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A B S T R A C T   

Given the important role of green environments playing in healthy cities, the inequality in urban greenspace 
exposure has aroused growing attentions. However, few comparative studies are available to quantify this 
phenomenon for cities with different population sizes across a country, especially for those in the developing 
world. Besides, commonly used inequality measures are always hindered by the conceptual simplification 
without accounting for human mobility in greenspace exposure assessments. To fill this knowledge gap, we 
leverage multi-source geospatial big data and a modified assessment framework to evaluate the inequality in 
urban greenspace exposure for 303 cities in China. Our findings reveal that the majority of Chinese cities are 
facing high inequality in greenspace exposure, with 207 cities having a Gini index larger than 0.6. Driven by the 
spatiotemporal variability of human distribution, the magnitude of inequality varies over different times of the 
day. We also find that exposure inequality is correlated with low greenspace provision with a statistical sig
nificance (p-value < 0.05). The inadequate provision may result from various factors, such as dry cold climate 
and urbanization patterns. Our study provides evidence and insights for central and local governments in China 
to implement more effective and sustainable greening programs adjusted to different local circumstances and 
incorporate the public participatory engagement to achieve a real balance between greenspace supply and de
mand for developing healthy cities.   

1. Introduction 

The pressing challenges in the 21st century, such as climate change, 
population aging, urbanization, and environmental pollution, have 
enhanced the importance of developing sustainable and healthy living 
environments (Tonne et al., 2021). The Healthy Cities approach is 

therefore becoming one of the key paths for achieving the Sustainable 
Development Goals (SDGs) of the United Nations, especially Goal 
11—Sustainable Cities and Communities (Organization, 2017). A 
healthy city refers to one that continuously creates and improves its 
physical and social environments through urban intervention (e.g., 
health policies, urban design) until population health reaches a 
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satisfactory level (Nieuwenhuijsen, 2020). The Healthy Cities move
ment was originally launched in the 1980s and has been gradually 
adopted and implemented in many countries worldwide, under the 
initiative and guidance of the World Health Organization (Tsouros, 
2019). It is worth noting that the provision and maintenance of urban 
natural environments is an indispensable part of these implemented or 
ongoing healthy cities programmes (Tonne et al., 2021; Yang et al., 
2018). 

Urban greenspace is considered as one of the key environmental 
components for a healthy city, which serves as the main area for rec
reational and social activities, contributing to improving people’s 
physical and mental health (Bauwelinck et al., 2021; Sun et al., 2020). 
Urban greenspace also greatly promotes urban ecosystems and biodi
versity (Kendal et al., 2020) and alleviates numerous environmental 
issues with adverse effects on health, such as urban heat islands, air and 
noise pollution, and urban waterlogging (Mueller et al., 2020; Zhang 
et al., 2020). Nevertheless, rapid urbanization in the past decades, 
especially in developing countries, not only contributed to massive 
rural-to-urban migration but also substantially reshaped land cover and 
land use patterns, thereby dramatically altering both the quality and 
quantity of urban greenspace (Chen et al., 2017), changing the way 
people get close to nature (Song et al., 2020a), lowering greenspace 
generated health benefits (Hunter et al., 2019), and exacerbating envi
ronmental and health inequities (Lu et al., 2021). Accordingly, a 
comprehensive understanding of population greenspace exposure and 
the corresponding inequality issue has become a prerequisite for sup
porting the future development of healthy cities, which is gaining 
growing interest from environmental scientists, public health re
searchers, urban planners, and authorities (Fan et al., 2020; Mygind 
et al., 2021). 

With a retrospect of existing studies, the assessment of inequality in 
urban greenspace exposure generally includes the following four steps 
(Chen et al., 2017; Wüstemann et al., 2017): (1) urban area identifica
tion/extraction, (2) greenspace mapping, (3) exposure/accessibility 
measurement, and (4) inequality assessment. The datasets and methods 
used in each step will directly affect the accuracy and robustness of final 
assessment results. 

Identifying the extent of urban areas is to ensure that the entire 
assessment process is focused on urban residents. On the one hand, land 
cover maps derived from remote sensing images have been widely used 
to delineate the spatial extent of urban areas, such as ESA-CCL Land 
Cover (LC) time-series (Santoro et al., 2017) and Global Human Settle
ment Layer (Pesaresi et al., 2013). However, “urban areas” from these 
land-cover maps generally refer to impervious surfaces (i.e., built-up 
areas covered by water-resistant materials), which cannot fully char
acterize the spatial extent of human activities, thereby excluding places 
such as green parks, urban forests, and other frequently accessed 
greenspaces in and around urban fringe areas (Gong et al., 2020). On the 
other hand, nighttime light (NTL) imagery has been well demonstrated 
to correlate with the intensity of human and economic activities and has 
been widely used for identifying human settlements and urban areas 
(Cai et al., 2017). Also, NTL-based urban area used for greenspace 
assessment is suggested to be more flexible in the spatial extent, which 
incorporates not only urbanized regions but also vegetated areas with 
intensive human activities (Song et al., 2020a). 

