(λ2 − λ+ 1))
(25)

where mr,∗
f,1 = s

2β(λ2−λ+1)
· (pb(N −m)− τa − αTa).

Proposition 3.3 can be verified by examining the first derivative of the total social cost in

Eq. (23) with respect to mr. Proposition 3.3 is further explained in the following. It can be

verified that there is only a unique mcf,1 such that pb(N −mcf,1) = pa (2mcf,1 (λ2 − λ+ 1)),

and moreover, m > mcf,1 ⇔ pb(N−m) < pa (2m (λ2 − λ+ 1)) andm ≤ mcf,1 ⇔ pb(N−m) ≥
pa (2m (λ2 − λ+ 1)). Proposition 3.3 indicates that when m > mcf,1, mr,∗ = mr,∗

f < m and
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when m ≤ mcf,1, mr,∗ = m. This means that when parking insufficiency is less severe (i.e.,

m > mcf,1), it is preferable to keep some parking open for competition (i.e., mr,∗ < m) to

separate car traffic of r-commuters and u-commuters to reduce congestion (even if capacity

waste between arrivals of r-commuters and u-commuter occurs). Instead, when parking

insufficiency is more severe (i.e., m ≤ mcf,1), all parking should be reserved to avoid large

schedule delays. These results are in line with Proposition 2.2 for the inflexible reservation

scheme. We further compare the flexible and inflexible reservation schemes in the following.

Proposition 3.4. The optimal number of parking for reservation mr under the flexible

expirable parking reservation scheme with n = 1 is no less than that under the inflexible

expirable parking reservation scheme with n = 1, i.e., mr,∗ defined in Eq. (25) is no less than

mr,∗ defined in Eq. (14).

Note that λ ∈ [0, 1], then 0.75 ≤ (λ2 − λ+ 1) ≤ 1. By comparing Eq. (25) and Eq. (14)

and noting that mr,∗
f,1 ≥ mr,∗

in,1, Proposition 3.4 can be verified. This is because, the flexible

expirable parking reservation scheme is a more capable scheme than the inflexible expirable

parking reservation scheme in terms of eliminating congestion (given the same number of

steps, i.e., n = 1), and adding an additional r-commuter creates a smaller marginal cost

under the flexible expirable parking reservation scheme.

3.2 Flexible parking reservation with n ≥ 2

We now consider n ≥ 2. To ease the analysis, it is assumed that the maximum time gap

allowed for each reservation step (associated with tri ) are identical, i.e., for i = 1 to n,

∆i = ∆t. In addition, mr is divided into n groups equally, i.e., mr
i = mr

n
. Therefore, we

only consider 0 ≤ ∆t ≤ mr

ns
. It follows that λi = sn∆t

mr
. To ease the presentation, we let

λ = sn∆t
mr

, where λ ∈ [0, 1]. Similar to Section 3.1, the late fee f ia = β
s

(1− λ) mr

n
(please refer

to Assumption 4), which is denoted as fa and is identical for each group of r-commuters.

Note that the even division of mr into n groups also makes the flexible reservation more

comparable to the inflexible reservation scheme in Section 2.3.2.

Under Assumptions 2-4, the traffic flow pattern under the flexible expirable parking

reservation scheme with n steps can be depicted as that in Figure 6, where the blue solid

lines represent departure from home and arrival at the bottleneck for u-commuters, the red

solid lines represent departure from home and arrival at the bottleneck for r-commuters,

the black solid lines represent the arrivals at the destination. There are one small peak for

u-commuters and 2n small peaks for r-commuters (for each group, there are two small peaks:

one for r-commuters arriving at parking no later than the expiration time and one for those
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later than the expiration time). Similar to the flexible reservation scheme with n = 1, for

n ≥ 2, given m < N∗a , i.e., insufficient parking supply, if mr < m and mu > 0, capacity

waste occurs between the arrivals of the last u-commuter and the first r-commuter, as shown

in Figure 6. The number of steps for the flexible reservation scheme in Figure 6 is only

illustrative. We take “group 1” as an example. (1− λ) mr

n
r-commuters in this group will

arrive at the parking on or before tr1, while the other r-commuters in this group will arrive

at the parking later than tr1 (but no later than tr1 + ∆t).

