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Abstract— This paper presents a computationally efficient
and robust LiDAR-inertial odometry framework. We fuse
LiDAR feature points with IMU data using a tightly-coupled it-
erated extended Kalman filter to allow robust navigation in fast-
motion, noisy or cluttered environments where degeneration
occurs. To lower the computation load in the presence of a large
number of measurements, we present a new formula to compute
the Kalman gain. The new formula has computation load
depending on the state dimension instead of the measurement
dimension. The proposed method and its implementation are
tested in various indoor and outdoor environments. In all
tests, our method produces reliable navigation results in real-
time: running on a quadrotor onboard computer, it fuses more
than 1,200 effective feature points in a scan and completes all
iterations of an iEKF step within 25 ms. Our codes are open-
sourced on Github’.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a fun-
damental prerequisite of mobile robots, such as unmanned
aerial vehicles (UAVs). Visual (-inertial) odometry (VO),
such as Stereo VO [1] and Monocular VO [2, 3] are
commonly used on mobile robots due to their lightweight and
low-cost. Although providing rich RGB information, visual
solutions lack direct depth measurements and require much
computation resources to reconstruct the 3D environment
for trajectory planning. Moreover, they are very sensitive
to lighting conditions. Light detection and ranging (LiDAR)
sensors could overcome all these difficulties but have been
too costly (and bulky) for small-scale mobile robots.

Solid-state LiDARs recently emerge as main trends in
LiDAR developments, such as those based on micro-
electro-mechanical-system (MEMS) scanning [4] and rotat-
ing prisms [5]. These LiDARs are very cost-effective (in a
cost range similar to global shutter cameras), lightweight
(can be carried by a small-scale UAV), and of high per-
formance (producing active and direct 3D measurements of
long-range and high-accuracy). These features make such
LiDARs viable for UAVs, especially industrial UAVs, which
need to acquire accurate 3D maps of the environments (e.g.,
aerial mapping) or may operate in cluttered environments
with severe illumination variations (e.g., post-disaster search
and inspection).

Despite the great potentiality, solid-state LiDARs bring
new challenges to SLAM: 1) the feature points in LiDAR
measurements are usually the geometrical structures (e.g.,
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Fig. 1.
LiDAR? and a DJI Manifold 2-C onboard computer4, all on a customized
small-scale quadrotor UAV (280 mm wheelbase). The RGB camera is
not used in our algorithm, but only for visualization. Video is available
at https://youtu.be/iYCY6T790NU

Our LiDAR-inertial navigation system runs on a Livox AVIA

edges and planes) in the environments. When the UAV is
operating in cluttered environments where no strong features
are present, the LiDAR-based solution easily degenerates.
This problem is more obvious when the LiDAR has a
small FoV. 2) Due to the high-resolution along the scanning
direction, a LiDAR scan usually contains many feature points
(e.g., a few thousand). While these feature points are not ad-
equate to reliably determine the pose in case of degeneration,
tightly fusing such a large number of feature points to IMU
measurements requires tremendous computational resources
that are not affordable by the UAV onboard computer. 3)
Since the LiDAR samples point sequentially with a few
laser/receiver pairs, laser points in a scan are always sampled
at different times, resulting in motion distortion that will
significantly degrade a scan registration [6]. The constant
rotations of UAV propellers and motors also introduce sig-
nificant noises to the IMU measurements.

To make the LiDAR navigation viable for small-scale
mobile robots such as UAVs, we propose the FAST-LIO, a
computationally efficient and robust LiDAR-inertial odome-
try package. More specifically, our contributions are as fol-
lows: 1) To cope with fast-motion, noisy or cluttered environ-
ments where degeneration occurs, we adopt a tightly-coupled
iterated Kalman filter to fuse LiDAR feature points with
IMU measurements. We propose a formal back-propagation
process to compensate for the motion distortion; 2) To lower
the computation load caused by a large number of LiDAR

3https://www.livoxtech.com/de/avia
4https://www.dji.com/cn/manifold—2/specs
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feature points, we propose a new formula for computing the
Kalman gain and prove its equivalence to the conventional
Kalman gain formula. The new formula has a computation
complexity depending on the state dimension instead of the
measurement dimension. 3) We implement our formulations
into a fast and robust LiDAR-inertial odometry software
package. The system is able to run on a small-scale quadrotor
onboard computer. 4) We conduct experiments in various
indoor and outdoor environments and with actual UAV flight
tests (Fig. 1) to validate the system’s robustness when fast
motion or intense vibration noise exists.