Remote sensing images have greatly facilitated greenspace mapping 
by providing spatially explicit and temporally continuous ground truth 
information (Chen et al., 2017). Nevertheless, some disagreements still 
exist in remote sensing-based greenspace extraction studies, which can 
be categorized into two parts according to their potential causes. (1) 
Different semantic definitions of urban greenspace lead to a part of the 
disagreements in previous studies (Mears et al., 2020). For example, 
some works defined urban greenspace narrowly as outdoor areas with 
significant green vegetation quantities or only considered specific land- 
use categories (e.g., public gardens or parks) (Boll et al., 2020; Crous- 
Bou et al., 2020). However, some studies used a broad concept that 

regards all areas covered by vegetation as greenspace, which makes the 
results more comparable among different cities (Mears et al., 2020; Song 
et al., 2020a). (2) The differences in classification methods and remote 
sensing data sources contribute to the other part of disagreements (Su 
et al., 2019). The widely used hard classifiers attempt to classify each 
pixel to a land-cover category it most closely resembles, yet un
certainties caused by mixed pixel problem are pervasive in urban set
tings unless high-spatial-resolution (<5 m) but costly data are used 
(Franke et al., 2009). Soft classifiers, like spectral unmixing models, are 
suggested to achieve good performance in reducing uncertainties caused 
by hard classifiers and coarse-resolution remote sensing data (Weng 
et al., 2004). 

Researchers have developed a range of accessibility-based ap
proaches to measure residents’ potential exposure to greenspace, 
including but not limited to gravity-based models, coverage models, 
container models, and floating catchment area models (Wu et al., 2019). 
However, these inconsistent measurements and their inherent limita
tions can lead to quite different results and create challenges in further 
analyses (Xiao et al., 2019). For one thing, aggregation errors due to 
various shapes and sizes of the analytical units in some models lead to 
the modifiable areal unit problem (MAUP) (Su et al., 2019). For another, 
since dynamic population distribution would cause the change of peo
ple’s ambient environment, assessment models based on static data are 
prone to the uncertain geographic context problem (UGCoP) (Kwan, 
2012), making these models fail to capture the actual usage of urban 
greenspace accurately. Therefore, a consistent and advanced exposure 
measurement considering people’s real-time locations should be adop
ted in a comparative study among different cities in light of the above
mentioned issues. 

In terms of inequality assessment, previous studies mainly focus on 
the disparities in greenspace access for vulnerable groups, such as low- 
income neighborhoods, less educated people, and minority commu
nities. For instance, the deprived residential areas of Munich, a large 
German city, were found to have less greenspace provision (Schüle et al., 
2017). Other studies in Leicester (UK), Chicago (USA), Pueblo (USA), 
and Macon (USA) also revealed that people with low socioeconomic 
positions or who live in minority communities were less likely to enjoy 
green environments or tended to have access largely to greenspace or 
parks with poor quality (Comber et al., 2008; Gobster, 2002). In 
contrast, one case study of Shanghai indicated that the open greenspace 
accessibility and the policy of promoting open green spaces in the city 
were more beneficial to vulnerable groups than affluent people (Xiao 
et al., 2017). Other than disparity measurements by comparing people 
with different socioeconomic attributes, the Gini index (Gini, 1921) is 
also a widely used metric to assess the general inequality. By measuring 
the statistical dispersion to represent inequality level, the Gini index has 
been successfully applied to evaluate the imparity accessibility of urban 
greenspace (Wüstemann et al., 2017). 

Despite a growing number of studies focusing on the inequality in 
greenspace exposure, research advances are still limited in the following 
aspects: (1) The wide range of exposure measurements and evaluation 
perspectives lead to varying results without a consistent indicator, 
which makes it challenging for a unified comparison (Xiao et al., 2017). 
(2) The spatiotemporal variability of population distribution is ignored 
in greenspace exposure assessment, and the immediate changes in 
greenspace exposure inequality have rarely been measured in previous 
studies (Kwan, 2013). (3) A comprehensive understanding of how urban 
built/natural environments affect the greenspace provision would help 
alleviate the disparities and promote the sustainable development of the 
urban environment, but this issue has not been thoroughly discussed in 
existing studies (Boulton et al., 2018). 

To address these shortcomings, this study attempts to investigate the 
dynamic interactions between urban residents and their ambient 
greenspace from multiple perspectives. Using multi-source geospatial 
big data and a modified assessment framework, we contribute to the 
literature by conducting an assessment for 303 cities in China and 
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answering the following questions: (1) How do urban residents expose to 
greenspaces when the dynamic population distribution is considered? 
(2) Are there significant differences in exposure inequalities among 
different cities, and how do the inequalities change over different tem
poral periods within a day? (3) Are natural environment factors and 
socioeconomic features of urban areas associated with greenspace 
exposure inequalities? A better understanding of the above issues is 
essential for building a healthy city and facilitating eco-friendly urban 
development. 