Figure 6: The departure/arrival equilibrium for car commuters with flexible parking reser-
vation (n ≥ 2)

The travel cost for r-commuters in group i arriving on or before tri is

poa,i = αTa +
n− i+ 1

n
β
mr

s
+ τa (26)

The travel cost for r-commuters arriving later than tri is

pla,i = αTa +
λ+ n− i

n
β
mr

s
+ τa + fa (27)

The total user cost the can be specified as:

TUCf,n = mr ·
(
αTa +

2λ2 − 2λ+ n+ 1

2n

βmr

s
+ τa

)
+ λmrfa + (N −mr) · pb(N −m) (28)
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The total social cost can be written as:

TSCf,n = αTam
r+

2λ2 − 2λ+ n+ 1

2n
β

(mr)2

s
+(N−mr)·pb(N−m)−(N−m)τb−muτa (29)

With Eq. (29), we can quantify the efficiency gap between any two flexible expirable

parking reservation schemes with n1 steps and n2 steps. This is summarized in the following.

Proposition 3.5. The total social cost gap for two flexible reservation schemes with the same

mr but different numbers of reservation groups (or steps), i.e., n1 and n2, can be expressed

as

CSf,n1,n2 = TSCf,n1 − TSCf,n2 =
(n2 − n1)(2λ2 − 2λ+ 1)

2n1n2

β(mr)2

s
(30)

Proposition 3.5 indicates that when n2 > n1, CSf,n1,n2 > 0, i.e., a more differentiated

flexible reservation scheme is more efficient. Moreover, suppose n2 ≥ n1, it can be verified

that when n1

n2
is a constant, CSf,n1,n2 decreases with n2. This means that the cost saving from

further differentiating the flexible expirable reservation (n2 ≥ n1) is not proportional to the

ratio of n1

n2
. Instead, it is diminishing when both n1 and n2 increase and n1

n2
remains constant.

These observations are in line with those in Proposition 2.3. We now further compare the

cost gap CSf,n1,n2 in Proposition 3.5 to the cost gap CSin,n1,n2 in Proposition 2.3, which is

summarized below.

Proposition 3.6. The cost gaps under the inflexible and flexible expirable parking reser-

vation schemes, i.e. CSin,n1,n2 in Eq. (18) and CSf,n1,n2 in Eq. (30) satisfy the following

0.5CSin,n1,n2 ≤ CSf,n1,n2 ≤ CSin,n1,n2 . (31)

Proposition 3.6 can be verified based on Eq. (18) and Eq. (30), given that λ ∈ [0, 1] such

that 0.5 ≤ 2λ2 − 2λ + 1 ≤ 1. Proposition 3.6 indicates that the efficiency gap between two

flexible expirable reservation schemes with n1 steps and n2 steps is less than the gap for the

two corresponding inflexible expirable reservation schemes. This is due to that given the same

number of steps, the flexible expirable reservation scheme is more efficient and the potential

for further efficiency improvement is smaller. Furthermore, 0.5CSin,n1,n2 = CSf,n1,n2 holds

when λ = 0.5.

We now further compare the efficiency of the flexible expirable parking reservation scheme

with n steps against the inflexible expirable parking reservation scheme with n steps, which

is summarized in Proposition 3.7. Note that Proposition 3.7 is a generalization of Proposi-

tion 3.2 from one-step scheme to a n-step scheme.
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Proposition 3.7. The total social cost reduction of the flexible expirable parking reservation

scheme with n ≥ 2 steps when compared to the inflexible expirable parking reservation scheme

with n ≥ 2 can be written as

CSnf,n = TSCin,n − TSCf,n =
λ(1− λ)

n

β(mr)2

s
, (32)

where TSCin,n and TSCf,n are given in Eq. (17) and Eq. (29), respectively. Moreover, the

cost reduction is maximized when λ = 1
2
.

We now further discuss the optimal mr to minimize the total social cost in Eq. (29) for

the flexible expirable reservation scheme and compare it with that for the inflexible expirable

reservation scheme.

Proposition 3.8. Given m < N∗a , the optimal number of parking for reservation mr under

the flexible expirable parking reservation scheme with n steps can be specified as

mr,∗ =

{
mr,∗
f,n pb(N −m) ≤ pa(

m
n

(2λ2 − 2λ+ n+ 1))

m pb(N −m) > pa(
m
n

(2λ2 − 2λ+ n+ 1))
(33)

where mr,∗
f,n = n

2λ2−2λ+n+1
· s
β
(pb(N −m)− τa − αTa).

