
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

BALM: Bundle Adjustment for Lidar Mapping
Zheng Liu1 , Student Member, IEEE and Fu Zhang1, Member, IEEE

Abstract—A local Bundle Adjustment (BA) on a sliding window
of keyframes has been widely used in visual SLAM and proved
to be very effective in lowering the drift. But in lidar SLAM,
BA method is hardly used because the sparse feature points
(e.g., edge and plane) make the exact point matching impossible.
In this paper, we formulate the lidar BA as minimizing the
distance from a feature point to its matched edge or plane. Unlike
the visual SLAM (and prior plane adjustment method in lidar
SLAM) where the feature has to be co-determined along with
the pose, we show that the feature can be analytically solved and
removed from the BA, the resultant BA is only dependent on
the scan poses. This greatly reduces the optimization scale and
allows large-scale dense plane and edge features to be used. To
speedup the optimization, we derive the analytical derivatives of
the cost function, up to second order, in closed form. Moreover,
we propose a novel adaptive voxelization method to search
feature correspondence efficiently. The proposed formulations are
incorporated into a LOAM back-end for map refinement. Results
show that, although as a back-end, the local BA can be solved
very efficiently, even in real-time at 10Hz when optimizing 20
scans of point-cloud. The local BA also considerably lowers the
LOAM drift. Our implementation of the BA optimization and
LOAM are open-sourced to benefit the community1.

Index Terms—SLAM, Mapping, Localization, Lidar, Bundle
adjustment

I. INTRODUCTION

BUNDLE adjustment (BA) is the problem of jointly solv-
ing the 3D structures (i.e., location of feature points) and

camera poses [1]. It has been a fundamental problem in various
visual applications, such as structure from motion (SfM) [2],
visual SLAM (simultaneous localization and mapping) [3], and
visual-inertial navigation [4, 5].

Similar bundle adjustment can be defined for lidar mapping
where the goal is to jointly determine the lidar pose and the
global 3D point-cloud map. This would be a key problem
in lowering the drift in lidar SLAM. Constrained by the
pairwise matching nature of existing scan registration methods,
such as iterative closest points (ICP) [6], generalized ICP [7],
normal distribution transform [8], and surfel-based registration
[9], commonly used lidar navigation and mapping (LOAM)
framework [10] and its variants [11, 12] usually build the map
by incrementally registering new scans. Such an incremental
mapping process would inevitably accumulate registration
errors, especially in featureless environments where degener-
ation occurs [13] or for lidars of small FoV [14]. One way

Manuscript received: October 15, 2020; Revised January 13, 2021; Ac-
cepted February 14, 2021.

This paper was recommended for publication by Editor Sven Behnke upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
funded by DJI (Project No. 200009538).

1Zheng Liu and Fu Zhang are with the Department of Me-
chanical Engineering, The University of Hong Kong, Hong Kong.
u3007335@connect.hku.hk, fuzhang@hku.hk

Digital Object Identifier (DOI): see top of this page.
1https://github.com/hku-mars/BALM

Feature point Feature line Feature plane

(a) (b)

Fig. 1. Comparison of BA formulations: (a) visual BA constrains feature
points to locate at the same point; (b) our proposed lidar BA constrains feature
points to lie on the same edge or plane.

a b

Fig. 2. (a) LOAM mapping without map refinement. (b) Refining the map
using a local BA on a sliding window of lidar scans. Video available at
https://youtu.be/d8R7aJmKifQ.

to lower such drift is performing a local BA over a sliding
window of lidar scans, which allows us to re-assess the past
scans based on information in new scans. This method has
been widely used in visual navigation and proved to be very
effective [4, 5].

While lidar BA seems simpler than visual BA due to
the direct depth measurements, its formulation is actually
more complicated. In visual BA, the measurements are high-
resolution images where each pixel corresponds to a single
feature in the space (see Fig. 1(a)). Hence, a natural for-
mulation would be to minimize the difference between the
projected feature location and its actual location on the image.
However, this natural formulation does not apply to lidar: lidar
point-cloud is usually very sparse and even non-repetitive [12],
making the exact point matching infeasible.

In this paper, we propose a formulation of lidar BA and
incorporate it into a LOAM framework as the back-end to
refine the incrementally built map. More specifically, our con-
tribution is as follows: 1) We formulate the BA on sparse lidar
feature points, including both edges and planes, by directly
minimizing the distance from the feature point to the edge or
plane (see Fig. 1(b)). Unlike visual BA which simultaneously
solves the feature location and camera poses, we show that
the feature (edge and plane) parameters in lidar BA can be
analytically solved in closed-form solution, leading to a BA
optimization over the scan poses only. Eliminating the feature

https://github.com/hku-mars/BALM
https://youtu.be/d8R7aJmKifQ


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

parameters from the BA dramatically reduces the dimension
of optimization and hence allows large-scale dense features
to be optimized; 2) To enable efficient BA optimization, we
analytically derive the gradient and Hessian matrix of the
cost function with respect to the scan poses; 3) We propose
an adaptive voxelization to search for feature correspondence
efficiently; and 4) We incorporate the proposed lidar BA into
a LOAM back-end for map refinement and demonstrate its
effectiveness on both spinning lidars and lidars of small FoV
(e.g., Livox Horizon2) by comparing with existing LOAM
implementations shown in Fig 2. Results show that the local
BA effectively lowers the drift. Although it is designed as
a back-end, the local BA runs very fast: when optimizing
a sliding window of 20 scans, it runs nearly real-time at
10Hz. The BA formulation, optimization libraries, and LOAM
implementations are open-sourced to the community.

