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In recent years dependent types have become a hot topic in programming language research. A key reason

why dependent types are interesting is that they allow unifying types and terms, which enables both additional

expressiveness and economy of concepts. Unfortunately there has been much less work on dependently typed

calculi for object-oriented programming. This is partly because it is widely acknowledged that the combination

between dependent types and subtyping is particularly challenging.

This paper presents λI≤ , which is a dependently typed generalization of System F≤ . The resulting calculus

follows the style of Pure Type Systems, and contains a single unified syntactic sort that accounts for expressions,

types and kinds. To address the challenges posed by the combination of dependent types and subtyping, λI≤
employs a novel technique that unifies typing and subtyping. In λI≤ there is only a judgment that is akin

to a typed version of subtyping. Both the typing relation, as well as type well-formedness are just special

cases of the subtyping relation. The resulting calculus has a rich metatheory and enjoys of several standard

and desirable properties, such as subject reduction, transitivity of subtyping, narrowing as well as standard

substitution lemmas. All the metatheory of λI≤ is mechanically proved in the Coq theorem prover. Furthermore,

(and as far as we are aware) λI≤ is the first dependently typed calculus that completely subsumes System F≤ ,

while preserving various desirable properties.
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1 INTRODUCTION

Type systems for OOP languages are becoming increasingly more expressive and complex. For
example the first versions of Java were simply typed. Java 5 introduced Generics, bringing (bounded)
parametric polymorphism into mainstream OOP languages. Modern OOP languages, such as Scala,
go further and include several advanced features such as higher-order polymorphism [Girard 1972;
Moors et al. 2008] and path-dependent types [Odersky et al. 2004; Rompf and Amin 2016]. The extra
complexity of the type systems is reflected by the significant effort to develop the corresponding
metatheory. A notorious example of this is the development of the foundational metatheory for
Scala, which has been an ongoing effort that lasted for more than 10 years and recently culminated
with the Dependent Object Types (DOT) calculus [Rompf and Amin 2016]. DOT is an impressive
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feat, which required the development of several new proof techniques to prove type-safety and
other properties.

In recent years dependent types [Altenkirch et al. 2010; Augustsson 1998; Casinghino et al. 2014;
Coquand and Huet 1988; Sjöberg et al. 2012; Sjöberg and Weirich 2015; Stump et al. 2008; Weirich
et al. 2013] have become a hot topic in programming language research. In functional programming
dependent types are now trendy. Several new functional programming languages, most notably
Agda [Norell 2007] and Idris [Brady 2013], are now dependently typed. A key reason why dependent
types are interesting is that they naturally lead to a unification between types and terms, which
enables both additional expressiveness and economy of concepts. The added expressiveness comes
from the fact that types can now depend on values. Thus it becomes possible to express types
such as lists of a certain size n. Such sized list type ensures stronger invariants and is helpful
to prevent errors such as out-of-bounds errors. The other potential benefit of dependent types,
and the main motivator for our goals in this paper, is that once various different levels of syntax
(such as terms and types) are unified, then redundancy of language constructs at the various levels
can be avoided. This leads to an economy of concepts compared to more traditional calculi for
programming languages, which have different stratified levels of syntax. In turn, the economy of
concepts results in a significantly more compact metatheory, and can also lead to a reduction of
the necessary implementation effort. The key enabler for unifying terms and types in dependently
typed calculi is the adoption of a style similar to Pure Type Systems (PTSs) [Barendregt 1991]. In
PTSs there is only a single level of syntax for terms, and types (or kinds) that are expressed using
the same syntax. This is in contrast with more traditional calculi, where distinct pieces of syntax
(terms, types and kinds) are separated.

Like functional languages, OOP languages can also benefit from dependent types for exactly
the same reasons: added expressiveness; and economy of concepts. Given that the complexity
of type systems for OOP languages is so high, techniques for bringing down such complexity,
while retaining or even increasing expressiveness are certainly welcome. The economy of concepts
afforded by unified syntax typical of dependently typed languages can help here, since it can
significantly reduce the number of language constructs and relations needed in a calculus. Unfortu-
nately, there has been less work on dependently typed calculi for object-oriented programming. We
believe that there are essentially two primary reasons for this. The first reason, which applies to
programming languages in general (not just OOP), is that the interaction between general recursion
and dependent types is challenging. Essentially recursion breaks strong normalization, which many
common properties in dependently typed calculi depend upon. However, this area has been actively
investigated in the last few years, and a general approach [Kimmell et al. 2012; Sjöberg et al. 2012;
Sjöberg and Weirich 2015; Stump et al. 2008; Yang et al. 2016], based on explicit casts for type-level
computation, has emerged to provide an interesting solution for this problem. The second reason is
that how to smoothly combine dependent types and subtyping is still an open problem. Subtyping
is a substantial difference to traditional PTSs, which do not have such feature. The issue with
subtyping is well summarized by Aspinall and Compagnoni [1996]:

One thing that makes the study of these systems difficult is thatwith dependent types,

the typing and subtyping relations become intimately tangled, whichmeans that

tested techniques of examining subtyping in isolation no longer apply.

In essence the big difficulty is that the introduction of dependent types makes typing and
subtyping depend on each other. This causes several difficulties in developing the metatheory
for calculi that combine dependent types and subtyping. Practically all previous work [Aspinall
and Compagnoni 1996; Castagna and Chen 2001; Chen 1997, 2003; Zwanenburg 1999] attempts to
address such problem by somehow untangling typing and subtyping, which has the benefit that
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the metatheory for subtyping can be developed before the metatheory of typing. Nevertheless,
several results and features prove to be challenging. For example, several systems [Aspinall and
Compagnoni 1996; Zwanenburg 1999] drop the support of top types, which are essential in OOP
programs to model the universal base class. Transitivity is difficult to prove as it may be entangled
with other properties such as subject reduction and strong normalization. Several studies [Aspinall
and Compagnoni 1996; Castagna and Chen 2001] have to use sophisticated techniques to show that
transitivity holds. Pure Subtype Systems [Hutchins 2010] take a different approach, by eliminating
typing and making subtyping the essential notion in the calculus. While this simplifies the syntax
and typing rules, and it is a very innovative idea, the metatheory is complex. Hutchins failed
to completely prove transitivity elimination and left several important lemmas that depend on
transitivity, such as subject reduction as conjectures instead. Finally, it is worthwhile mentioning
that we view the work on the DOT calculus as complementary to our own. The DOT calculus [Rompf
and Amin 2016] has path-dependent types, which are related but different to the dependent types
discussed in this paper; and it also has a very rich notion of bounds, that goes well beyond bounded
quantification. However, the DOT calculus does not attempt to unify types and terms, or typing
and subtyping. Also, the rich features of DOT prevent conventional properties such as transitivity
elimination (although it does have type-safety and an axiomatic transitivity property).
Despite the previous work on the combination of dependent types and subtyping, no calculi

has managed to subsume System F≤ [Cardelli et al. 1994], together with its desirable properties
(for example transitivity elimination and subject reduction). System F≤ is a standard polymorphic
calculus with subtyping, often identified as a canonical calculus capturing the essential OOP features
(and especially bounded quantification). Given the importance of System F≤ as a foundational
model for OOP, it seems highly desirable that a dependently typed OOP calculus subsumes it.

This paper presents λI≤ , which is a dependently typed generalization of System F≤ . To address
the challenges posed by the combination of dependent types and subtyping, λI≤ employs a novel
technique that unifies typing and subtyping. In λI≤ there is only one judgment that is akin to a typed
version of subtyping. Both the typing relation, as well as type well-formedness are just special
cases of the subtyping relation. Therefore, λI≤ takes a significantly different approach compared
to previous work. Previous work essentially attempts to fight the entanglement between typing
and subtyping. In contrast, what we propose with λI≤ is to embrace such tangling, and essentially
collapsing the typing and subtyping relations into the same relation. This approach is different
from Hutchins’ technique, which simply eliminates types and typing. λI≤ retains types.