The remaining paper is organized as follows: In Section.
II, we discuss relevant research works. We give an overview
of the complete system pipeline and the details of each key
component in Section. III. The experiments are presented in
Section. IV, followed by conclusions in Section. V.

II. RELATED WORKS

Existing works on LiDAR SLAM are extensive. Here we
limit our review to the most relevant works: LiDAR-only
odometry and mapping, loosely-coupled and tightly-coupled
LiDAR-Inertial fusion methods.

A. LiDAR Odometry and Mapping

Besl et al. [6] propose an iterated closest points (ICP)
method for scan registration, which builds the basis for
LiDAR odometry. ICP performs well for dense 3D scans.
However, for sparse point clouds of LiDAR measurements,
the exact point matching required by ICP rarely exists.
To cope with this problem, Segal et al. [7] propose a
generalized-ICP based on the point-to-plane distance. Then
Zhang et al. [8] combine this ICP method with a point-
to-edge distance and developed a LiDAR odometry and
mapping (LOAM) framework. Thereafter, many variants of
LOAM have been developed, such as LeGO-LOAM [9]
and LOAM-Livox [10]. While these methods work well for
structured environments and LiDARs of large FoV, they are
very vulnerable to featureless environments or small FoV
LiDARs [10].

B. Loosely-coupled LiDAR-Inertial Odometry

IMU measurements are commonly used to mitigate the
problem of LiDAR degeneration in featureless environments.
Loosely-coupled LiDAR-inertial odometry (LIO) methods
typically process the LiDAR and IMU measurements sep-
arately and fuse their results later. For example, IMU-aided
LOAM [8] takes the pose integrated from IMU measure-
ments as the initial estimate for LiDAR scan registration.
Zhen et al. [11] fuse the IMU measurements and the Gaus-
sian Particle Filter output of LIDAR measurements using the
error-state EKF. Balazadegan et al [12] add the IMU-gravity
model to estimate the 6-DOF ego-motion to aid the LiDAR
scan registration. Zuo et al. [13] use a Multi-State Constraint
Kalman Filter (MSCKEF) to fuse the scan registration results
with IMU and visual measurements. A common procedure
of the loosely-coupled approach is obtaining a pose mea-
surement by registering a new scan and then fusing the

pose measurement with IMU measurements. The separation
between scan registration and data fusion reduces the compu-
tation load. However, it ignores the correlation between the
system’s other states (e.g., velocity) and the pose of the new
scan. Moreover, in the case of featureless environments, the
scan registration could degenerate in certain directions and
causes unreliable fusion in later stages.

C. Tightly-coupled LiDAR-Inertial Odometry

Unlike the loosely-coupled methods, tightly-coupled
LiDAR-inertial odometry methods typically fuse the raw
feature points (instead of scan registration results) of LIiDAR
with IMU data. There are two main approaches to tightly-
coupled LIO: optimization-based and filter-based. Geneva et
al. [14] use a graph optimization with IMU pre-integration
constrains [15] and plane constraints [16] from LiDAR
feature points. Recently, Ye et al. [17] propose the LIOM
package which uses a similar graph optimization but is
based on edge and plane features. For filter-based methods,
Bry [18] uses a Gaussian Particle Filter (GPF) to fuse the
data of IMU and a planar 2D LiDAR. This method has also
been used in the Boston Dynamics Atlas humanoid robot.
Since the computation complexity of particle filter grows
quickly with the number of feature points and the system
dimension, Kalman filter and its variants are usually more
preferred, such as extended Kalman filter [19], unscented
Kalman filter [20], and iterated Kalman filter [21].