II. RELATED WORK

Our definition of the lidar BA is most similar to the multi-
view registration. Early work in this direction [15, 16] directly
extend the ICP method [6] to the multi-scans cases, where
the cost function is the sum of all distance between two
corresponding points in any two scans. Similarly, Neugebauer
[17] uses the distance between two corresponding surfaces
in any two scans. While these methods work well for dense
3D scans (e.g., depth camera), they all require exact point or
surface matching that seldom exists in lidar point-cloud.

The work in [18]–[24] register any two scans sharing
overlaps using standard pairwise scan registration methods.
Then the obtained relative poses are used as measurements to
construct a pose graph, from which the poses can be solved by
graph optimization. These methods require to perform repeated
pairwise scan registration among all scans having overlaps.
Moreover, it does not optimize the point-cloud map directly,
restricting the attainable level of mapping consistency.

The difficulty of lidar BA (or multi-view registration) lies
in defining a metric that effectively evaluates the alignment
quality of sparse points from all scans and, in the meantime,
allows efficient optimization. The correlation (or entropy)-
based scan registration in [25] naturally extends to multiple
scans, however, it requires to compute the correlation between
all point pairs, a computation-costly procedure that requires
careful engineering [26] or GPU acceleration [27].

To lower the computation load, recent work [28]–[31]
have concentrated on conducting bundle adjustment on plane
features only. These work simultaneously optimize the plane
parameters and scan poses, leading to an optimization of
high-dimension. In contrast, our method considers both planes
and edges and analytically solve both features in closed-form
before the BA optimization. The resultant BA reduces to
minimizing the eigenvalues over the scan poses only. With
a cost function (i.e., eigenvalue) similar to [32] which uses
an inefficient gradient descent optimization, we analytically
derive the second order derivatives and exploit a highly
efficient Gauss-Newton method to speedup the optimization.
These two novel contributions, i.e., the elimination of feature

2https://www.livoxtech.com/horizon

Fig. 3. A feature in space and the corresponding feature points drawn from
multiple scans: (a) plane feature; (b) edge feature.

(both edge and plane) parameters from the optimization,
which significantly reduces the optimization dimension, and
the second-order optimization, which significantly speedup the
convergence, allows the BA to be conducted in nearly real-
time even when optimizing very large number (e.g., a few
hundreds) of features. Moreover, unlike prior methods [28]–
[32]which typically require to segment planes from raw point-
cloud and usually admit true plane features, we propose an
adaptive voxelization to match both plane and edge features
without a segmentation. This method can further adapt to
various environments with both large planes (e.g., ground,
wall) and small planar patches (e.g., tree crowns).

There are also some existing work on LOAM with sliding
window optimization. Ye et al. [33] and Shan et al [34]
optimize a sliding window of lidar scans by registering each
scan in the sliding window to the map built so far. This
essentially ignored all concurrent constraints among scans
within the sliding window, hence leads to suboptimal solutions.
Accounting for all these constraints would lead to repeated
pairwise scan registration as in [35]. Droeschel et al. [36] uses
a multi-resolution occupancy grid map which allows multi-
view registration but is too costly in memory or computation
[37]. Compared to these work, our method considers all
constraints among all scans either in the sliding window or
from the map and can be solved very efficiently.

The rest of the paper is organized as follows: In Section
III, we present the theoretical framework for BA on sparse
lidar points. The adaptive voxelization is presented in Section
IV. We present our LOAM implementation with a local BA in
Section V. The experiments are detailed in Section VI. Finally,
Section VII concludes the paper and presents future work.

III. BA FORMULATION AND DERIVATIVES

A. Direct BA formulation

Given a group of sparse feature points pfi (i = 1, · · · , N)
drawn from M scans but all correspond to the same feature
(plane or edge) (see Fig. 3). Assume the i-th feature point
is drawn from the si-th scan, where si ∈ {1, · · · ,M}, and
denote the pose of the M scans as T = (T1, · · · ,TM ), where
Tj = (Rj , tj) ∈ SO(3)×R3 and j ∈ {1, · · · ,M}. Then, the
feature point in global frame is

pi = Rsipfi + tsi ; i = 1, · · · , N. (1)

As defined previously, the problem of lidar BA refers to
jointly determining the poses of the M scans and the global