The λI≤ calculus follows the style of Pure Type Systems, and contains a single unified syntactic
sort that accounts for expressions, types and kinds. It is directly based on the λI calculus [Yang et al.
2016], which is a dependently typed calculus with iso-types. Iso-types provide a simple form of
type casts, and λI≤ adopts that idea to address the issues arising from the combination of recursion
and dependent types. The novelty over λI is the support for OOP features such as higher-order
subtyping [Pierce and Steffen 1997], bounded quantification and top types. To illustrate the expressive
power of λI≤ , we show how object encodings relying on higher-order subtyping can be done in λI≤ .
The resulting calculus enjoys several standard and desirable properties, such as subject reduction,
transitivity of subtyping, narrowing as well as standard substitution lemmas. All the metatheory of
λI≤ and has been proved in the Coq theorem prover [The Coq development team 2016]. We also
provide an algorithmic version of λI≤ based on bi-directional type-checking [Pierce and Turner
2000], which is shown to be sound and complete (also proved in Coq) with respect to the declarative
version. Finally we show that λI≤ completely subsumes System F≤ in expressive power. The manual
completeness proof of λI≤ over System F≤ is presented in the extended version [Yang and Oliveira
2017]. This proof is manual due to the well-known difficulties in mechanizing completeness proofs
between type systems with unified and stratified syntax [Kaiser et al. 2017].
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In summary the contributions of this work are:

• Unified subtyping: A novel technique that unifies typing and subtyping into a single
relation. This technique enables the development of expressive dependently typed calculi
with subtyping.

• The λI≤ calculus:A dependently typed calculus with subtyping that uses unified syntax, and
unified subtyping. The calculus supports top types, higher-order polymorphism and bounded

quantification. The paper presents a declarative version of the calculus, and a sound and
complete algorithmic version is discussed. A full specification of the algorithmic system is
presented in the extended version of this paper [Yang and Oliveira 2017].

• Mechanized metatheory in Coq: All proofs except for the completeness theorem over
System F≤ have been mechanized and machine-checked in the Coq theorem prover1.

• Completeness of λI≤ over System F≤: A completeness proof showing that λI≤ subsumes
System F≤ is available in the extended version [Yang and Oliveira 2017].

• Object encodings in λI≤: As an example illustrating the expressive power of λI≤ , we show
how object encodings relying on higher-order subtyping, and originally presented in System
Fω≤ [Pierce and Steffen 1997] can be done in λI≤ .

2 OVERVIEW

In this section, we briefly introduce the concept of unified syntax and discuss the problem of com-
bining dependent types with subtyping. We informally introduce the key features of λI≤ calculus,
namely unified subtyping and the support for dependent types by explicit casts. To illustrate the
suitability of λI≤ to model objects, we adapt the existential object encoding [Bruce et al. 1999; Pierce
and Turner 1994] (originally based on System Fω≤ ) to λI≤ . The formal details of λI≤ are further
discussed in Sections 3 and 4.

2.1 Unified Syntax versus Stratified Syntax

Pure Type Systems [Barendregt 1991] (PTSs) are a uniform framework for typed lambda calculi.
PTSs feature unified syntax which defines a single syntactic category for terms, types and kinds.
This brings economy in terms of syntax and defining relations over the system. In contrast, System
Fω [Girard 1972], a higher-order lambda calculus, is usually presented using stratified syntax [Pierce
2002], which defines terms, types and kinds in distinct syntactic categories. System Fω≤ [Pierce
and Steffen 1997] extends System Fω with subtyping and bounded quantification. Because of the
separation of syntax, the subtyping relation in System Fω≤ needs to be defined over multiple syntactic
forms of abstraction, i.e., abstraction over terms, types and type operators. This causes duplication
and complexity in the metatheory.

Note that System Fω (without subtyping) can also be modeled with unified syntax: it is a special
case of PTSs and covered by Barendregt’s λ-cube [Barendregt 1992]. It is tempting to adopt the
PTS-style unified syntax in System Fω≤ to simplify the subtyping relation. However, there are several
difficulties in applying such simplification to a higher-order system with bounded quantification.
Recall that there are three different forms of abstraction in System Fω≤ . It is hard to unify them
because the abstraction can quantify over a variable using two distinct relations, i.e., typing (x : A)
and subtyping (X ≤ A):

Term abstraction λx : A. e

Type abstraction λX ≤ A. e

Operator abstraction λX ≤ A. B

1Available from https://bitbucket.org/ypyang/oopsla17.
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To obtain a uniform representation of abstraction, we need to unify the typing and subtyping relation
in the first place. Moreover, calculi with PTS-style unified syntax usually allow dependent types, e.g.,
the calculus of constructions [Coquand and Huet 1988]. Combining dependent types and subtyping
has its own problems, as discussed in the coming subsection.