Proposition 3.9. The optimal number of parking for reservation mr under the flexible

expirable parking reservation scheme with n steps is no less than that under the inflexible

expirable parking reservation scheme with n, i.e., mr,∗ defined in Eq. (33) is no less than

mr,∗ defined in Eq. (19).

Proposition 3.10. For two flexible reservation schemes with the same m but different num-

bers of steps, i.e., n1 and n2, if n1 < n2, (mr,∗)1 ≤ (mr,∗)2, where (mr,∗)1 and (mr,∗)2 are

given by Eq. (33) with n = n1 and n = n2, respectively.

Proposition 3.8 and Proposition 3.9 generalize the results in Proposition 3.3 and Propo-

sition 3.4 for the one-step flexible reservation scheme to the multi-step flexible reservation

scheme. The reasoning and insights are similar, details of which are omitted. Proposi-

tion 3.10 extends the result in Proposition 2.5 for the inflexible reservation case into the

flexible expirable reservation case. The reasoning and insights are also similar, details of

which are omitted.

3.3 The optimal parking supply

We now further examine the optimal total parking supply m when the total reserved parking

supply mr under the flexible expirable parking reservation scheme is also optimized. The
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social cost (also can be considered as the opportunity cost) of a parking supply m is denoted

as κ (m), where κ′ (m) = dκ(m)
dm

> 0 and κ′′ (m) = d2κ(m)
dm2 > 0. In this study, we focus on

m < N , i.e., parking is insufficient. Therefore, we consider that κ (N) will be extremely

large, i.e., a soft constraint on parking supply (extremely large κ′ (N) and κ′′ (N) as well).

The total system cost is the summation of the total social cost (related to travel) under

the flexible parking reservation scheme with n steps (given in Eq. (29)) and the parking

supply cost, which can be rewritten as a function of m and mr, i.e.,

TSf,n (m,mr) = κ (m) + αTam
r +

2λ2 − 2λ+ n+ 1

2n
β

(mr)2

s
+

(N −mr) ·
(
αTb + τb +

√
2βθδTb (N −m)

)
− (N −m)τb − (m−mr) τa

(34)

Note that 0 ≤ mr ≤ m. We then can derive the first derivatives of TSf,n with respect to m

and mr as follows:

∂TSf,n
∂m

= κ′ (m)− (N −mr)
√

2βθδTb
1√

N −m
+ τb − τa;

∂TSf,n
∂mr

= αTa + τa +
2λ2 − 2λ+ n+ 1

n
β
mr

s
−
(
αTb + τb +

√
2βθδTb (N −m)

)
.

(35)

It can be shown that when mr → 0,
∂TSf,n
∂mr

< 0, which means that mr → 0 is not optimal

(this is consistent with Proposition 3.8).

When mr → m, if
∂TSf,n
∂mr

≤ 0, the optimal mr should be equal to m, i.e., mr,∗ = m.

Considering an interior optimal m (note that κ (m) is very large when m approaches N), we

should have
∂TSf,n
∂m

= 0. Given mr,∗ = m and with Eq. (35), we have

κ′ (m) =
√

2βθδTb (N −m) + τa − τb (36)

The optimal parking supply m∗ solves Eq. (36), where αTa + τa + 2λ2−2λ+n+1
n

βm
∗

s
−(

αTb + τb +
√

2βθδTb (N −m∗)
)
≤ 0 should also hold (which ensures

∂TSf,n
∂mr

≤ 0).

When mr → m, if
∂TSf,n
∂mr

> 0, the optimal mr should be less than m, i.e., mr,∗ < m.

Then, we have
∂TSf,n
∂mr

= 0 at mr,∗, and thus

mr,∗ =
ns

β (2λ2 − 2λ+ n+ 1)

(
αTb + τb +

√
2βθδTb (N −m)− (αTa + τa)

)
. (37)

where m is further determined by
∂TSf,n
∂m

= 0 (similarly, considering an interior optimal

m). Based on Eq. (37),
∂TSf,n
∂m

= 0 and Eq. (35), the optimal parking supply m∗ solves the
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following:

κ′ (m) = (N −mr,∗)
√

2βθδTb
1√

N −m
+ τa − τb. (38)

where mr,∗ as a function of m is given in Eq. (37). Note that αTa + τa + 2λ2−2λ+n+1
n

βm
r,∗

s
−(

αTb + τb +
√

2βθδTb (N −m∗)
)
> 0 should hold, i.e.,

∂TSf,n
∂mr

> 0.