LIU et al.: BALM: BUNDLE ADJUSTMENT FOR LIDAR MAPPING 3

3D point-cloud map. Now the 3D map is a single feature (edge
or plane), then the BA reduces to jointly determining the poses
T and location of the single feature, which is represented by
a point q on the feature and a unit vector n (n is the normal
vector of the plane or the direction of the edge). In case of
plane feature, the direct BA formulation is to minimize the
summed squared distance from each plane feature point pi,
which depends on the pose Tsi , to the plane:

(T∗,n∗,q∗) = arg min
T,n,q

1

N

∑N

i=1

(
nT (pi − q)

)2
= arg min

T

(
min
n,q

1

N

∑N

i=1

(
nT (pi − q)

)2)
︸ ︷︷ ︸

=λ3(A); if n∗=u3,q∗=p̄

, (2)

where λk (A) denotes the k-th largest eigenvalue of matrix
A, uk is the corresponding eigenvector, p̄ and A are:

p̄ =
1

N

∑N

i=1
pi; A =

1

N

∑N

i=1
(pi − p̄) (pi − p̄)

T (3)

Similar to the plane feature, the direct BA formulation for
an edge feature is to minimize the summed squared distance
from each edge feature point pi to the edge:

(T∗,n∗,q∗) = arg min
T,n,q

1

N

∑N

i=1

∥∥(I− nnT ) (pi − q)
∥∥2

2

= arg min
T

(
min
n,q

1

N

∑N

i=1

∥∥(I− nnT ) (pi − q)
∥∥2

2

)
︸ ︷︷ ︸
=Tr(A)−λ1(A)=λ2(A)+λ3(A); if n∗=u1,q∗=p̄

,

(4)
where Tr(A) = 1

N

∑N
i=1 ‖pi − p̄‖22 denotes the trace of A.

Note that in (2) and (4), the optimal point q∗ is not
unique, as the point is free to move within the plane (or
along the edge). However, this has no effect on the resultant
cost function to be optimized. Furthermore, (2) and (4) imply
that the optimal feature (plane or edge) parameter can be
analytically obtained before the BA, and the resultant BA
problem is only dependent on the poses T. This agrees well
to our intuition that the 3D point-cloud map (hence the plane
or edge features) are determined once the scan poses are
known. Moreover, the optimization on the poses T reduces
to minimizing the eigenvalues of the matrix A in (3). i.e., the
BA leads to minimizing

λk(p(T)), (5)

over T, where p = [pT1 · · ·pTN ]T is the vector of all feature
points corresponding to the same feature.

To allow efficient optimization with the cost in (5), we
analytically derive the closed-form derivatives, up to second
order, with respect to the pose T. Due to the chain rule, we
derive the derivatives with respect to the point vector p first.

B. The Derivatives
Theorem 1. For a group of points, pi (i = 1, · · · , N) and the
covariance matrix A defined in (3). Assume A has eigenvalues
λk corresponding to eigenvectors uk (k = 1, 2, 3), then

∂λk
∂pi

=
2

N
(pi − p̄)Tuku

T
k , (6)

where the p̄ is the average of the N points as in (3).

Theorem 2. For a group of points, pi (i = 1, · · · , N) and the
covariance matrix A defined in (3). Assume A has eigenvalues
λk corresponding to eigenvectors uk (k = 1, 2, 3). Moreover,
λi 6= λk when i 6= k, then

∂2λk
∂pj∂pi

=



2

N

(
N − 1

N
uku

T
k + uk(pi − p̄)TUF

pj

k

+UF
pj

k

(
uTk (pi − p̄)

))
, i = j

2

N

(
− 1

N
uku

T
k + uk(pi − p̄)TUF

pj

k

+UF
pj

k

(
uTk (pi − p̄)

))
, i 6= j

(7)

F
pj

k =

F
pj

1,k

F
pj

2,k

F
pj

3,k

 ∈ R3×3, U =
[
u1 u2 u3

]
,

Fpj
m,n =


(pj − p̄)T

N(λn − λm)
(umuTn + unuTm),m 6= n

01×3 ,m = n

C. Second order approximation

With the first and second order derivatives in previous
sections, we can approximate the cost function (5) by its
second order approximation as below:

λk(p + δp) ≈ λk(p)+J(p)δp +
1

2
δpTH(p)δp, (8)

where J(p) is the Jacobian matrix with i-th elements in (6)
and H(p) is the Hessian matrix with i-th row, j-th column
elements in (7).

Recall that the point vector p is further dependent on the
scan poses T as in (1). Perturbing a pose Tj in its tangent
plane δTj =

[
φTj δtTj

]T
using the � operation defined in

[38], we have

Tj = (Rj , tj); Tj � δTj = (Rj exp
(
φ∧j
)
, tj + δtj) (9)

and

pi=Rsi exp(φ∧si)pfi +tsi ;
δpi
δTsi

=
[
−Rsi(pfi)

∧ I
]

(10)

D =
δp

δT
=


...

· · · Dij · · ·
...