2.2 Combining Subtyping with Dependent Types

Mutual Dependency of Typing and Subtyping. Subtyping and dependent types are well-known
features of programming languages. Individually, each of them is well-studied. However, combining
them in the same system is usually difficult. The major reason is that allowing dependent types
makes the typing and subtyping relations entangled. The subtyping and typing2 judgments become
mutually dependent. The typing judgment depends on subtyping because of the subsumption rule:

Γ ⊢ e : A Γ ⊢ A ≤ B

Γ ⊢ e : B

Subtyping relations are defined over well-formed types, which are checked by the typing judgment
in a dependently typed system. For example, the subtyping rule for the top type (⊤), a universal
supertype of any well-formed types (i.e. with kind ⋆), is defined as follows:

Γ ⊢ A : ⋆

Γ ⊢ A ≤ ⊤

Circularity in the Metatheory. The mutual dependency causes circularity in the metatheory, since
one cannot study properties of subtyping independently from typing. For example, λP≤ [Aspinall
and Compagnoni 1996] is an extension of the second-order dependently typed calculus λP [Baren-
dregt 1992] with subtyping. In λP≤ , the substitution lemmas for typing and subtyping depend
on each other and require a more complicated proof by induction on four different judgments
(i.e. subtyping, typing, kinding and formation) simultaneously. The transitivity of algorithmic
subtyping requires types to be well-formed through beta-conversion. As a consequence, the proofs
of transitivity, strong normalization and subject reduction depend on each other.

Problems of Existing Solutions. There are several existing options to deal with the circularity. One
could carefully prove mutually dependent lemmas together by finding a proper decreasing metric
of induction, similar to the proof of substitution lemma in λP≤ . But such method is usually too
specific and cannot be generally applied to other systems, e.g., the substitution proof in λP≤ does
not apply to λΠ& [Castagna and Chen 2001].

Another approach is to break the mutual dependency simply by forbidding typing from occurring
in the subtyping judgments. The subtyping judgments are defined over pre-terms, terms that may
not be well-formed. Then one could prove results about subtyping before typing. An obvious
limitation is that subtyping rules that must depend on typing are no longer supported, such as the
top type rule shown above. Several systems using this method, such as PTS≤ [Zwanenburg 1999],
drop the support of top types because of such limitation.

2.3 Our Solution: Unified Subtyping

We propose a new approach to solve the circularity problem, which also simplifies the syntax. The
λI≤ calculus features a single relation for both typing and subtyping, namely unified subtyping. The
relation has the form:

Γ ⊢ e1 ≤ e2 : A

2Some stratified systems [Aspinall and Compagnoni 1996; Castagna and Chen 2001] also have the kinding judgment, which

is mutually dependent on typing. We uniformly refer to them as typing.
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It simultaneously contains the subtyping relation, i.e., e1 is a subtype of e2, and the typing relation,
i.e., e1 and e2 have type A. The ordinary typing judgment can be seen as a special case of unified
subtyping:

Γ ⊢ e : A ≜ Γ ⊢ e ≤ e : A

We solve the circularity problem because typing and subtyping cannot be mutually dependent
in the first place Ð they are essentially the same relation. In λI≤ , subtyping relations can be defined
over well-formed terms. Subtyping rules that depend on typing are allowed without causing mutual
dependencies. As a result, top types are supported in λI≤ . Moreover, the metatheory of λI≤ is
significantly simplified, e.g., there is only one form of substitution lemma to be proved, as discussed
in Section 4.

Bounded quantification in λI≤ . λI≤ adopts a unified syntax and supports bounded quantification.
Because of the unified representation of typing and subtyping, instead of three separate forms of
abstraction in System Fω≤ , λI≤ has a single form of abstraction: λx ≤ e1 : A. e2. By convention, the
ordinary unbounded abstraction can be treated as syntactic sugar of a top-bounded one:

λx : A. e ≜ λx ≤ ⊤ : A. e

Notice that the top type (⊤) is generalized to have any kind A instead of ⋆. With unified syntax,
λI≤ has fewer language constructs than System Fω≤ and a simpler definition of (unified) subtyping
relation (see Section 3).