Our method falls into the tightly-coupled approach. We
adopt an iterated extended Kalman filter similar to [21] to
mitigate linearization errors. Kalman filter (and its variants)
has a time complexity O (m?) where m is the measure-
ment dimension [22], this may lead to remarkably high
computation load when dealing with a large number of
LiDAR measurements. Naive down-sampling would reduce
the number of measurements but at the cost of information
loss. [21] reduces the number of measurements by extracting
and fitting ground planes similar to [9]. This, however, does
not apply to aerial applications where the ground plane may
not always present.

III. METHODOLOGY

A. Framework Overview

This paper will use the notations shown in Table I. The
overview of our workflow is shown in Fig. 2. The LiDAR
inputs are fed into the feature extraction module to obtain
planar and edge features. Then the extracted features and
IMU measurements are fed into our state estimation module
for state estimation at 104 z—50H z. The estimated pose then
registers the feature points to the global frame and merges
them with the feature points map built so far. The updated
map is finally used to register further new points in the next
step.

B. System Description
1) B/ 8 operator:
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Fig. 2. System overview of FAST-LIO. (a): the overall pipeline; (b): the forward and backward propagation.

TABLE I
SOME IMPORTANT NOTATIONS

Symbols Meaning

tr The scan-end time of the k-th LiDAR scan.

Ti The -th IMU sample time in a LiDAR scan.

Pj The j-th feature point’s sample time in a LiDAR scan.
1;, 15,1, The IMU body frame at the time 7, p; and tp.

Lj, Ly The LiDAR body frame at the time p; and tg.

X, X, X The ground-true, propagated, and updated value of x.
X The error between ground-true x and its estimation X.
x" The x-th update of x in the iterated Kalman filter.
X;,Xj,X)  The vector (e.g.,state) x at time 7;, p; and .

X Estimate of x; relative to Xy, in the back propagation.

Let M be the manifold of dimension 7n in consideration
(e.g., M = 5S0(3)). Since manifolds are locally homeomor-
phic to R™, we can establish a bijective mapping from a
local neighborhood on M to its tangent space R™ via two
encapsulation operators B and &5 [23]:

H: MxR"—M; HMxM—-R"
M=S0(3) : RBr=RExp(r); R;FRy=Log(Rj R,
M=R": afb= a+b; aHb=a-b
where Exp (r) =I+Tr sin ([|r]]) 4z (1—cos ([[r]))) is the

l"

l‘

is its inverse map. For a
x R™ we have:

)
exponential map [23] and Log(-
compound manifold M = SO(3

o] = [ [)e =[5

From the above definition, it is easy to verify that

)1
) X

(xHu)Bx=u; xB(yBx)=y; Vx,y € M, Yu € R™.

2) Continuous model:

Assuming an IMU is rigidly attached to the LiDAR with
a known extrinsic 1T}, (IRL7 IpL). Taking the IMU
frame (denoted as I) as the body frame of reference leads
to a kinematic model:

“pr="CSvr, “Vvr=°Rs(ay, —b,—mn,) + g, “g=0
GRI = GRI \_wm — by, — nuJ/\> bw = Npy, ba = Ipa

(D

where pr, GRI are the position and attitude of IMU in

the global frame (i.e., the first IMU frame, denoted as G),

Gg is the unknown gravity vector in the global frame, a,,
and w,, are IMU measurements, n, and n,, are the white
noise of IMU measurements, b, and b, are the IMU bias
modelled as the random walk process with Gaussian noises
Np, and np,, and the notation |a|, denotes the skew-
symmetric matrix of vector a € R® that maps the cross
product operation.