 ∈ R3N×6M (11)

Dij =

{
δpi

δTsi
for j = si ∈ {1, · · · ,M}

03×6 for else
(12)

Substituting (12) into (8) leads to

λk(T � δT) ≈ λk(T) + JD︸︷︷︸
J̄

δT +
1

2
δTT DTHD︸ ︷︷ ︸

H̄

δT (13)

Finally, we use a Levenberg-Marquardt (LM) method to
minimize the cost λk by repeatedly approximating it by the



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

Root node

1st layer

2nd layer

a b

c

Fig. 4. (a) An exemplary voxel map, different color represents different
voxels. Pictures in the lower right white box are the zoomed view of plane
points on the tree crown, which contains 3 voxels with size 0.125m (left: front
view; right: side view). (b) The actual environment photo. (c) All octrees are
indexed in a Hash table.

second order approximation (13). In each iteration, the solution
is solved from

(H̄(T) + µI)δT∗ = −J̄(T)T , (14)

where µ is the stepsize determined from the LM method.

IV. ADAPTIVE VOXELIZATION

The BA formulation in Section. III requires to find all
feature points corresponding to the same feature (edge or
plane). To do so, we propose a novel adaptive voxelization
method: assume that a rough initial pose of different scans
are available (e.g., from a LOAM odometry), we repeatedly
voxelize the 3D space from a default size (e.g., 1m): if all
feature points (from all scans) in the current voxel lie on
a plane or edge (e.g., by examining the eigenvalue of the
point covariance matrix (3)), the current voxel is kept in
memory along with the contained feature points; otherwise, the
current voxel breaks into eight octants and proceeds to check
each octant until reaching the minimal size (e.g., 0.125m).
The proposed adaptive voxelization generates a voxel map,
where different voxels may have different size adapted to the
environment. For each voxel, it corresponds to one feature,
and hence one cost item as in (13). An exemplary voxel map
is seen in Fig. 4(a).

The adaptive voxelization has many advantages: 1) It is
naturally compatible with existing data structures such as
octrees, hence its implementation and efficiency can be greatly
facilitated; 2) It is usually more efficient than constructing
a full Kd-tree on feature points [10] as early termination
may occur when the contained feature points lie on the same
plane or edge. Such an advantage will be more obvious when
the environment has large planes or long edges; 3) A map
with adaptive voxels will lower the time for searching feature
correspondences in lidar odometry. It is only necessary to
search the voxel a feature point lies in or near to, instead
of the nearest points that require more exhaustive search [10].

In our implementation, we construct two voxel maps, one
for edge features and one for planar features. The voxel map,

by its construction, naturally suits to an octree structure. To
reduce the depth of the octree, we use a set of octrees indexed
by a Hash table (see Fig. 4(c)). Each octree corresponds a
non-empty cube of the default voxel size (e.g., 1m) in the
space. Different octrees may have different depth, depending
on the geometry of that cube in the space. Each leaf node (i.e.,
a voxel) in an octree saves feature points all corresponding to
the same feature (e.g., plane or edge).

Remark 1. If a voxel contains too many points, the Hessian
matrix in (8) would have a very high dimension, in this
case, we could average the points from the same scan. The
averaged points have fewer number and lie on the same plane
determined by the raw feature points. This allows to save much
computation without degrading the mapping consistency.

Remark 2. The Hessian matrix computed in Theorem 2
requires λi 6= λk when i 6= k. For a voxel whose λk has
algebraic multiplicity more than one, we simply skip it.

Remark 3. Although we keep saying edge features and
plane features, the method naturally extends to non-planar
features (e.g., curved surfaces) by constructing the voxel map
at a finer level and allowing larger variance when examining
whether the contained points lie on the same plane.

Remark 4. Two conditions are set to stop the recursive sub-
division: one is the maximal depth of the tree and the other is
the minimum number of points in a voxel.

V. LOAM WITH LOCAL BA

Lidar Feature Extraction

10Hz Odometry Output

2Hz Map Output

Scan to Map

Voxel Map

(shared memory)
Map Refinement

One voxel

New scanP
fix P

sw

Marginalize

Sliding window

Fig. 5. Overview of LOAM with local BA.

In this section, we incorporate the proposed BA formulation
and its optimization methods into a LOAM framework. The
system overview is shown in Fig. 5. It consists of three parallel
threads: feature extraction, odometry, and map-refinement. The
feature extraction thread extracts the edge and plane features
similar to [10] and [12].

Once receiving a new scan of feature points, the odometry
estimates the lidar pose by registering the new scan to the
existing map. Unlike the existing methods [10, 12] where each
feature point is matched to some nearest points in the map,
we leverage the adaptive voxel map to speedup the matching
process. More specifically, when constructing the voxel map,



LIU et al.: BALM: BUNDLE ADJUSTMENT FOR LIDAR MAPPING 5

we compute the center point and normal (or direction) vector
of the plane (or edge) in a voxel. Then for a point in the new
scan, we search the nearest voxel (represented by its center
point) by computing the distance between the point and the
plane or edge feature in the voxel.