4 Flexible expirable parking reservation scheme with

a time-dependent late-for-reservation fee

In the previous section, the flexible expirable parking reservation scheme with a constant

fee for being late for the reservation is studied. In this section, a time-varying late fee for

reservation is further studied, i.e., commuters later for reservation will pay a fee depending

on how late they are. The other aspects/settings of the reservation schemes are identical to

those in the previous section.

For those with a reservation associated with an expiration time tri , the late fee is denoted

by f ia + ρi(t− tri ), where f ia is the constant late fee defined in the previous section and ρi is

the late fee rate for a unit time of being late for the reservation.

To avoid tedious algebra, we assume that the late fee rate ρi for all the reservation steps

(associated with tri ) are identical, i.e., for i = 1 to n, ρi = ρ. Then for the commuters

associated with expiration tri , his or her travel cost is

ca(t) = α · Ta (t) + β · [t∗ − t− Ta(t)]+ + τa + f ia + ρ · [t− tri ]+ (39)

Similar to Eq. (2), by setting dca(t)
dt

= 0, the departure rate for those late for their reservation

can be derived, which is

r′a(t) =
α− ρ
α− β

s. (40)

Note that the value of ρ should be set between zero and β, i.e., ρ ∈ [0, β]. When ρ = 0,

r′a(t) = ra(t), which is indeed the constant late fee case. When ρ = β, r′a(t) = s, which

means that the departure rate is identical to the bottleneck capacity. In this case, there is

no queuing delay for these commuters late for their reservations.
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4.1 The flexible reservation scheme with a time-dependent late-

for-reservation fee and n = 1

In this section, the performance of flexible expirable parking reservation scheme with a time-

varying late fee when n = 1 is analyzed and compared to the flexible reservation scheme

with a constant late fee. Note that given the same ∆t (the maximum allowed time for being

late for the parking reservation, as introduced in Section 3), the individual travel costs of

commuters under schemes with a time-dependent and constant late fee are identical. The

main difference between the two schemes lies in the total social cost, i.e., the queuing delays

(of r-commuters late for reservation) are replaced by the fees for being late for the reservation.

This is similar to the time-dependent congestion pricing schemes discussed in Arnott et al.

(1990).

We start with n = 1. The total social cost TSCt,1 under the scheme with a time-varying

late fee for being late for the reservation is

TCSt,1 = (αTa + τa)m
r+(λ2−λ+1)

β(mr)2

s
+(N−mr) ·pb(N−m)− (N−m)τb−mτa−F 1

a

(41)

where F 1
a is the total additional late-for-reservation fee paid by travelers, which is

F 1
a =

∫ λmr

r′a

0

ρ

r′a
tdt =

1

2
· ρ(α− β)

s(α− ρ)
(λmr)2 (42)

Proposition 4.1. The total social cost reduction of the flexible expirable parking reservation

scheme with a time-dependent late fee under n = 1 when compared to that with a constant

late fee under n = 1 can be written as

CSt,1 =
1

2
· ρ(α− β)

s(α− ρ)
(λmr)2 (43)

Moreover, the cost reduction is maximized when ρ = β and λ = 1.

By comparing the total social cost in Eq. (41) with that in Eq. (23), Eq. (43) can be

readily verified. Moreover, one can verify that ∂F 1
a

∂ρ
> 0 and ∂F 1

a

∂λ
> 0, since ρ ∈ [0, β] and

λ ∈ [0, 1]. Therefore, the cost reduction is maximized when ρ = β and λ = 1.

Proposition 4.2. Given m < N∗a , the optimal number of parking for reservation mr under

the flexible expirable parking reservation scheme with a time-dependent late fee under n = 1
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can be specified as:

mr,∗ =

{
mr,∗
t,1 pb(N −m) < pa(m[2(λ2 − λ+ 1)− ρ(α−β)λ2

β(α−ρ)
])

m pb(N −m) ≥ pa(m[2(λ2 − λ+ 1)− ρ(α−β)λ2

β(α−ρ)
])

(44)

where mr,∗
f,1 = s

2β(λ2−λ+1)− ρ(α−β)λ
2

(α−ρ)

· (pb(N −m)− τa − αTa).