2.4 Type Casts: Dependent Types without Strong Normalization

Most traditional dependently typed languages are strongly normalizing (i.e. all programs terminate).
Strong normalization plays a fundamental role in the metatheory of those languages. However,
nearly all general purpose programming languages allow non-terminating programs, so depending
on strong normalization is a non-starter if we want to model traditional general purpose languages.
The root of the dependency on strong normalization is the so-called conversion rule, which allows
beta equality between type expressions:

Γ ⊢ e : A A =β B

Γ ⊢ e : B

The rule checks the beta-equivalence of types and encounters evaluation, which terminates if
both types are strongly normalizing. Thus, the decidability of type checking relies on strong
normalization. For dependently typed languages with subtyping, the conversion rule is usually
subsumed by the subsumption rule (see Section 2.2), which requires the subtyping relation Γ ⊢ A ≤ B

to subsume beta-equivalence A =β B. Besides decidability, the transitivity of subtyping may also
depend on strong normalization if its proof requires to first normalize the types [Aspinall and
Compagnoni 1996].

An alternative to the conversion rule. Recently, several existing studies [Kimmell et al. 2012;
Sjöberg et al. 2012; Sjöberg and Weirich 2015; Stump et al. 2008; Yang et al. 2016] provide a way to
combine general recursion with dependent types, while preserving important properties (such as
decidability of type-checking). The key idea is to replace the implicit conversion rule with explicit

type casts. This has the effect that term/type equality becomes weaker: two terms are only equal up
to syntactic equality (not beta-equality). To recover type conversion, an explicit cast must be used.
The benefit of this design is that it decouples several properties from strong-normalization.

λI≤ adopts iso-types [Yang et al. 2016], which is one of the existing approaches to type casts.
Iso-types can be viewed as a generalization of iso-recursive types [Crary et al. 1999; Pierce 2002],
which works for arbitrary reducible terms rather than just (type-level) fixpoints. Two cast operators,
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namely cast↑ and cast↓, explicitly convert the type by one-step expansion and reduction, respectively.
For example, if Int is the integer type and one-step reduction (λx : ⋆. x) Int ֒→ Int holds, we have

3 : Int
cast↑ [(λx : ⋆. x) Int] 3 : (λx : ⋆. x) Int

e : (λx : ⋆. x) Int
cast↓ e : Int

Notice that the one-step reduction relation (֒→) used in λI≤ is weak-head and call-by-name (see
Section 3.2). This makes the type conversion by casts less expressive than what is provided by the
implicit conversion rule. For example, one cannot convert the length-indexed vector type Vec (1+1)
to Vec 2 by cast↓, since the desired reduction is not at the head position.
Nevertheless, we do not consider such loss of expressiveness problematic. The absence of

conversion rule significantly simplifies the metatheory of λI≤ because typing and subtyping are up
to alpha-equality and strong normalization is not a necessity for proofs. Since our goal is to design a
calculus for traditional programming, we do not require the ability to do full type-level computation
that is required for dependently typed programming. Cast operators are still expressive enough for
our purposes: to model object encodings. Furthermore, there are alternative designs of casts which
use full reduction to recover the expressiveness of the conversion rules, but they introduce some
extra complications to the metatheory. Alternative approaches are discussed in Section 7.

2.5 Example: Object Encodings using λI≤

We show an example of object encodings in λI≤ using the existential encoding method [Bruce et al.
1999; Pierce and Turner 1994] originally based on System Fω≤ . The encoding requires pairs, records
and existential types which are not primitives but encodable in λI≤ . We first show the encoding of
dependent sums which generalize pairs and existential types before discussing object encodings.

Encoding Dependent Sums. Dependent sums are pairs where the second element can depend on
the first one. The dependent sum type is also called a Sigma-type: Σx : A. B, where x with type A
can occur in B. In λI≤ , dependent sum types can be encoded using dependent function types (i.e.
Pi-types) in a similar way to Church-encoding existential types in System F or F≤ [Pierce 2002]:

Σx : A. B ≜ Πz : ⋆. (Πx : A. B → z) → z z fresh

pack [e1, e2] as Σx : A. B ≜ λz : ⋆. λf : (Πx : A. B → z). f e1 e2 z fresh

unpack e as [x ,y] in e ′ ≜ e C (λx : A. λy : B. e′) x ,y < FV(C)

where pack and unpack are constructor and destructor of dependent sums, respectively. z is fresh
such that z < FV(Πx : A. B). Note that C is the type of e ′. A and B can be derived from the type of
e , i.e., Σx : A. B. We can show that subtyping and typing rules of dependent sums are admissible in
λI≤ . The proof is trivial and available in the extended version [Yang and Oliveira 2017].