3) Discrete model:

Based on the H operation defined above, we can discretize
the continuous model in (1) at the IMU sampling period At
using a zero-order holder. The resultant discrete model is

B (A (x;, us, w;)) )

where 7 is the index of IMU measurements, the function f,
state x, input u and noise w are defined as below:

M = S0(3) x R, dim(M) = 18
x = [GRT Gp’; G bT bT G T] cM

Xi+1 = X4

VI

=71, 717 (W T T 71T
u= [wm am] , W= [l’lu n, ng, nba]
W, _beqy — Ny, (3)
v
G G
(ay,, — ba, — Ny, ;
f(Xz‘7lli7Wz‘) — :RJZ ( m; a; a,) + 78
nbwi
nbai
03x1

4) Preprocessing of LIDAR measurements:

LiDAR measurements are point coordinates in its local
body frame. Since the raw LiDAR points are sampled at
a very high rate (e.g., 200kHz), it is usually not possible to
process each new point once being received. A more practical
approach is to accumulate these points for a certain time
and process them all at once. In FAST-LIO, the minimum
accumulation interval is set to 20 ms, leading to up to 50 Hz
full state estimation (i.e., odometry output) and map update
as shown in Fig. 2 (a). Such an accumulated set of points is
called a scan, and the time for processing it is denoted as ¢
(see Fig. 2 (b)). From the raw points, we extract planar points
with high local smoothness [8] and edge points with low
local smoothness as in [10]. Assume the number of feature
points is m, each is sampled at time p; € (tx—1,t;) and is
denoted as “py,, where L; is the LiDAR local frame at the
time p;. During a LiDAR scan, there are also multiple IMU
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measurements, each sampled at time 7; € [tp_1,tx] with
the respective state x; as in (2). Notice that the last LIDAR
feature point is the end of a scan, i.e., p,, = t, while the
IMU measurements may not necessarily be aligned with the
start or end of the scan.

C. State Estimation

To estimate the states in the state formulation (2), we use
an iterated extended Kalman filter. Moreover, we characterize
the estimation covariance in the tangent space of the state
estimate as in [23, 24]. Assume the optimal state estimate of
the last LiDAR scan at t;_1 is X;_1 with covariance matrix
P;_1. Then Pj_; represents the covariance of the random
error state vector defined below:

X1 =xp_15%,_1= |00 “pT T bl
where 08 = Log(“RY“Ry) is the attitude error and the rests
are standard additive errors (i.e., the error in the estimate X
of a quantity x is X = x — X). Intuitively, the attitude error
60 describes the (small) deviation between the true and the
estimated attitude. The main advantage of this error definition
is that it allows us to represent the attitude uncertainty by the
3 x 3 covariance matrix {5050T}. Since the attitude has 3
degree of freedom (DOF), this is a minimal representation.

1) Forward Propagation:

The forward propagation is performed once receiving
an IMU input (see Fig. 2). More specifically, the state is
propagated following (2) by setting the process noise w; to
Zero:

Xit1 = X; B (Atf(X,1;,0)) ; Xo = Xp—1. 4

where At = 7,11 — 7;. To propagate the covariance, we use
the error state dynamic model obtained below:

ii—&-l =X;41 8 §i+1
= (xlEEIAtf (Xi7 u;, WL)) H

(23)
~ FzX; + Fo,w;.

(XiBALf (Xi,1;,0)) (5)

The matrix Fx and Fy, in (5) is computed following
the Appendlx A. The result is shown m (7), where w; =
W, — bw,L, a; =an,, — ba,l and A (u ) follows the same
definition in [25] as below:

A =T Lul,+ (1 - a(full) 2 ©
a(m) = Feot () = 5 Sm

BT G~T] T
a g

Denoting the covariance /gf white noises w as Q, then
the propagated covariance P; can be computed iteratively
following the below equation.

Pii1 = FxP,FL + F,QFL; Po=P;_;. (8)

The propagation continues until reaching the end time of
a new scan at ¢, where the propagated state and covariance
are denoted as Xy, Pj. Then Py represents the covariance
of the error between the ground-truth state xj and the state
propagation X, (i.e., X B Xg).

2) Backward Propagation and Motion Compensation:

When the points accumulation time interval is reached at
time tj, the new scan of feature points shoAuld be fused with
the propagated state X; and covariance P} to produce an
optimal state update. However, although the new scan is at
time ty, the feature points are measured at their respective
sampling time p; <t (see Section. III-B.4 and Fig. 2 (b)),
causing a mismatch in the body frame of reference.