Proposition 4.2 can be verified by examining the first derivative of the total social cost

in Eq.(41) with respect to mr. The reasoning and implications of Proposition 4.2 are similar

to those in Proposition 3.3. Besides, it is noteworthy that the condition for mr,∗ = m in

Proposition 4.2 is more relaxed than that in Proposition 3.3. This is because, the flexible

reservation scheme is more capable of reducing congestion delays of r-commuters (those with

reservations), and it is more likely that all parking spaces should be reserved and congestion

delays of commuters can be reduced by a larger extent.

We further compare the reservation schemes with time-dependent and constant late fee

in the following.

Proposition 4.3. The optimal number of parking spaces for reservation mr under the flexible

expirable parking reservation scheme with a time-dependent late fee under n = 1 is no less

than that with a constant late fee under n = 1, i.e., mr,∗ defined in Eq. (44) is no less than

mr,∗ defined in Eq. (25).

Note that ρ ∈ [0, β], α > β, α > ρ and λ ∈ [0, 1]. One then can derive that ρ(α−β)λ2

(α−ρ)
> 0.

By comparing Eq. (44) and Eq. (25) and noting that mr,∗
t,1 ≥ mr,∗

f,1, Proposition 4.3 can

be verified. This is because, the flexible expirable parking reservation scheme with a time-

dependent late fee eliminates more congestion when compared to the constant late fee scheme

and adding an additional r-commuter creates a smaller marginal cost.

4.2 The flexible reservation scheme with a time-dependent late-

for-reservation fee and n ≥ 2

We now consider n ≥ 2. To be more compatible with the flexible schemes with a constant

late fee, we adopt the same scheme setting as that of the flexible reservation scheme with a

constant late fee and only replace the constant fee by a time-dependent fee. For example,

for i = 1 to n, ∆i = ∆t, mr is divided into n groups equally, i.e., mr
i = mr

n
, λ = sn∆t

mr
,

f ia = β
s

(1− λ) mr

n
. As stated before, for simplicity , we assume that the late-for-reservation

fee rate ρi for each reservation steps (associated with tri ) are identical, i.e., for i = 1 to n,

ρi = ρ.
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The travel costs for r-commuters in “group i” arriving on or before tri and after tri and

the total user cost will be all identical to those under the flexible reservation scheme with a

constant late fee, which are given in Eq. (26), Eq. (27) and Eq. (28). With respect to the

the total social cost, we have

TSCt,n = TSCf,n − F n
a (45)

where TSCf,n is the total social cost under the flexible expirable parking reservation scheme

with a constant late fee, which is given in Eq. (29), F n
a is the total additional late fee paid

by travelers under the time-dependent late fee schemes under n ≥ 2, which is

F n
a =

1

2
· ρ(α− β)

n · s(α− ρ)
(λmr)2 (46)

Proposition 4.4. The total social cost gap for two flexible reservation schemes with a time-

dependent late fee given the same mr but different numbers of reservation groups or steps,

i.e., n1 and n2, can be expressed as

CSt,n1,n2 =
(n2 − n1)ρ(α− β)

2n1n2 · s(α− ρ)
(λmr)2 (47)

Proposition 4.4 indicates that when n2 > n1, CSt,n1,n2 > 0, i.e., a more differentiated

flexible reservation scheme is more efficient. Also, suppose n2 ≥ n1, it can be verified that

when n1

n2
is a constant, CSf,n1,n2 decreases with n2. This means that the cost saving from

further differentiating the flexible expirable reservation (n2 ≥ n1) is not proportional to the

ratio of n1

n2
. Instead, it is diminishing when both n1 and n2 increase and n1

n2
remains constant.

These observations are in line with those in Proposition 3.5.

We now further discuss the optimal mr to minimize the total social cost in Eq. (45) for

the flexible expirable reservation scheme with a time-dependent late fee and compare it with

that for the flexible expirable reservation scheme with a constant late fee.

Proposition 4.5. Given m < N∗a , the optimal number of parking for reservation mr under

the flexible expirable parking reservation scheme with a time-dependent late fee of n steps

can be specified as

mr,∗ =

{
mr,∗
t,n pb(N −m) < pa(

m
n

(2λ2 − 2λ+ n+ 1− ρ(α−β)λ2

β(α−ρ)
))

m pb(N −m) ≥ pa(
m
n

(2λ2 − 2λ+ n+ 1− ρ(α−β)λ2

β(α−ρ)
])

(48)

where mr,∗
f,n = ns

β(2λ2−2λ+n+1)− ρ(α−β)λ
2

(α−ρ)

· (pb(N −m)− τa − αTa).
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Proposition 4.6. The optimal number of parking for reservation mr under the flexible

expirable parking reservation scheme with a time-dependent late fee of n steps is no less than

that under the flexible expirable parking reservation scheme with a constant late fee of n

steps, i.e., mr,∗ defined in Eq. (48) is no less than mr,∗ defined in Eq. (33).