2. Methodology 

2.1. Study area 

The assessments were conducted in 303 cities accounting for 98.45% 
of the urban population in China (National Bureau of Statistics of China, 
2019). We used the urban population size as the criterion to select city 
samples. Specifically, cities with an urban population greater than 
50,000 were selected for urban greenspace assessment. The inclusive 
cities consisted of 4 municipalities (directly under the central govern
ment), 15 sub-provincial cities, 16 provincial capital cities, and 268 
prefecture-level cities (Fig. 1). According to their geographic distribu
tions, they also belong to six geographical zones, including southwest 
China, northeast China, east China, south-central China, northwest 
China, and southwest China. 

2.2. Urban greenspace exposure inequality assessment 

To reduce potential uncertainties in inequality assessment and 
ensure comparable results, we adopted a modified framework consisting 
of four main steps, including (1) urban area extraction, (2) greenspace 
mapping, (3) exposure assessment, and (4) Gini-based inequality 
assessment. 

2.2.1. Urban area extraction 
Urban areas were extracted for all selected cities by considering the 

intensity and spatial extent of human activity. The two major datasets 
used to implement this task were monthly cloud-free NPP-VIIRS NTL 
images in 2016 (www.ngdc.noaa.gov) and the ESA-CCL LC product in 
2016 (www.esa-landcover-cci.org). We adopted a local-threshold-based 
model to extract an appropriate spatial extent of each city’s urban area 

from the NTL images (see Section S1 in Supplementary Materials). 
Particularly, the proposed model considered both the diverse urbani
zation intensities and physical features among cities, and allowed each 
city to receive a unique threshold. The extracted urban areas were 
evaluated via two types of validation datasets (i.e., Amap POI and LC- 
based “urban area”) (see Section S2 in Supplementary Materials), and 
achieved a high-level confidence with producer’s accuracies >91.32% 
and overall area-weighted accuracies >94.0%. More importantly, the 
newly defined urban areas had a more appropriate spatial extent 
compared with impervious-surface-based “urban area” (Fig. S2), 
enabling a critical component of frequently visited greenspace in urban 
fringe areas or big urban forests to be included in the following assess
ments. Each city’s urban areas were further refined by removing all the 
small (<5 km2) and spatially isolated areas to make subsequent analysis 
focus on major urban areas. 

2.2.2. Greenspace mapping 
In this study, greenspace was defined as all areas covered by green 

vegetation. The data used for greenspace mapping were the full stack of 
Sentinel-2A imagery in 2016. A three-endmember linear spectral 
unmixing model (Weng et al., 2004) was employed to unmix the com
posite image and map subpixel greenspace distribution, with the aim of 
addressing the inevitable mixed pixel issue in urban land-cover map
ping. Detailed information regarding data processing and classification 
strategies were introduced in Section S3 of the Supplementary Materials. 
We finally used a set of high-resolution (~0.6 m) greenspace maps (Song 
et al., 2018) to evaluate the newly derived greenspace maps. The ach
ieved average correlation coefficient of 0.918 verified the reliability of 
the results (see Section S4 in Supplementary Materials). 

2.2.3. Exposure assessment 
Tencent location-based services (LBS) data were used to characterize 

population distribution and assess people’s dynamic exposure to green 
environments. Tencent LBS data were created by recording individuals’ 
real-time locations when they are using Tencent’s apps or location-based 
services (Chen et al., 2020; Xu et al., 2021). As the top Internet service 
provider for ethnic Chinese in the world, and owing to the extensive use 
of Tencent’s popular apps and services, Tencent recorded 38 billion LBS 
requests per day on average in 2016 from its 450 million active users 
around the world (Tencent, 2016). Tencent released this dataset as a 
grid form with a 1-km resolution per 5 min, excluding any personally 

Fig. 1. Distribution of the 303 selected Chinese cities with four administrative levels and six geographical zones.  
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identifiable and private information. We collected all the data generated 
in 2016 via the Tencent Location Big Data platform (https://heat.qq. 
com). LBS density maps were then aggregated to characterize the pop
ulation distribution over the following three periods: daytime (from 
06:00 to18:00), nighttime (from 18:00 to next 06:00), and a whole day 
(from 00:00 to 24:00). 

The extracted greenspace maps and LBS density maps were used 
jointly to assess residents’ average urban greenspace exposure within 
the urban areas of each city. For the LBS density map, the total number 
of LBS records in a grid represents the relative population. Given the lack 
of people’s exact locations within the corresponding area of a pixel, we 
supposed that all the people are in the grid’s centroid. A city’s green
space exposure levels during the daytime, nighttime, and a whole day 
were then measured via Eq. (1) (Song et al., 2018): 

GE =

∑n
i=1(pi × Gi)
∑n

i=1pi
(1)  

where GE represents a greenspace exposure level of a city during a pre- 
set timeframe; pi denotes the LBS-based relative population within grid- 
i; Gi means the green coverage within a specific buffer zone around grid- 
i’s centroid. Due to the coarse resolution (i.e., 1 km) of LBS-based 
population maps, we conducted the measurement by using a relatively 
larger buffer of 1-km around each grid’s centroid to ensure that the 
ambient greenspace of any individual in the each grid can be taken into 
account. 