Existential types and pairs are special cases of dependent sums. Existential types specialize A to
kind ⋆:

∃x . B ≜ Σx : ⋆. B

The constructor and destructor of an existential package are simply pack and unpack operators
of dependent sums, respectively. Pairs are non-dependent sums where x is not free in B. The pair
type, constructor and destructors can be encoded as follows:

A × B ≜ Σx : A. B where x < FV(B)

(e1, e2) ≜ pack [e1, e2] as Σx : A. B where x < FV(B)

fst e ≜ unpack e as [x ,y] in x

snd e ≜ unpack e as [x ,y] in y

where in the encoding of constructor, A and B are types of e1 and e2, respectively.
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Some OO concepts can be encoded in λI≤ with dependent sums, e.g., type members in Scala [Oder-
sky et al. 2004]. Consider an abstract interface of integer sets in Scala:

trait Set {

type T

def empty(): T

def member(x: Int, s: T): Boolean

def insert(x: Int, s: T): T

}

The type member T represents the abstract type of a set implementation. The interface contains
three methods: empty returns an empty set; member checks if an element is in the set; and insert

adds an element into the set. We can use dependent sums to encode Set in λI≤ , assuming that we
have primitive types (i.e. Int and Bool) and records (which can be encoded by pairs):

Set = ΣT : ⋆. {empty : T ,member : Int → T → Bool, insert : Int → T → T }

A generic function f on Set, e.g.,

def f(s: Set) = s.member(3, s.insert(3, s.empty()))

can be encoded as follows:

f = λs : Set. unpack s as [T , r ] in r .member 3 (r .insert 3 r .empty)

Notice that for simplicity reasons, we only encode theweak destructor of dependent sums [Schmidt
1994], i.e., the unpack operator that requires x and y are not free in the typeC of e2. It is non-trivial
to Church-encode strong dependent sums without such restriction on unpack and using only
Pi-types [Cardelli 1986b]. Nevertheless, weak dependent sums are sufficient for our purpose to
encode existential types and non-dependent pairs and yet more expressive than those constructs.
Note that unpack operator allows unrestricted projection of existential witnesses:

λe : (Σx : A. B). unpack e as [x ,y] in x

No such operation is allowed on existential types in System F or F≤ [Amin et al. 2016].

Encoding Objects. Now that pairs and existential types can be encoded in λI≤ , we present the
encoding of objects. Note again that records can be encoded with pairs using standard tech-
niques [Pierce 2002] and that we assume λI≤ is extended with integers, pairs, records and existential
types in the following text. The existential encoding of objects [Pierce and Turner 1994] is as
follows:

Obj = λI : ⋆→ ⋆. ∃X . X × (X → I X )

Obj is a type operator, i.e., a type-level function. The binder I denotes the interface. The body is an
existential type which packs a pair. The pair consists of a hidden state (with type X ) and methods
which are functions depending on the state (with type X → I X ). For a concrete example of objects,
we use the interface of cell objects [Bruce et al. 1999]:

Cell = λX : ⋆. {get : Int, set : Int → X , bump : X }

The interface indicates that a cell object consists of three methods: a getter get to return the current
state, a setter set to return a new cell with a given state, and bump to return a new cell with the
state increased by one.
We can define a cell object c as follows:

c = cast↑[Obj Cell] pack [{x : Int}, ({x = 0}, λs : {x : Int}. cast↑ [Cell {x : Int}]
{get = s .x , set = λn : Int. {x = n}, bump = {x = s .x + 1}} )]

as CellT
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We use the pack operator to create an existential package. The type {x : Int} corresponds to
the existential binder X . The pair afterwards corresponds to the body of the existential type. The
first component of the pair is the initial hidden state {x = 0}. The second component is a function
containing three methods that are defined in a record and abstracted by the state variable s . The
definition of the three methods follows the cell object interface Cell. The result type of the package,
i.e., CellT , is the one-step reduction of Obj Cell:

CellT = ∃X . X × (X → Cell X )