Proposition 4.7. For two flexible reservation schemes with a time-dependent late fee, sup-

pose they have the same parking supply m but different numbers of steps, i.e., n1 and n2, if

n1 < n2, (mr,∗)1 ≤ (mr,∗)2, where (mr,∗)1 and (mr,∗)2 are given by Eq. (48) with n = n1 and

n = n2, respectively.

Proposition 4.5 and Proposition 4.6 generalize the results in Proposition 4.2 and Propo-

sition 4.3 for the one-step flexible reservation scheme with a time-dependent late-for-

reservation fee into the case with multiple steps. The reasoning and interpretations are

similar. Proposition 4.7 extends the result in Proposition 2.5 for the inflexible reservation

scheme into the flexible expirable reservation case with time-varying late fees. The reasoning

and insights are also similar.

4.3 The optimal parking supply

We now further examine the optimal parking supply m under different flexible expirable

parking reservation schemes with time-dependent late-for-reservation fees, where mr is also

optimized. Similar to Section 3.3, the parking supply involves a social cost κ (m), where

κ′ > 0 and κ′′ > 0, and κ (N) will be extremely large, as well as extremely large κ′ (N) and

κ′′ (N).

The total system cost is the summation of the total social cost (related to travel) under

the flexible parking reservation scheme time-dependent late-for-reservation fees (given in

Eq. (45)) and the parking supply cost, which can be rewritten as a function of m and mr,

i.e.,

TSt,n (m,mr) = κ (m) + αTam
r +

2λ2 − 2λ+ n+ 1

2n
β

(mr)2

s
+

(N −mr) ·
(
αTb + τb +

√
2βθδTb (N −m)

)
− (N −m)τb − (m−mr) τa

−1

2
· ρ(α− β)

n · s(α− ρ)
(λmr)2,

(49)

where 0 ≤ mr ≤ m. We then can derive the first derivatives of TSt,n with respect to m and
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mr as follows:

∂TSt,n
∂m

= κ′ (m)− (N −mr)
√

2βθδTb
1√

N −m
+ τb − τa;

∂TSt,n
∂mr

= αTa + τa +
2λ2 − 2λ+ n+ 1

n
β
mr

s
−
(
αTb + τb +

√
2βθδTb (N −m)

)
− ρ(α− β)

n · s(α− ρ)
(λ2mr).

(50)

It can be shown that when mr → 0, ∂TSt,n
∂mr

< 0, which means that mr → 0 is not optimal

(this is consistent with Proposition 4.5).

When mr → m, if ∂TSt,n
∂mr

≤ 0, the optimal mr should be equal to m, i.e., mr,∗ = m.

Considering an interior optimal m (note that κ (m) is very large when m approaches N), we

should have ∂TSt,n
∂m

= 0. Given mr,∗ = m, we have

κ′ (m) =
√

2βθδTb (N −m) + τa − τb (51)

The optimal parking supply m∗ solves Eq. (51), which is similar to Eq. (36) for the

flexible reservation with a constant late fee. Moreover, αTa + τa + 2λ2−2λ+n+1
n

βm
∗

s
−(

αTb + τb +
√

2βθδTb (N −m∗)
)
− ρ(α−β)

n·s(α−ρ)
(λ2m∗) ≤ 0 should hold (i.e., ∂TSt,n

∂mr
≤ 0). This

condition is more relaxed than that for the flexible reservation with a constant late-for-

reservation fee.

When mr → m, if ∂TSt,n
∂mr

> 0, the optimal mr should be less than m, i.e., mr,∗ < m.