2.2.4. Gini-based inequality assessment 
We used the Gini index to measure the inequality in greenspace 

exposure of a city. According to the feature of data used in this study, the 
greenspace exposure Gini index was received by calculating the ratio of 
the area of A to the total area of A and B (Fig. 2) via a modified equation 
as Eq. (2). The derivation process of Eq. (2) was provided in Section S5 of 
Supplementary Materials. 

Gini = 1 −
2 ×

∑n
i=1

∑i
i=1gi

n ×
∑n

i=1gi
(2)  

where n is the total population within the urban area of a city during a 
pre-set timeframe; gi is the magnitude of individual-i’s greenspace 
exposure. The Gini ranges from 0 (absolute equality) to 1 (absolute 
inequality), and a lower Gini means that the amount of greenspace that 
people are exposed to are more evenly provided. Greenspace exposure 
inequalities during daytime (Ginidaytime), nighttime (Gininighttime), and a 
whole day (Giniwhole-day) were assessed for all the selected cities, 
respectively. The received Gini was divided into five ranges: very low 
inequality (0–0.2), low inequality (0.2–0.4), medium inequality 
(0.4–0.6), high inequality (0.6–0.8), and very high inequality (0.8–1). 

We further used the local Moran’s I-based cluster and outlier analysis 

tool (Anselin, 1995) to identify the spatial pattern of Giniwhole-day, 
including the hot spots, cold spots and spatial outliers. Specifically, a hot 
spot (high-high cluster) or cold spot (low-low cluster) means a group of 
geographically adjacent cities have statistically significant high/low 
Giniwhole-day compared to their neighbors. A spatial outlier means one 
city with high Giniwhole-day is surrounded primarily by cities with low 
Giniwhole-day (high-low outlier), or one city with low Giniwhole-day is 
surrounded primarily by cities with high Giniwhole-day (low–high 
outlier). 

2.3. Exploring the association between urban factors and exposure 
inequality 

We collected a range of variables to explore the linkage between 
Giniwhole-day and urban areas’ physical and socioeconomic features. 
Spearman correlation analysis was first used to remove all variables that 
have no significant correlations with Giniwhole-day. As shown in Table 1, 
the nine finally selected variables were classified into four categories. In 
particular, geographical variable (i.e., C1: variable 1) was the six 
geographical regions of China introduced in Section 2.1, which provided 
geospatial information of the selected cities. The distance between 
spatial attribute weighted centroid (i.e., C2: variables 2–4) represented 
the difference between two factors in terms of spatial distribution 
pattern. These factors can be either socioeconomic or physical features 
of urban areas. Climate and environmental variables (i.e., C3: variables 
5–8) and the socioeconomic variable (i.e., C4: variable 9) were used to 
uncover how environmental or socioeconomic factors associate with the 

Fig. 2. Illustrative diagram of the Gini index to assess greenspace exposure inequality.  

Table 1 
Descriptions of urban factors.  

Category No. Code Name (Unit) of urban factor 

C1: Geographical factor 1 GR Geographical region in China 
C2: Distance between 

spatial attribute 
weighted centroid 

2 CDpg Distance between population 
density centroid and greenspace 
distribution centroid (km2) 

3 CDgg Distance between gross domestic 
product (GDP) centroid and 
greenspace distribution centroid 
(km2) 

4 CDrg Distance between road density 
centroid and greenspace 
distribution centroid (km2) 

C3: Climate and 
environmental factor 

5 GCR Greenspace coverage rate within 
urban area (%) 

6 PPTN Annual precipitation (mm/year) 
7 Temp Annual mean temperature (◦C) 
8 TempD Difference in temperature between 

day and night (◦C) 
C4: Socioeconomic factor 9 PopD Population density within urban 

areas (pop/m2)  
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inequality in greenspace exposure. The detailed information regarding 
data sources and data processing of these variables were provided in 
Section S6 of the Supplementary Materials. 

Geographical detector models from the spatial stratified heteroge
neity (SSH) analysis framework (Song et al., 2020b) were used to 
explore the association between greenspace exposure inequality and 
urban factors. The two geographical detectors used in this paper were 
the factor detector model and the interaction detector model. Specif
ically, the factor detector model can help detect the spatial heteroge
neity of response variables (i.e., the Gini index of greenspace exposure) 
and explain the relative importance of explanatory variables in deter
mining the spatial heterogeneity of the response variable. The factor 
detector model uses a Q value (0 ≤ Q ≤ 1) as a metric, where a higher Q 
value suggests that the associations between Giniwhole-day and the urban 
factor are stronger. The interaction detector was used to identify the co- 
effect from urban factors on Giniwhole-day. By comparing the importance 
(i.e., Q value) of two combined variables with each independent’s 
importance, the interaction detector can uncover how explanatory 
variables interact with the response variable. Details of the analysis 
procedure are provided in section S7 in Supplementary Materials. 

3. Results 

3.1. Greenspace exposure in Chinese cities 

As shown in Fig. 3a, the colored circles (from green to red) represent 
the magnitude of cities’ GCR (from high to low); the circle scale in
dicates the level of GEwhole-day, with larger circles representing greater 
GEwhole-day levels. Note that high-GCR cities always have relatively high 
GEwhole-day levels. However, 298 of the 303 cities have a higher value of 
GCR than GEwhole-day, and the average GCR and GEwhole-day of all cities 
are 26.69% and 13.15%, respectively, which highlights that a metric 
like GCR tends to overestimate the amount of available greenspace 
enjoyed by people during daily lives. 