To compensate the relative motion (i.e., motion distortion)
between time p; and time ?;, we propagate (2) backward as
x;_1 = %; B (-Atf(%;,u;,0)), starting from zero pose and
rests states (e.g., velocity and bias) from Xj. The backward
propagation is performed at the frequency of feature point,
which is usually much higher than the IMU rate. For all
the feature points sampled between two IMU measurements,
we use the left IMU measurement as the input in the back
propagation. Furthermore, noticing that the last three block
elements (corresponding to the gyro bias, accelerometer bias,
and extrinsic) of f(x;,u;,0) (see (3)) are zeros, the back
propagation can be reduced to:

s.f. kp; = 0;
By, =%, — "Ry, (am,_, — ba, )AL — TFgLAL,
=Ry Bpl(burwn, )20, s "R, <L

— pj—1, and s.f. means

I = I = I v
"Pr,= "P1— ’“vaAt,

"Ry,

where pi—1 € [Tifl,ﬁ), At = Py
“starting from”.

The backward propagation will produce a relative pose
between time p; and the scan-end time tj: I’“TIJ. =
("Ry,, "™ py,). This relative pose enables us to project the

local measurement =7 py, to scan-end measurement © kp f; as
follows (see Fig. 2):
Lkpfj = ITZHka.flTLLj Py (10)



where IT is the known extrinsic (see Section. III-B.2).
Then the projected point “*p #, 1s used to construct a residual
in the following section.

3) Residual computation:

With the motion compensation in (10), we can view the
scan of feature points {“*py,} all sampled at the same
time t; and use it to construct the residual. Assume the
current iteration of the iterated Kalman filter is , and the
corresponding state estimate is Xj. When « = 0, X = Xy,
the predicted state from the propagation in (4). Then, the
feature points {**py,} can be transformed to the global
frame as below:

Gﬁ’;j — GTI;kITLLkpfj; j=1,---,m.

1D
For each LiDAR feature point, the closest plane or edge
defined by its nearby feature points in the map is assumed to
be where the point truly belongs to. That is, the residual is
defined as the distance between the feature point’s estimated
global frame coordinate Gﬁ?j and the nearest plane (or
edge) in the map. Denoting u; the normal vector (or edge
orientation) of the corresponding plane (or edge), on which
lying a point qu, then the residual z} is computed as:

Z’; = G] (Gﬁ?j — qu)

where G; = u;-F for planar features and G; = |u; |, for
edge features. The computation of the u; and the search of
nearby points in the map, which define the corresponding
plane or edge, is achieved by building a KD-tree of the
points in the most recent map [10]. Moreover, we only
consider residuals whose norm is below certain threshold
(e.g., 0.5m). Residuals exceeding this threshold are either
outliers or newly observed points.
4) Iterated state update:

To fuse the residual zf

prediction X and covariance Py, propagated from the IMU
data, we need to linearize the measurement model that
relates the residual z7 to the ground-truth state xj and
measurement noise. The measurement noise originates from
the LiDAR ranging and beam-directing noise L9 ny, when
measuring the point “ip ;- Removing this noise from the

point measurement Lip #; leads to the true point location

(12)

computed in (12) with the state

L

Ljpfgftj = Ljpfj —Ling,. (13)

This true point, after projecting to the frame L via (10) and
then to the global frame with the ground-truth state x; (i.e,
pose), should lie exactly on the plane (or edge) in the map.
That is, plugging (13) into (10), then into (11), and further
into (12) should result in zero. i.e.,

0=h,; (Xk ’Lj nfj): GJ'(GTIka TIJ’ITL(Lj Pr— L nfj)_GQj)
Approximating the above equation by its first order ap-
proximation made at X} leads to