With the odometry, the new scan can be roughly registered
to the global frame and be pushed to the voxel map: for each
point in the new scan, search the voxel it lies in and add this
point to the leaf node of the corresponding octree. If no voxel
is found in the existing map for the point in the new scan,
create a new octree, index its root in the Hash table, and add
this point to the root node. After all feature points of the new
scan are distributed to the leaf node of existing octrees or the
root node of newly created octrees, we update the voxel map
as the way it is constructed: if points in a node (leaf or node)
do not make a single feature (plane or edge), divide the node
into eight and check each of them. After pushing a certain
number of new scans to the voxel map, a map-refinement
is triggered. The map-refinement performs a local BA on a
sliding window of lidar poses. Any voxel containing points
within the sliding window (i.e., Psw) are used to construct
cost items as (2) or (4). Then, the map-refinement repeatedly
minimizes the second order approximation (13) of the total
cost consisting of all relevant voxels. This refines all the lidar
poses within the sliding window. The updated poses are then
used to update the center points and normal vectors of all
involved voxels.

Once the sliding window is full, points from older scans
are merged to the map points Pfix. A nice property of the
point covariance matrix (3) is the existence of recursive form
[39], allowing all points outside the sliding window to be
summarized in a few compact matrices and vectors without
saving the raw points (see lower part of Fig. 5). The merged
points Pfix will be retained in the voxel map for odometry
and map-refinements.

VI. EXPERIMENTS

We present experimental results to verify the effectiveness
of the proposed BA in LOAM. In the experiment, the lidar
odometry runs at 10Hz, the map-refinement is triggered after
receiving 5 scans hence running at 2Hz. We use a sliding
window of 20 most recent scans. All the experiments run on
a laptop computer with CPU i7-10750H and 16 GB memory.
More experiment details can be found in the video available
at https://youtu.be/d8R7aJmKifQ.

A. Livox Horizon

We test our algorithm on Livox Horizon lidar, which has
a 25◦ × 82◦ FoV, and compare its performance with that
of a state-of-the-art implementation of LOAM [10] for this
lidar3. The lidar in this experiment is handheld and moving in
HKU campus (Fig. 6). The total path length is about 817m.
We return to the start position after 20 minutes of walking.
Fig. 6 (a) and (b) show the odometry and mapping results of
BALM and LOAM, respectively. It is seen that our method
successfully returns to the start point while LOAM leads to

3https://github.com/Livox-SDK/livox mapping

Start

Start

b

a

c d

Fig. 6. Results of outdoor walking dataset: (a) the overall map built by
BALM, (b) the map built by LOAM. (c) and (d) show the side view of map
and odometry near to the start/end point (the white box in (a) and (b)) of our
method BALM and LOAM, respectively.

TABLE I
DRIFT COMPARISON ON LIVOX HORIZON LIDAR DATA.

Distance (817m) LOAM (m) BALM (m)

Translation error 6.228 (0.762%) 0.31 (0.038%)

significant drift. The elevation error of our method is also
much smaller (e.g., 0.27m versus 3.98m, see Fig. 6 (c) and
(d)). The total translation error is summarized in Table I.

We additionally conducted an indoor experiment where the
sensor is handheld and moving along a stairway. Results in
Fig. 2 validates the effectiveness of the proposed local BA.

B. Livox MID-40

In this experiment, we test our algorithm on Livox Mid-40
lidars4 mounted on a UGV and compare its performance with
LOAM implementation3. For a classic 360◦ spinning lidar, it is
easy to turn in a corridor corner. But for the Livox Mid-40 lidar
with a small 40◦ FoV, degeneration occurs easily because of
the lessen feature points. This leads to a zigzag pose trajectory
in LOAM (Fig. 7(d)). The degraded pose estimation causes
map inconsistencies, which in turn worsen the following pose
estimation furthermore. Hence, the LOAM odometry is falsely
“raised” at the corner (Fig. 7(b)). On the other hand, although
BALM produces a similarly zigzag pose trajectory due to
degeneration in the front-end (i.e., scan to map) similar to
LOAM, it has a much more consistent map (Fig. 7(e)), which
in turn lowers the drift, due to the local BA (Fig. 7(c)).

C. Velodyne VLP-16

We further test our algorithm on Velodyne VLP-16 lidar.
We use the data offered by LeGO-LOAM [11] available on

4https://www.livoxtech.com/mid-40-and-mid-100

https://youtu.be/d8R7aJmKifQ
https://github.com/Livox-SDK/livox_mapping
https://www.livoxtech.com/mid-40-and-mid-100


6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

Start

a

b c

d e

Fig. 7. Indoor mapping and odometry results: (a) the overall scene; (b) and
(d) show the odometry and mapping results of LOAM; (c) and (e) show our
method BLAM.

TABLE II
DRIFT COMPARISON ON VELODYNE-16 LIDAR DATA.