Note that we have two cast↑ operators here: one over the pack operator and another over the
record of methods. Due to the lack of conversion rule in λI≤ , the desired type of the object c (i.e.
Obj Cell) is an application, which is different from the type of the existential package (i.e. CellT ).
Noting that Obj Cell ֒→ CellT , we can use cast↑ to do one-step type expansion for the package.
Similarly, the second cast↑ operator in the definition of methods converts the record type into
Cell {x : Int}. We use the following syntactic sugar for consecutive cast↑ and pack:

pack [A, e] up B ≜ cast↑ [B] (pack [A, e] as B′)

where B ֒→ B′, i.e., B′ is the one-step reduction of B.
We define message passing to the object by the unpack operator to open a package. For example,

sending message get to the cell object c is denoted by c ⇐ get, which is syntactic sugar of the
generic message function getM:

c ⇐ get ≜ getM Cell c

getM = λI ≤ Cell : ⋆→ ⋆. λo : Obj I .
unpack (cast↓ o) as [X , (s,m)] in (cast↓ (m s)).get

getM is parameterized by interface I and object o with such interface, where I can be any sub-

interface of Cell. We first use the cast↓ operator to convert the type of o from Obj I to the existential
type ∃X . X × (X → I X ). Note that we extend the syntax of unpack with simple pattern matching
on pairs for brevity. The hidden state is unpacked as s with typeX . The function containing methods
ism with type X → I X . The record of methods can be obtained by applyingm to s . Noting that
the subtyping relation I X ≤ Cell X holds, the type ofm s can be converted from I X to Cell X by
subsumption. Another cast↓ further reduces Cell X to record type for accessing the member get.
The encoding of message bump is similar but needs to repack the resulting object:

c ⇐ bump ≜ bumpM Cell c

bumpM = λI ≤ Cell : ⋆→ ⋆. λo : Obj I .
unpack (cast↓ o) as [X , (s,m)] in

pack [X , ((cast↓ (m s)).bump,m)] up (Obj I )

since the bump method returns a record but not an object. The extra pack here is required to create
a new object using the result of bump as the new hidden state.

Similarly to the original example [Bruce et al. 1999], we can examine the encoding by evaluating
the expression (c ⇐ bump) ⇐ get using call-by-name reduction (֒→). For brevity, we omit the
evaluation steps here which can be found in the extended version [Yang and Oliveira 2017]. The
evaluation result is 1 as expected. We emphasize that the object encoding example exploits two
fundamental features of λI≤ , namely higher-order polymorphism and explicit casts. The absence of
a conversion rule does not prevent the object encoding because the required type-level computation
is recovered by explicit casts.
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3 THE λI≤ CALCULUS

We present the λI≤ calculus in this section. The calculus features a unified syntax with only one
syntactic level, and it is based on the λI calculus [Yang et al. 2016]. The novelty over the λI calculus
is subtyping. To integrate subtyping, typing is unified with the subtyping relation. Thus the typing
relation can be viewed as a special case of subtyping. We demonstrate the syntax, operational and
static semantics of λI≤ in the rest of this section. Notice that λI≤ discussed in this section does not
contain recursion, which can be supported by following λI . We leave the discussion of recursion to
Section 7.

3.1 Syntax

Figure 1 shows the syntax of expressions in λI≤ . It follows the unified syntax of Pure Type Sys-
tems [Barendregt 1992] where terms, types and a single kind ⋆ are defined in the same syntactic
category. By convention, we still use different metavariables to indicate if expressions are terms (e)
or types (A,B,C , etc.).

Cast Operators. Cast operators cast↑ and cast↓ (pronounced as łcast upž and łcast downž) are used
for explicit type-level computation. Types that can be converted by cast operators are also called
iso-types [Yang et al. 2016]. The cast operators were introduced in the λI calculus as a generalization
of iso-recursive types. Similarly to the fold and unfold operators in iso-recursive types [Crary et al.
1999; Pierce 2002], cast↓ and cast↑ convert the type of an expression by a one-step reduction or
expansion, respectively. cast↑ needs to be annotated with the result type of one-step expansion,
while cast↓ does not, since one-step reduction is deterministic (see Section 4.4).

Bounded Quantification. Functions are written as λx ≤ e1 : A. e2, which support bounded
quantification as in System F≤ [Cardelli et al. 1994]. The bound term e1 is annotated with a type A.
Correspondingly, function types written as Πx ≤ e : A. B also contain a bound term e . Function
types can be dependent if x occurs free in B. The top type ⊤ is a supertype of any well-formed
term, e.g., 3 ≤ ⊤. The top type generalizes the conventional top type in System F≤ , which is only a
supertype of well-formed types, e.g., Int ≤ ⊤.