We find considerable differences in greenspace exposure among 
cities in different regions and administrative levels. The geographical 
zones of cities having the top three highest average GCR are northeast 
China (36.48%), southwest China (29.08%), and east China (27.4%) 

(Fig. 3b). However, the highest average GEwhole-day (19.4%) is found in 
southwest China, followed by northeast China (15.24%) and east China 
(14.45%). Cities in Northwest China have both the lowest GCR (15.93%) 
and GEwhole-day (6.62%). For cities with different administrative levels 
(Fig. 3c), sub-provincial cities have the highest average GCR (29.77%), 
followed by municipalities (27.09%), prefecture-level cities (26.87%), 
and provincial capital cities (20.67%). However, the highest average 
GEwhole-day belongs to municipalities (16.86%), followed by sub- 
provincial cities (14.77%), prefecture-level cities (13.2%), and provin
cial capital cities (9.85%). 

Moreover, the difference between daytime and nighttime greenspace 
exposure (GEdaytime - GEnighttime) (Fig. S3 in Supplementary Materials) 
illustrates that the population distribution change leads to noticeable 
variation in their ambient green environment. 

3.2. Inequality in greenspace exposure 

The average Giniwhole-day of all the selected cities is up to 0.669, 
indicating that greenspace exposure is at a high inequality level in urban 
China. We identify a substantial difference in Giniwhole-day among cities 
(Fig. 4). Specifically, the top three cities with the lowest Giniwhole-day are 
Panzhihua (0.146), Rizhao (0.150), and Dongying (0.154), while the top 
three cities with the highest Giniwhole-day are Kashgar (0.982), Shigatse 
(0.978), and Yuncheng (0.974). We also find that the distribution of 
Giniwhole-day is characterized by obvious spatial heterogeneities. As 
shown in Fig. 4, more than 66% of cities’ Giniwhole-day in northwest 
China are greater than 0.8, illustrating that very high inequality of 
greenspace exposure is prevalent in this region. By contrast, the situa
tion is much better in southwest China where only 30% of cities having 
very high inequality (Giniwhole-day ≥ 0.8), and more than 29% of cities 
having low or very low inequality (Giniwhole-day < 0.4). Statistically, 
cities in northwest China, north China, and south-central China are the 
top three groups of cities with a high average Giniwhole-day of 0.804 and 
0.763, and 0.673, respectively, followed by east China (0.642), north
east China (0.639), and southwest China (0.528). As for cities with 
different administrative levels, municipalities have the lowest average 
Giniwhole-day (0.546), followed by sub-provincial cities (0.639), the 
prefecture-level cities (0.669), and provincial capital cities (0.721). 

Fig. 3. (a) Greenspace coverage rate (GCR) and greenspace exposure (GEwhole-day) of 303 Chinese cities; (b) comparison of GCR and GEwhole-day among cities in 
different geographical zones; (c) comparison of GCR and GEwhole-day among cities in different administrative levels. 
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Overall, 207 out of the 303 cities have a Giniwhole-day greater than 0.6, 
indicating that high and very high inequality in greenspace exposure is 
dominant among Chinese cities. 

Fig. 5 presents the identified hot spots (cities colored in pink) and 
cold spots (cities colored in nattier blue) of Giniwhole-day. The hotspot 
cities are primarily located in north and northwest China, including 
cities belonging to provinces of Inner Mongolia, Gansu, Ningxia, 
Shaanxi, and Henan. Some other major hot spots can also be found in the 
west of Xinjiang, north of Inner Mongolia, and Tibet. The cities of cold- 
spots are generally distributed as a belt along the Yangtze River, and 
cities belong to Yunnan province. Besides, some cities located in the area 
between Liaoning and Jilin provinces also form other cold spots. 

3.3. Difference in greenspace exposure inequality between daytime and 
nighttime 

The statistical difference in greenspace exposure between daytime 
and nighttime highlights that the rhythmic variability of population 
distribution causes the change of their ambient environment. It is, 
therefore, necessary to evaluate the inequality in greenspace exposure as 
a function of time. Fig. 6 shows the difference in exposure inequality 
between daytime and nighttime using Ginidaytime - Gininighttime. A blue/ 
red circle represents that Ginidaytime is smaller/larger than Gininighttime, 
and the circle size indicates the magnitude of the absolute difference. We 
find that the difference between daytime and nighttime is obvious, as 
112 cities’ absolute values of Ginidaytime - Gininighttime are larger than 
0.01. In Daxinganling, for example, the Ginidaytime is 0.478, but the 

Fig. 4. Greenspace exposure inequality (Giniwhole-day) of Chinese cities and its spatial heterogeneity.  