Distance(210m) LOAM (cm) LeGO-LOAM (cm) BALM (cm)

Translation error 56.8 (0.27%) 38.5 (0.18%) 28.0 (0.13%)

Github5, and perform comparison study. The path has the same
starting and end point. The scene can be seen in Fig. 8(a) and
the path is colored in white. The paths of LOAM, LeGO-
LOAM and BALM are shown in Fig.8(b). The drift when
returning to start is given in Table II.

D. Running time

In LOAM, a feature point in new scan should find five
closest points, but in BALM, the feature point just need to
find the closest voxel (plane or edge), which can reduce the
searching time in the scan to map. The comparison is shown
in Fig. 9(a) where the running time is for building kd-tree,
finding closed points/voxels and LM optimization. The data
of running time is obtained by experiment A, B and C. To
make a fair comparison, a fixed two-step LM optimization is
used for both methods.

Finally, Fig. 9(b) shows the number of voxels for a sliding
window of 20 most recent scans and the time for local BA and
voxel map update. It is seen that in most cases, the local BA
and voxel map update can complete in 100ms. This implies
that the local BA can nearly run in real-time as the odometry
(i.e., 10Hz).

VII. CONCLUSION AND FUTURE WORKS

This paper formulated a framework for lidar bundle ad-
justment (BA) and developed theoretical derivatives allowing

5https://github.com/RobustFieldAutonomyLab/LeGO-LOAM

10

5

0

-5

-10
60

50
40

30
20

10
0

-10 -10
0

10
20

30
40

50
60

70

X
Y

Z

a

b
BALM

LeGO-LOAM
LOAM

Start

Fig. 8. Outdoor mapping and odometry results. (a) The overview of the scene;
(b) The paths of LOAM, LeGO-LOAM and BALM

T
im

e 
(m

s)

N
u

m
b

er
 o

f 
v

o
x

el
s 1000

800

600

400

200

0

T
o

tal tim
e (m

s)

Horizon VLP-16Mid40 Horizon VLP-16Mid40

50

40

30

20

10

0

LOAM-Mapping
BALM-Scan2map

0

20

40

60

80

100

1201200

(a) (b)

Fig. 9. (a) Time for scan to map alignment in LOAM and our method; (b)
The number of voxels and computation time for a local BA over 20 scans.

efficient optimization. A novel adaptive voxelization is pro-
posed to support the lidar BA. Then the proposed BA and
optimization methods are further incorporated into a LOAM
framework to serve as the back-end for map refinement.
Experiments on various lidars and environments validate the
effectiveness of the proposed methods.

The current implementation of local BA in LOAM uses a
sliding window of temporal scans, leading to redundant in-
formation in adjacent scans sharing large overlaps. Moreover,
a drawback of our voxelization is the requirement of good
initial poses alignment. However, the current lidar odometry
uses a simple scan-to-map front-end without compensating
any motion distortion or leveraging any motion model. Future
works will adopt keyframes in a local sliding window and
further incorporate motion models. Besides the LOAM, the
proposed BA can also be used for global mapping and extrinsic
calibration, which will also be explored in the future.

APPENDIX A
A. Proof of theorem 1

Denote a point pi =
[
xi yi zi

]T
and the eigenvector

matrix U =
[
u1 u2 u3

]T
. Further denote p an element of

https://github.com/RobustFieldAutonomyLab/LeGO-LOAM


LIU et al.: BALM: BUNDLE ADJUSTMENT FOR LIDAR MAPPING 7

pi, p is one of xi, yi and zi. Then by definition, we have

Λ = UTAU (15)

∂Λ

∂p
=

(
∂U

∂p

)T
AU + UT ∂A

∂p
U + UTA

∂U

∂p
(16)

UTA = ΛUT ; AU = UA (17)

Plugging (17) into (16) yields:

∂Λ

∂p
= UT ∂A

∂p
U + Λ UT ∂U

∂p︸ ︷︷ ︸
Cp

+

(
∂U

∂p

)T
U︸ ︷︷ ︸

(Cp)T

Λ (18)

As UTU = I, where I is the identity matrix, partial
differentiating both sides with respect to p leads to

UT ∂U

∂p
+
(∂U

∂p

)T
U = 0 =⇒ Cp + (Cp)T = 0.