Then, we have ∂TSt,n
∂mr

= 0 at mr,∗, and thus

mr,∗ =
ns

β (2λ2 − 2λ+ n+ 1)− ρ(α−β)λ2

(α−ρ)

(
αTb + τb +

√
2βθδTb (N −m)− (αTa + τa)

)
,

(52)

where m is further determined by
∂TSf,n
∂m

= 0 (similarly, considering an interior optimal

m). Given the same m, it can be readily verified that mr,∗ in Eq. (52) is larger than mr,∗

in Eq. (37). This is consistent with Proposition 4.6. Based on Eq. (52), ∂TSt,n
∂m

= 0 and

Eq. (50), the optimal parking supply m∗ solves the following:

κ′ (m) = (N −mr,∗)
√

2βθδTb
1√

N −m
+ τa − τb. (53)

where mr,∗ as a function of m is given in Eq. (52). Moreover, αTa + τa + 2λ2−2λ+n+1
n

βm
r,∗

s
−(

αTb + τb +
√

2βθδTb (N −m∗)
)
− ρ(α−β)

n·s(α−ρ)
(λ2mr,∗) > 0 should hold (i.e., ∂TSt,n

∂mr
> 0).

It is noteworthy that while Eq. (53) (under the flexible reservation scheme with time-
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varying late fees) is similar to Eq. (38) (under the flexible scheme with constant late fees),

mr,∗ in Eq. (53) is different from that in Eq. (38), and thus the optimal total parking supply

under the two schemes will be different.

5 Numerical Studies

This section presents some numerical studies to illustrate the analysis in previous sections.

Firstly, we show how different system efficiency metrics vary in the two-dimension domain

of (mr,m). Secondly, we examine how the total user cost and total social cost vary with

the total parking supply m. Thirdly, the variation of total social cost with respect to the

late-for-reservation fee rate ρ is explored.

We adopt the following value of time and early arrival penalty: α = 13.7 (USD per hour)

and β = 6.4 (USD per hour), which follow Liu et al. (2015a). Moreover, we assume that

s = 2000 (veh/h); N = 8000; Ta = 15 minutes; Tb = 45 minutes; τa = 4 (USD); τb = 2.5

(USD); θ = 0.0004; δ = 5 (minutes); λ = 0.5. ρ = 4.8. By using these parameters, at the

bi-modal equilibrium without parking space constraints, N∗a = 4304, N∗b = 3696.

Figure 7, Figure 8 and Figure 9 display the total social cost contours (the blue solid

lines) and the total user cost contours (the red dashed lines) in the domain of (m,mr) for

the inflexible reservation scheme, the flexible reservation scheme with a constant late fee,

and the flexible reservation scheme with a time-dependent late fee, respectively. The black

solid lines and/or the green dashed lines correspond to the optimal mr to minimize the total

social cost or the total user cost. Four cases with n = 1, n = 2, n = 5 and n = 50 are

examined for the three different reservation schemes.

Several observations from Figure 7, Figure 8 and Figure 9 are summarized below. Firstly,

for the inflexible reservation schemes, the optimal mr for both the total user cost and the total

social cost are identical under given m. Secondly, for all the cases (with different values of n

for both the inflexible and the two flexible schemes), when m is relatively small, the optimal

mr should be equal to m, i.e., all parking should be reserved. Instead, when m is relatively

large, the optimal mr should be less than m, i.e., some parking spaces should be open for

public competition. Thirdly, when n increases (1→ 2→ 5→ 50), the optimal mr increases

or at least does not decrease for the three schemes. Fourthly, by comparing Figure 7, Figure

8 and Figure 9, it can be seen that given the same n, the optimal mr under the inflexible

scheme is no greater than that under the flexible scheme with a constant late-for-reservation

fee, and the optimal mr under the the flexible scheme with a constant late-for-reservation fee

is no greater than that under the flexible scheme with a time-dependent late-for-reservation

fee. Fifthly, for the two flexible schemes with the same n, the mr to minimize the social cost
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(a) n = 1 (b) n = 2

(c) n = 5 (d) n = 50

Figure 7: The variation of total user cost and the total social cost in the domain of (m,mr)
under inflexible expirable reservation schemes

is no less than that to minimize the user cost. These observations are consistent with the

analytical results in Section 2, Section 3 and Section 4.

Figure 10 further displays how the total user cost and the total social cost vary with

m, where mr = m is assumed. A few observations from Figure 10 are summarized as

follows. Firstly, when m increases but is still relatively small, both TUC and TSC decrease

under the two flexible expirable reservation schemes with constant or time-varying late fee at

n = 1, 2, 5, 50. This is because increasing m at this stage induce little congestion on road (as

the car traffic is bounded by the parking supply m) and crowding at the transit side can be

reduced significantly. When m becomes larger, the TUC and TSC can increase with m. For

example, for n = 1, the user cost and social cost reaches their minimums at m = 3108 and