Fig 5. The spatial pattern of greenspace exposure inequality among Chinese cities.  
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Gininighttime becomes 0.436, resulting in a relatively large difference of 
0.042. Also, cities located in the Yangtze River delta (the blue dotted 
circle in Fig. 6) generally have a higher Ginidaytime than Gininighttime. 
Opposite situations are identified in most Pearl River Delta cities (the 
orange dotted circle in Fig. 6). Statistically, 185 out of 303 cities’ 
Ginidaytime is greater than their Gininighttime. 

3.4. Association between urban factors and exposure inequality 

Fig. 7a shows the single factor’s Q value derived from the factor 
detector model, excluding factors without a significant Q value (p <
0.05). Overall, the factors from climate and environmental factors (C3) 
and geographical factors (C1) are found to have stronger linkages with 
Giniwhole-day, compared to the distance of spatial attribute weighted 
centroids (C2) and socioeconomic factors (C4). Three of the four factors 
belonging to the category of climate & environment factors are identi
fied to have greater and significant Q values. Particularly, GCR (green
space coverage rate, Q = 0.47 and PPTN (annual precipitation, Q =
0.24) are the top two factors with the strongest associations with 
Giniwhole-day, followed by GR (geographical region, Q = 0.21), Temp 
(Temperature, Q = 0.14), and CDrg (distance between road density 
centroid and greenspace distribution centroid, Q = 0.05). 

The association between Giniwhole-day and a pair of factors’ interac
tion effect are presented in Fig. 7b. Red/yellow circles represent that the 

association is nonlinear-/bi-enhanced by the interaction. Specifically, a 
nonlinear-enhanced effect means the explanatory power (i.e., linkage 
with Giniwhole-day) of the interaction of two factors is greater than the 
sum of two single factors’ power; a bi-enhanced effect means that the 
interaction enhances the explanatory power of any single factor, but not 
greater than their sum (see Section S7 in Supplementary Material). 
Finally, the interaction of greenspace coverage rate and temperature 
(GCR ∩ Temp) is found to have the strongest and nonlinearly enhanced 
association with Giniwhole-day (Q value = 0.63), indicating that the high 
inequality is more likely to be found in cities with both low greenspace 
coverage and low temperature. Besides, the interactions that have sec
ond and third strongest linkages with Giniwhole-day are greenspace 
coverage rate and geographical region (GCR ∩ GR: Q = 0.62), and 
greenspace coverage rate and annual precipitation (GCR ∩ PPTN: Q =
0.59). 

4. Discussions 

Using a modified assessment framework, we evaluated the inequality 
in greenspace exposure and their diurnal variations. Unlike most exist
ing works that examine a specific city/region’s inequality issue among 
vulnerable groups, this study conductes a general and comparative 
assessment for 303 Chinese cities, and provide evidence reflecting the 
inequality problems in existing urban greenspace arrangement across 

Fig. 6. Difference in greenspace exposure inequality between daytime and nighttime.  

Fig. 7. Association between urban factors (and their interactions) with Giniwhole-day: (a) Q values measured by factor detector model; (b) Q values measured 
interaction detector model. 
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China’s cities. 

4.1. The contradiction between quantity and equality in urban China 

As an essential public natural resource, urban greenspace is expected 
to be utilized abundantly and equally. However, our findings reveal an 
unpleasant fact that, in many Chinese cities at different administrative 
levels, the scarcely available greenspace is mostly enjoyed by limited 
people, resulting in a disproportionately high inequality in greenspace 
exposure. Given that greenspace is suggested to positively affect peo
ple’s health and social benefits, the great greenspace injustice issue in 
Chinese cities is more likely to exacerbate residents’ health and social 
inequality (Lu et al., 2021). In fact, the Chinese government has been 
making efforts to improve the urban green environment over recent 
decades. In 1992, the Ministry of Housing and Urban-Rural Develop
ment of China launched an incentive scheme and started to grant the 
title of “National Garden City” to cities with increased greenspace to 
meet specific national standards (Wolch et al., 2014). From 1992 to 
2019, 235 of the 303 selected cities in this study have met the estab
lished standards (http://dwz.date/cHsf). Nevertheless, as 156 out of the 
235 “National Garden City” have a Giniwhole-day larger than 0.6, it is clear 
that they have not fully resolved the issues of usability and equity in the 
context of securing the growth of greenspace supply. Therefore, a bal
ance between quantity and equality of urban greenspace is still required 
in the future development of healthy cities in China (Yang et al., 2018). 

4.2. Greenspace exposure and inequality changes over time 

Suppose people are in their workplaces during the daytime and go 
back to their residences during the nighttime, the comparison of expo
sure (GEdaytime - GEnighttime) or inequality (Ginidaytime - Gininighttime) 
could be regarded as the difference in greenspace exposure or inequality 
of people’s work and residential locations (Song et al., 2018). Specif
ically, a lower daytime inequality, for example, the cluster of cities 
located in the Pearl River Delta, means that people are experiencing a 
relatively similar greenspace supply around workplaces. The higher 
exposure values at nighttime can be interpreted as a result from either a 
relatively better greenspace environment around residences, or resi
dents’ more active proximity to greenspace environments during leisure 
time at night (Shan, 2020). In addition, given the different socio- 
environmental benefits and impacts from greenspace at different times 
of the day, the identified variations in greenspace exposure and 
inequality can also shed lights on interpreting urban microclimates, for 
example, the cooling effect from green environments during daytime 
(Hu and Li, 2020), and urban safety issues, for example, the safety risk 
caused by poorly-lit greenspace during the nighttime for some vulner
able people such as women and children (Bauwelinck et al., 2021). 
These comparisons between greenspace exposure and inequality in 
different times and real-world scenarios would provide urban planners 
and designers multi-dimensional information of greenspace in both 
spatial and temporal contexts to support eco-friendly and user-friendly 
healthy city developments. 