14
:z;+H?§Z—|—Vj (14)

where X}, = x;, B X}, (or equivalently x; = X} B xy), H}
is the Jacobin matrix of h; (X} B X}, Lin #,) with respect to
X, evaluated at zero, and v; € N(0,R;) comes from the
raw measurement noise “/n e

Notice that the prior distribution of x; obtained from the
forward propagation in Section. III-C.1 is for
where J* is the partial differentiation of (X}, B X} )BX;, with
respect to Xj evaluated at zero:

~ ~ =T
Gk G
o lA( Rj, B°Ry,) 03“5] a16)

O15x3 Lisxis

where A(-)"! is defined in (6). For the first iteration (i.e.,

the case of extended Kalman filter), X, =Xy, then J*=1.
Combining the prior in (15) with the posteriori distribution

from (14) yields the maximum a-posteriori estimate (MAP):

. ~ 112 m K KR (|2
min (I BRel2 o+ D07 )+ HURE ) a)

where ||x|3; = x”Mx. Substituting the linearization of
the prior in (15) into (17) and optimizing the resultant
quadratic cost leads to the standard iterated Kalman fil-
ter [21], which can be computed below (to simplify the nota-

tion, let H=[H?" ... 'H® |7, R=diag (Ry, --R,,),P=
r—1p =T K & kT T
(3 PL(3%)T, and 2t = [zl’ 2t |
K =PH'(HPH? +R) !,
( ) a8)

R =%p @ (—Kzj — (1- KH)(J") ™ (X B%y)) .

The updated estimate )A(ZH is then used to compute the
residual in Section. III-C.3 and repeat the process until
convergence (i.e., Xt BXf| <e). After convergence, the

optimal state estimation and covariance is:

xp =X, P, =(I-KH)P (19)
A problem with the commonly used Kalman gain form in
(18) is that it requires to invert the matrix HPH” 4R which
is in the dimension of the measurements. In practice, the
number of LiDAR feature points are very large in number,
inverting a matrix of this size is prohibitive. As such, existing
works [21, 26] only use a small number of measurements.
In this paper, we show that this limitation can be avoided.
The intuition originates from (17) where the cost function
is over the state, hence the solution should be calculated
with complexity depending on the state dimension. In fact,
if directly solving (17), we can obtain the same solution in
(18) but with a new form of Kalman gain shown below:

K—(H'R'H+P ') 'H'R . (20)

We prove in Appendix B that the two forms of Kalman
gains are indeed equivalent based on the matrix inverse
lemma [27]. Since the LiDAR measurements are indepen-
dent, the covariance matrix R is (block) diagonal and hence
the new formula only requires to invert two matrices both
in the dimension of state instead of measurements. The new



formula greatly saves the computation as the state dimension
is usually much lower than measurements in LIO (e.g., more
than 1,000 effective feature points in a scan for 10 Hz scan
rate while the state dimension is only 18).

5) The algorithm:

Our state estimation is summarized in Algorithm 1.

Algorithm 1: State Estimation

Input : Last optimal estimation X;_; and Pi_1,
IMU inputs (a,,, w,,) in current scan;
LiDAR feature points i p #; In current scan.
1 Forward propagation to obtain state prediction X, via
(4) and covariance prediction 13k via (8);

Backward propagation to obtain Lkp 1; via (9), (10);
Kk=—1, ﬁzzo = X;
repeat

kK=kr+1;

Compute J* via (16) and P=(J*)"'P(J%)~7T;
Compute residual z7 (12) and Jocobin HY (14);
Compute the state update ig“ via (18) with the
Kalman gain K from (20);
until [ BRE| <€
0 Xy =X P = (I-KH)P.
Output: Current optimal estimation Xj and Py.

® N AW N

b=

D. Map Update

With the state update %, (hence “T;, = (°Ry,, “pr,))s
each feature point (X*p ;) projected to the body frame Ly
(see (10)) is then transformed to the global frame via:

“pr, =T T pys; j=1,--,m. (1)

These features points are finally appended to the existing
map containing feature points from all previous steps.