It is seen that Cp is a skew symmetric matrix whose
diagonal elements are zeros. Moreover, since Λ is diagonal,
the last two items of the right side of (18) sum to zero on
diagonal positions. Only considering the diagonal elements in
(18) leads to

∂λk
∂p

= uTk
∂A

∂p
uk =

∂uTkAuk
∂p

(k = 1, 2, 3)

where in the second equation the vector uk is viewed constant.
Stacking the partial differentiation of λk with respect to all
elements of pi leads to

∂λk
∂pi

=
[∂uTkAuk

∂xi

∂uTkAuk
∂yi

∂uTkAuk
∂zi

]
=
∂uTkAuk
∂pi

Recall the definition of matrix A in (3) and that

∂pj
∂pi

= I, (i = j)
∂pj
∂pi

= 0, (i 6= j),

Then, we can obtain

∂λk
∂pi

=
1

N

N∑
j=1

∂uTk (pj − p̄)(pj − p̄)Tuk
∂pi

=
2

N

N∑
j=1

(pj − p̄)Tuk
∂uTk (pj − p̄)

∂pi

=
2

N
(pi − p̄)Tuku

T
k (I− 1

N
I)

+
2

N

N∑
j=1,j 6=i

(pj − p̄)Tuku
T
k (− 1

N
I)

=
2

N
(pi − p̄)Tuku

T
k . � (19)

B. Proof of theorem 2

Consider two points, pi = [xi yi zi]
T and pj =

[xj yj zj ]
T . Denote q a element of pj , q is one of xj ,

yj and zj . Since the eigenvector matrix U is orthogonal, so

UT ∂U

∂q
+
(∂U

∂q

)T
U = 0

Define

Cq = UT ∂U

∂q
, Cq + (Cq)T = 0

The elements on the diagonal of Cq is zero. Similarly with
(18) and replace p with q

∂Λ

∂q
=UT ∂A

∂q
U + ΛCq −CqΛ (20)

Since Λ is diagonal and hence ∂Λ
∂q , for off-diagonal ele-

ments in (20), we have

0 =uTm
∂A

∂q
un + λmCq

m,n −Cq
m,nλn

Cq
m,n is the m-th row and n-th column element in Cq as

below if λm 6= λn

Cq
m,n =


1

λn − λm
uTm

∂A

∂q
un,m 6= n

0 ,m = n

(21)

According the definition of Cq ,

∂uk
∂q

=
∂Uek
∂q

= UCqek

where ek is a 3 × 1 vector in which the k-th element is 1
and the rests 0. Stacking the partial differentiation of uk with
respect to all elements of pj leads to

∂uk
∂pj

=
[∂Uek
∂xj

∂Uek
∂yj

∂Uek
∂zj

]
=
[
UCxjek UCyjek UCzjek

]
= U

[
Cxjek Cyjek Czjek

]
= U

C
xj

1,k C
yj
1,k C

zj
1,k

C
xj

2,k C
yj
2,k C

zj
2,k

C
xj

3,k C
yj
3,k C

zj
3,k

 (22)

Define F
pj
m,n =

[
C
xj
m,n C

yj
m,n C

zj
m,n

]
1×3

,m, n ∈ {1, 2, 3}.
Then, stacking each element C

xj
m,n as in (21) leads to

Fpj
m,n =


1

λn − λm
∂uTmAun
∂pj

,m 6= n

0 ,m = n

where the vector um and un are viewed constant.
By derivations similar method in (19), we can further obtain

the specific form of F
pj
m,n, as follows:

Fpj
m,n =


(pj − p̄)T

N(λn − λm)
(umuTn + unuTm),m 6= n

0 ,m = n

And hence (22) becomes

∂uk
∂pj

= U

F
pj

1,k

F
pj

2,k

F
pj

3,k

 = UF
pj

k (23)

With ∂λk

∂pi
in (19) and ∂uk

∂pj
in (23), we have:



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

∂

∂pj

(∂λk
∂pi

)
=

2

N

(
uku

T
k

∂(pi − p̄)

∂pj
+ uk(pi − p̄)T

∂uk
∂pj

+
∂uk
∂pj

(
uTk (pi − p̄)

))
=

2

N

(
uku

T
k

∂(pi − p̄)

∂pj
+ uk(pi − p̄)TUF

pj

k

+ UF
pj

k

(
uTk (pi − p̄)

))
(24)

It should be noted that uk(pi−p̄)T is a matrix but uTk (pi−p̄)
is a scalar. What is more,

∂(pi − p̄)

∂pj
=


N − 1

N
I, i = j

− 1

N
I, i 6= j

Therefore, (24) can be rewritten as (7). �

REFERENCES

[1] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment—a modern synthesis,” in International workshop
on vision algorithms. Springer, 1999, pp. 298–372.

[2] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle adjustment
in the large,” in European conference on computer vision. Springer,
2010, pp. 29–42.

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[4] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, 2007,
pp. 3565–3572.

[5] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[6] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[7] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics:
science and systems, vol. 2, no. 4. Seattle, WA, 2009, p. 435.

[8] T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Fast
and accurate scan registration through minimization of the distance
between compact 3d ndt representations,” The International Journal of
Robotics Research, vol. 31, no. 12, pp. 1377–1393, 2012.

[9] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments.” in Robotics: Science and Systems,
2018.

[10] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time,” in Robotics: Science and Systems Conference (RSS), Berkeley,
CA, Jul. 2014.

[11] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized
lidar odometry and mapping on variable terrain,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 4758–4765.