4.3. Geo-climatic features and limited greenspace provision 

Our results also reveal that the spatial distribution of greenspace 
exposure inequality presents obvious geographical heterogeneity. In 
general, cities located in the northwest region and the north region of 
China tend to have very high Giniwhole-day. Note that these regions’ geo- 
climatic characteristics are mainly characterized by desert, arid and 
semi-arid climates, with low and uneven rainfall, low average temper
ature (long winter), and large daily/seasonal temperature differences 
(Shi et al., 2020). In Yinchuan (capital of Ningxia), for example, the 
average annual precipitation from 1986 to 2015 is only 189.8 mm 
(30.2% of the national average precipitation), and the average annual 
temperature is as low as 7.6 ◦C (www.cma.gov.cn). Such climates make 

these regions unsuitable for the growth of green vegetation, which in
creases the cost of urban greenspace provision and maintenance (Wen 
et al., 2019). Therefore, limited greenspace may be available only in 
some certain communities, which increases the likelihood of unequal 
greenspace arrangements. This interpretation is also statistically sup
ported by the linkages explored through geographical detector models, 
as serious exposure inequality is more common in cities with low 
greenspace provision (i.e., coverage rate), low annual precipitation, and 
low temperature. Thus, innovative strategies are urgently required to 
addressing provision issues in cities located in arid and ecologically 
vulnerable areas. The efficient use of water resources is the key to 
ensuring greenspace provision for cities with water shortages, and spe
cific measures may include irrigating with reclaimed water, developing 
water-efficient greenspace irrigation systems, and planting various types 
of drought-resistant vegetation (Shi et al., 2020). 

4.4. Urbanization and greenspace provision disparity 

In addition to climate factors, urbanization patterns may be another 
factor that affects the equity of greenspace exposure. Particularly, the 
increasing urban population, along with a growing awareness of farm
land and environment preservation in recent years, make China’s ur
banization process gradually shift from expansion to a pattern that 
combines expansion and infill (e.g., urban densification) (He et al., 
2019). Despite the benefits of effective land use during densification, the 
infill development was confirmed to pose a threat to greenspace, causing 
a dramatic decline in inner urban areas (Tonne et al., 2021). As a result, 
a disparity in greenspace provision (i.e., coverage rate) may arise be
tween the densified areas (inner urban areas) and newly developed areas 
at the periphery of a city, which leads to inequality in residents’ 
greenspace exposure (Song et al., 2020a). This partly explains why the 
Giniwhole-day in some highly urbanized or compact cities is relatively 
high, although they are located in areas with moderate temperatures 
and abundant rainfall, such as Xiamen, and cities in Pearl River Delta. 
This fact also reminds the local municipalities to use smart strategies in 
densified areas’ future greenspace planning and management. Specif
ically, semi-natural greenspace should be preserved so as to ensure the 
supply of quality greenspace is not diminished during the subsequent 
urbanization of inner urban areas (Žlender and Ward Thompson, 2017). 
Adding greenery to renovated sites and other less-green sites (e.g., 
narrow streets) are also feasible ways to increase greenspace provision 
in inner urban areas and reduce inequality in greenspace exposure of a 
city (Wolch et al., 2014). 

4.5. Balancing supply and demand to eliminate inequality 

Although the Gini index reveals the inequality of urban greenspace 
provision in a spatial perspective, simply relying on increasing the 
supply of greenspace to reduce the Gini index is not the way to address 
inequality. It is important to note that residents’ demand for greenspace 
is not only in terms of quantity but also quality (Knobel et al., 2021). The 
quality of urban greenspace can be understood as the factors influencing 
people’s greenspace usage, such as size, location, facilities, mainte
nance, safety, design and accessibility (Knobel et al., 2021). Helping the 
public achieve a balance between supply and demand of greenspace 
(including quantity and quality) is therefore the ultimate goal of elim
inating inequality issues (Wolch et al., 2014). A well-developed standard 
that encompasses a breadth of factors is a necessary prerequisite, such as 
the Natural England’s accessible green space standards (ANGSt) 
implemented in cities like Manchester (naturegreatermanchester.co.uk). 
Besides, due to the difference in climate, geography, and cultural 
characteristics among Chinese cities, and the diversity of socio- 
economic attributes of communities within a city, it is more than chal
lenging to achieve such a balance by using one or two standardised 
ways. Consequently, in addition to implementing sound planning and 
policy support tailored to local conditions, in-depth public participatory 
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engagement should be put in place, which is beneficial in reducing ir
rationalities of greenspace design and enables greenspace to be located 
where it is needed (Li et al., 2021). 