E. Initialization

To obtain a good initial estimate of the system state (e.g.,
gravity vector “g, bias, and noise covariance) so to speedup
the state estimator, initialization is required. In FAST-LIO,
the initialization is simple: keeping the LiDAR static for
several seconds (2 seconds for all the experiments in this
paper), the collected data is then used to initialize the IMU
bias and the gravity vector. If non-repetitive scanning is
supported by the LiDAR (e.g., Livox AVIA), keeping static
also allows the LiDAR to capture an initial high-resolution
map that is beneficial for the subsequent navigation.

IV. EXPERIMENT RESULTS
A. Computational Complexity Experiments

In order to validate the computational efficiency of the
proposed new formula for computing Kalman gains. We
intentionally replace the computation of Kalman gains with
the old formula in our system and compare their computation
time under the same system pipeline and number of feature
points. The results are shown in Table. II. It is obvious that
the complexity of the new formula is much lower than the
old one.

TABLE I
THE RUNNING TIMES OF TWO KALMAN GAIN FORMULAS

Feature Num. 307 717 998 1243 1453 1802
Old Formula (ms) 7.1 234  109.3 251 1219 1621
New Formula (ms) 0.07 0.11 0.25 0.37 0.59 1.16

Fig. 3.
in a circle path with 1.8 m radius and 1.4 m height. The circle path is
conducted repeatedly for 4 times with different periods (6-10 s). The yaw
command of the UAV maintains constant during the flight. In the end, the
UAV is manually controlled to land at the take-off point, which enables us
to measure the drift.

During the flight experiment, the UAV is automatically flying

B. UAV Flight Experiments

In order to validate the robustness and computational
efficiency of FAST-LIO in actual mobile robots, we build
a small-scale quadrotor that can carry a Livox Avia LiDAR
with 70° FoV and a DJI Manifold 2-C onboard computer
with a 1.8 GHz quad-core Intel i7-8550U CPU and 8
GB RAM, as shown in Fig. 1. The UAV has only 280
mm wheelbase, and the LiDAR is directly installed on
the airframe. The LiDAR-inertial odometry is sent to the
flight controller tracking a circle trajectory (Fig. 3). The
actual flight experiments show that FAST-LIO can achieve
real-time and stable odometry output and mapping in a
maximum of 50 Hz for the indoor environment. The flight
trajectory and mapping results of 50 Hz frame rate indoor
experiment are shown in Fig. 3. The average number of
effective feature points and running time is 270 and 6.7
ms, respectively , the drift is smaller than 0.3% (0.08 m
drift over 32 m trajectory). The flight video can be found at
https://youtu.be/iYCY6T790NU.

C. Indoor Experiments

Then we test FAST-LIO in a challenging indoor envi-
ronment with large rotation speeds. In order to generate
large rotation, the sensor suite is held on hands and un-
dergoes quickly shaking. Fig. 4 shows the angular velocity
and acceleration during the experiment. It is seen that the
angular velocity often exceeds 100 deg/s. A state of the
art implementation of LOAM on Livox LiDARs’ [10] and
LOAM with IMU® [8] are also tested as comparisons when
the feature extraction are replaced with the one of FAST-LIO.
The results show that FAST-LIO can output odometry faster
and more stable than others, as shown in Fig. 5 and Table. III.
It should be noted that the LOAM+IMU is a loosely-coupled

Shttps://github.com/Livox-SDK/livox_mapping
6https://github.com/Livox—SDK/livox_horizon_loam
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TABLE III
COMPARISON OF PROCESSING TIME FOR A LIDAR SCAN AT 10H z

Packages Num. of effective features ~ Running time
LOAM 1107 59 ms
LOAM+IMU 1107 44 ms
FAST-LIO 1430 23 ms

Angular Velocity (deg/s) Acceleration (m/s™2)

o 10 20 30 40 50 o 10 20 30 40 50
time (s) time (s)

Fig. 4. The angular velocity and acceleration in the indoor experiments.

method, hence results in inconsistent mapping. To further
verify the mapping result, we perform a second experiment
in the same environment but with a much slower motion.
The map built by FAST-LIO is shown in the lower-right
figure of Fig. 4. Since the two experiments have non-identical
movements, it leads to slight visual differences at places
occlusions occur. The rest mapping results are very close.