[12] J. Lin and F. Zhang, “Loam livox: A fast, robust, high-precision LiDAR
odometry and mapping package for LiDARs of small FoV,” arXiv e-
prints, p. arXiv:1909.06700, Sep. 2019.

[13] J. Zhang, M. Kaess, and S. Singh, “On degeneracy of optimization-based
state estimation problems,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 809–816.

[14] Z. Liu, F. Zhang, and X. Hong, “Low-cost retina-like robotic lidars based
on incommensurable scanning,” arXiv preprint arXiv:2006.11034, 2020.

[15] G. Blais and M. D. Levine, “Registering multiview range data to
create 3d computer objects,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 17, no. 8, pp. 820–824, 1995.

[16] R. Benjemaa and F. Schmitt, “A solution for the registration of multiple
3d point sets using unit quaternions,” in European Conference on
Computer Vision. Springer, 1998, pp. 34–50.

[17] P. J. Neugebauer, “Reconstruction of real-world objects via simultaneous
registration and robust combination of multiple range images,” Interna-
tional journal of shape modeling, vol. 3, no. 01n02, pp. 71–90, 1997.

[18] R. Bergevin, M. Soucy, H. Gagnon, and D. Laurendeau, “Towards a
general multi-view registration technique,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 18, no. 5, pp. 540–547, 1996.

[19] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous robots, vol. 4, no. 4, pp. 333–349,
1997.

[20] K. Pulli, “Multiview registration for large data sets,” in Second Inter-
national Conference on 3-D Digital Imaging and Modeling (Cat. No.
PR00062). IEEE, 1999, pp. 160–168.

[21] D. F. Huber and M. Hebert, “Fully automatic registration of multiple 3d
data sets,” Image and Vision Computing, vol. 21, no. 7, pp. 637–650,
2003.

[22] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg,
“Globally consistent 3d mapping with scan matching,” Robotics and
Autonomous Systems, vol. 56, no. 2, pp. 130–142, 2008.

[23] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[24] E. Mendes, P. Koch, and S. Lacroix, “Icp-based pose-graph slam,” in
2016 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2016, pp. 195–200.

[25] Y. Tsin and T. Kanade, “A correlation-based approach to robust point
set registration,” in European conference on computer vision. Springer,
2004, pp. 558–569.

[26] E. B. Olson, “Real-time correlative scan matching,” in 2009 IEEE
International Conference on Robotics and Automation. IEEE, 2009,
pp. 4387–4393.

[27] W. Maddern, A. Harrison, and P. Newman, “Lost in translation (and
rotation): Rapid extrinsic calibration for 2d and 3d lidars,” in 2012 IEEE
International Conference on Robotics and Automation. IEEE, 2012,
pp. 3096–3102.

[28] M. Kaess, “Simultaneous localization and mapping with infinite planes,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 4605–4611.

[29] M. Hsiao, E. Westman, G. Zhang, and M. Kaess, “Keyframe-based dense
planar slam,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 5110–5117.

[30] P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang, “Lips: Lidar-inertial 3d
plane slam,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 123–130.

[31] L. Zhou, D. Koppel, H. Ju, F. Steinbruecker, and M. Kaess, “An efficient
planar bundle adjustment algorithm,” arXiv preprint arXiv:2006.00187,
2020.

[32] G. Ferrer, “Eigen-factors: Plane estimation for multi-frame and time-
continuous point cloud alignment.” in IROS, 2019, pp. 1278–1284.

[33] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial odometry
and mapping,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 3144–3150.

[34] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam:
Tightly-coupled lidar inertial odometry via smoothing and mapping,”
arXiv preprint arXiv:2007.00258, 2020.

[35] H. Surmann, A. Nüchter, and J. Hertzberg, “An autonomous mobile
robot with a 3d laser range finder for 3d exploration and digitalization
of indoor environments,” Robotics and Autonomous Systems, vol. 45,
no. 3-4, pp. 181–198, 2003.

[36] D. Droeschel and S. Behnke, “Efficient continuous-time slam for 3d
lidar-based online mapping,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 1–9.

[37] D. Hähnel, W. Burgard, and S. Thrun, “Learning compact 3d models
of indoor and outdoor environments with a mobile robot,” Robotics and
Autonomous Systems, vol. 44, no. 1, pp. 15–27, 2003.

[38] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder, “Integrating generic
sensor fusion algorithms with sound state representations through encap-
sulation of manifolds,” Information Fusion, vol. 14, no. 1, pp. 57–77,
2013.

[39] J. Lin and F. Zhang, “A fast, complete, point cloud based loop closure for
lidar odometry and mapping,” arXiv preprint arXiv:1909.11811, 2019.


	Introduction
	Related work
	BA formulation and Derivatives
	Direct BA formulation
	The Derivatives
	Second order approximation

	Adaptive Voxelization
	LOAM with Local BA
	Experiments
	Livox Horizon
	Livox MID-40
	Velodyne VLP-16
	Running time

	Conclusion and Future Works
	Appendix A
	Proof of theorem 1
	Proof of theorem 2

	References