4.6. Advantages and limitations 

The assessment in this study was conducted for the vast majority of 
Chinses cities, from small cities with an urban population of just 50,000 
to metropolises with more than 10 million urban residents, which ad
dresses the biases in existing published urban nature-related literature 
that do not adequately represent the urban population in small cities and 
the developing world (Kendal et al., 2020). Given healthy cities are also 
under construction in developing countries in Africa and South America 
(De Leeuw and Simos, 2017), we believe the findings in China can be 
used as a reference for the urban natural environment development in 
these countries. Besides, compared with the previous widely used 
exposure assessment models, the modified assessment framework plays 
an important role in explicitly uncovering the interactions between 
urban residents and their ambient green environment by considering the 
spatial extent of human activity, uncertainty in greenspace mapping, 
and spatiotemporal variability of population distribution. When fine- 
scale population maps (e.g., with a 10-m resolution) or individual- 
scale data are available, the the study’s proposed methods and frame
work can be leveraged to derive city- and even community-scale as
sessments and provide spatially explicit evidence and pathways for 
strategizing urban policy and planning. In addition to greenspace, the 
assessment framework can be extended to assess exposure to other 
environmental factors, including but not limited to air pollution, blue 
space, noise, nighttime light, and heatwave (Chen et al., 2018b; Song 
et al., 2019). 

Nevertheless, some limitations in this study should be pointed out. 
First, the quality of urban greenspaces is not considered in the assess
ment of this study. Urban greenspace is notoriously heterogeneous in 
size, vegetation type, phenological characteristic, range of facilities, 
park congestion, and safety to its users, making it a challenge to 
reasonably measure the quality characteristic of greenspace. Still, as 
different types of greenspace will have various benefits to public health 
and wellbeing, quality is often at least as important as quantity (Knobel 
et al., 2021). Therefore, considering quality would make the greenspace 
assessment much sounder. Second, the assessed exposure levels of cities 
only considered the greenspaces just around people, but proximity- 
based greenspace exposure was not measured in this study, such as 
the shortest distance to a special kind of greenspace (e.g., more than 2 ha 
in size). Given the important role which the accessibility of greenspace 
plays for the residents’ physical activity and health (Xiao et al., 2017), 
proximity-based greenspace exposure assessment will be the direction of 
our further research. Third, although the usage of the LBS-based popu
lation maps provides rich information on characterizing real-time pop
ulation distributions and reduces some uncertainties in static-data based 
models as defined in UGCoP (Kwan, 2013), MAUP still exists in the 
proposed assessment model. Specifically, the coarse resolution of LBS- 
based population and the 1-km buffer used in the model contribute to 
a large area of aggregation, which will diminish the variance and het
erogeneity in exposure and make the relations with other variables more 
significant (Dark and Bram, 2007; Jelinski and Wu, 1996). For green
space and physical health studies, the large aggregation (i.e., large 
buffer distance) tends to result in significant but inconstant effect sizes 
(Browning and Lee, 2017) as well as reducing the effect size (Wolch 
et al., 2011). Therefore, localized effect and spatial heterogeneity need 
to be taken into account when using our methodology and results to 
develop community planning and policy options. Additionally, how to 
incorporate multi-source population data and advanced models to 
derive dynamic population distributions with fine resolutions will be 
another open topic in our future research. Finally, although LBS data 
from mobile phones have been demonstrated to have good performance 
in characterizing real-time population distribution (Dunkel, 2015), they 

are still considered as non-representative data, as some parts of society 
appear to excluded, such as vulnerable citizens including the elderly, 
children, and poor (Chen et al., 2018a; Kwan, 2016). Therefore, we 
should be cautious about interpreting the results derived from these 
datasets in practical applications. 

5. Conclusions 

Leveraging multi-source geospatial big data and a modified urban 
greenspace exposure inequality assessment framework, this study con
ducts an evaluation of spatial inequality in greenspace exposure for 303 
major Chinese cities, with the aim to better understand the role and 
pressing challenges of urban greenspace settings for healthy city 
development in China. The results reveal that urban residents in most 
Chinese cities experience severe inequality in terms of greenspace 
exposure. The exposure and inequality levels also change over different 
times, as people engage with different activities and change their loca
tions (e.g., workplaces and residences). The distribution of city-level 
inequality presents prominent spatial heterogeneity, as cities located 
in north and northwest China tend to have higher greenspace exposure 
inequality. Moreover, serious inequality is highly correlated with low 
greenspace provision, and the inadequate provision may be caused by 
various reasons, such as dry cold climate and urbanization patterns (e.g., 
infill development). The findings in this study provide evidence of the 
inequalities in natural environment faced by urban dwellers in China, 
but the promotion and optimization of greenspace exposure in the 
context of healthy cities cannot be accomplished by simply increasing 
greenspace supply to reduce these inequalities. We suggest that the local 
municipalities in China should implement more effective and sustain
able greening programs adjusted to different local circumstances and 
incorporate public engagement to achieve a real balance between 
greenspace supply and demand for developing healthy cities. 
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