D. Outdoor Experiments

Here we show the performance of FAST-LIO in outdoor
environments. Fig. 6 shows the mapping results (displaying
all raw points) of the Main Building in the University of
Hong Kong. The sensor suite is handheld during the data
collection and returned to the starting position after traveling
around 140m. The drift in this experiment is smaller than
0.05% (0.07 m drift over 140 m trajectory). The scan rate is
set to 10 Hz in this experiment, and the average processing
time of a scan is 25 ms with average 1497 effective feature
points.

Further, we compare FAST-LIO with LINS’ [21]. To make
a fair comparison, we use the dataset from LINS [21], which
is a seaport area data collected by a Velodyne VLP-16 and
an Xsens MTiG-710 IMU”. The results show that the FAST-
LIO can achieve better mapping accuracy (see Fig. 7) and
only consumes 7.3 ms processing time in average while
LINS takes 34.5 ms in average, both running at 10H z. It
should be noted that since the EKF formula in LINS package
has high computational complexity (see Section. III-C.4)), it
down samples the feature points to average 147 points in
a scan (while 784 in a scan for FAST-LIO). This leads to
degraded mapping accuracy for LINS. The result in Fig. 7
shows all the feature points (before down-sample) of FAST-
LIO and LINS. All the experiments are conducted on the
DIJI Manifold2 onboard computer.

7https://github.com/ChaoqinRobotics/
LINS---LiDAR-inertial-SLAM

LOAM+IMU

FAST-LIO FAST-LIO + SLOW MOTION

Fig. 5. The Mapping results of different LIO packages in an indoor
environment with large rotation speed.

Fig. 6. Mapping results of the Main Building, University of Hong Kong.
The LiDAR platform, the same one in Fig. 1, is handheld randomly walking
to scan the building. In order to show the drift, the experiment are started
and ended at the same place.

V. CONCLUSION

This paper proposed FAST-LIO, a computationally effi-
cient and robust LiDAR-inertial odometry framework by a
tightly-coupled iterated Kalman filter. We used the forward
and backward propagation to predict the states and compen-
sate for the motion in a LiDAR scan. Besides, we proved and
implemented an equivalent formula that can achieve much
lower complexity for the Kalman gain computation. FAST-
LIO was tested in the UAV flight experiment, challenging
indoor environment with large rotation speed and outdoor
environment. In all tests, our method produced precise, real-
time, and reliable navigation results.

APPENDIX

A. Computation of Fx and Fy,

Recall x; = X; B X;, denote g(X;,w;) =
f(x;,u;, w;)At = £(X; BX;,u;, w;)At. Then the error state
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FAST-LIO

Fig. 7. Comparison between LINS [21] and FAST-LIO. The data is from
[21] and is collected by a Velodyne VLP-16 LiDAR and an Xsens MTiG-
710 IMU, the green straight line in the center is the odometry output.

model (5) is rewriten as:

G (Xi,8(Xi,wi))

(22)

Following the chain rule of partial differention, the matrix
Fx and Fy, in (5) are computed as below.

_ (9G(1,8(0,0) | 9G(0,g(%:.0)) 9g(%:.0)
Fi*( B + a0l o )

Xi=0 (73)

F,, = (2S050m) 050 )|
w og(0,w;) ow; w;=0

B. Equivalent Kalman Gain formula

Based on the matrix inverse lemma [27], we can get:
(P'+H'R'H) ' =P - PH” (HPH” + R) ' HP
Substituting above into (20), we can get:
K= (H'R'H+P ') 'H'R
—PH'R'-PH” (HPH” +R)  HPH'R"’

Now note that HPH'R™' = (HPH" +R)R™' - L
Substituting it into above, we can get the standard Kalman
gain formula in (18), as shown below.

K —PH’R' - PH’R"' + PH” (HPH” +R)
—PH” (HPH' +R) . ®
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