4123 at the flexible scheme with a constant late-for-reservation fee, respectively. Secondly,

when n increases, i.e., n varies according to 1 → 2 → 5 → 50, TUC and TSC decrease,
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(a) n = 1 (b) n = 2

(c) n = 5 (d) n = 50

Figure 8: The variation of total user cost and the total social cost in the domain of (m,mr)
under flexible expirable reservation schemes with a constant late fee

i.e., a more differentiated scheme is more efficient. Thirdly, the total user costs under the

schemes with a constant late-for-reservation fee and a time-dependent late-for-reservation fee

are identical. The total social cost under the scheme with a constant late-for-reservation fee is

no less than that under the scheme with a time-dependent late-for-reservation fee. Moreover,

the optimal m under the scheme with a constant late-for-reservation fee to minimize the

total social cost is no greater than that under the scheme with a time-dependent late-for-

reservation fee. These observations are also consistent with the analytical results in Section 4.

Figure 11 illustrates the variation of total social cost with ρ (i.e., the rate of late-for-

reservation fee and ρ ∈ [0, β]) under the flexible scheme with time-dependent late-for-

reservation fee, where mr = m = 3500 is assumed. A few observations are summarized.

Firstly, the total social cost decreases with respect to ρ. This is because by increasing the

late fee for private car commuters, the queuing delay for private car commuters will decrease.

31



(a) n = 1 (b) n = 2

(c) n = 5 (d) n = 50

Figure 9: The variation of total user cost and the total social cost in the domain of (m,mr)
under flexible expirable reservation schemes with a time-varying late fee

Secondly, when n is relatively small, e.g., when n = 1, with the increase of ρ, the decrease of

total social cost is more significantly than that when n is relatively large, e.g., n = 50. This

is because when n is large, the total social cost and the queuing delay of car commuters are

relatively small, and the potential to further decrease queuing delay is then limited.

6 Conclusion

This study proposes flexible expirable parking reservation schemes, under which commuters

with a parking reservation arriving later than the reservation expiration time can retain the

reservation with an additional fee. The flexible expirable parking reservation schemes with a

constant late-for-reservation fee and a time-dependent late-for-reservation fee are examined
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(a) Scheme of constant late fee (b) Scheme with a time-varying late fee

Figure 10: Variation of total user cost and total social cost with m

and compared. These flexible schemes are more efficient than the inflexible schemes in Liu

et al. (2014a). It indicates that allowing flexibility (to commuters with reservations) can

yield efficiency gains.

To ease the analysis, late arrival at the workplace is not considered in this paper. If late

arrival at the workplace is allowed, the equilibrium departure/arrival pattern of commuters

will change since some commuters can be late and they now make a trade-off between late

arrival penalty and queuing delay. The exact flexible parking reservation schemes to reduce

total system cost will be different from those identified in this paper, and the exact efficiency

gain from the proposed schemes will be slightly different. However, the central idea and

insights from this paper will still hold, i.e., (i) allowing flexibility for parking reservation

can help reduce total system cost (the flexible reservation scheme should be appropriately

designed); (ii) a more differentiated reservation scheme (with more reservation groups or

steps) is potentially more efficient (while it can be less practical); (iii) the efficiency gain from

the proposed flexible reservation scheme will be bounded. A future study may incorporate

late arrival at workplace under consideration of an integrated morning commuting, parking,

and evening commuting pattern, which involves additional modeling complexity but might

help generate new insights on parking problems.

This study can be further extended in several other ways. Firstly, a future study may

consider incorporating the parking search process of a commuter without a parking reser-

vation, similar to those in the study of Liu and Geroliminis (2016). Secondly, similar to

Zhang et al. (2011), a parking permit distribution and trading scheme can be designed to

implement the flexible expirable parking reservation scheme. It is expected that the parking

permits with different expiration times and/or flexibility can have different market prices in
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Figure 11: Variation of total social cost with ρ

the trading market of permits. Thirdly, it is of our interest to examine responsive transit ser-

vices in the bi-modal problem such as those in Zhang et al. (2014, 2016) and jointly manage

parking and transit services. Fourthly, a future study may incorporate parking information

provision and examine how real-time information could affect commuters’ decisions, similar

to Li et al. (2012). Last but not least, the current study only considers a single origin-

destination pair along the traffic corridor. A future study can further examine cases with

multiple origin-destination pairs along the linear traffic corridor (Liu et al., 2009; Wu et al.,

2020) or multiple traffic corridors (Liu et al., 2016).
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