Syntactic Sugar. Unbounded functions (λx : A. e) and function types (Πx : A. B) are not defined
as primitives in the syntax. With the generalized top type, we can define them as syntactic sugar of
top-bounded ones, i.e., λx ≤ ⊤ : A. e and Πx ≤ ⊤ : A. B as shown in Figure 1. We also treat arrow
types A → B as syntactic sugar of Πx : A. B if x does not occur free in B.

Context. The syntax of context Γ is defined in Figure 1. The variable binding only has the bounded
form x ≤ e : Awhere the bound term e has typeA. Similar to the treatment of unbounded functions
above, we can treat an unbounded variable binding as the syntactic sugar of a top-bounded binding,

i.e., Γ, x : A ≜ Γ, x ≤ ⊤ : A.

3.2 Operational Semantics

Figure 2 shows the definition of one-step reduction (֒→), which is used for both evaluation and type
conversion (via cast operators). It follows the call-by-name style and is weak-head. R-Beta performs
the beta reduction and does not require the argument to be a value. R-CastElim cancels consecutive
cast↓ and cast↑. R-App and R-CastDn perform reduction at the head term of an application and
the inner term of cast↓, respectively.

Since the reduction relation (֒→) is also used for type conversion, we may encounter open terms
during reduction. However, some open terms are stuck terms that are not reducible by ֒→. For
example, an application starting with an variable: x e1 e2 . . . en . Also, as the top type is generalized,
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Expressions e,A,B ::= x | ⋆ | ⊤ | e1 e2 | cast↑ [A] e | cast↓ e

| λx ≤ e1 : A. e2 | Πx ≤ e : A. B

Contexts Γ ::= ∅ | Γ, x ≤ e : A

Inert Terms u ::= x | ⊤ | u e | cast↓ u

Values v ::= ⋆ | λx ≤ e1 : A. e2 | Πx ≤ e : A. B | cast↑ [A] e | u

Syntactic Sugar λx : A. e ≜ λx ≤ ⊤ : A. e

Πx : A. B ≜ Πx ≤ ⊤ : A. B

A → B ≜ Πx : A. B where x < FV(B)

Fig. 1. Syntax

e1 ֒→ e2 Weak-head Reduction

R-Beta

(λx ≤ e3 : A. e1) e2 ֒→ e1[x 7→ e2]

R-App

e1 ֒→ e′
1

e1 e2 ֒→ e′
1
e2

R-CastDn

e1 ֒→ e′
1

cast↓ e1 ֒→ cast↓ e
′
1

R-CastElim

cast↓ (cast↑ [A] e) ֒→ e

Fig. 2. Operational Semantics

assuming it is a supertype of an n-ary function, we can have a well-formed but stuck term such
as ⊤ e1 e2 . . . en . Furthermore, if we replace x and ⊤ in both stuck terms by cast↓ x and cast↓⊤

respectively, they still cannot be reduced.
We introduce a syntactic category called inert terms to cover such stuck terms. The terminology

is inspired by the fireball calculus [Accattoli and Guerrieri 2016; Paolini and Della Rocca 1999].
Figure 1 shows the definition of inert terms, ranged over by metavariable u. Two base inert terms
are variables and the top type. Compound inert terms are either an application leading with an
inert term, i.e., u e, or down-cast inert term, i.e., cast↓ u. We treat inert terms as values. Figure 1
shows the syntax of values, ranged over by metavariable v , as shown in Figure 1. A value can either
be the kind ⋆, a function, a function type, a cast↑ term or an inert term.

There are several alternative designs on reduction rules and syntax of values, e.g., beta-top (β⊤)
reduction [Pierce and Steffen 1997] and cast↑ [A] v as a value [Pierce 2002; Yang et al. 2016]. We
will discuss these designs and their trade-offs later in Section 7.

3.3 Static Semantics

Figure 3 shows the rules of static semantics, including two judgment forms: context well-formedness
⊢ Γ and unified subtyping Γ ⊢ e1 ≤ e2 : A. The unified subtyping judgment Γ ⊢ e1 ≤ e2 : A serves
as both subtyping and typing judgment. It can be interpreted as łe1 is a subtype of e2 and both of
them have type Až. The inference rules are developed to satisfy such interpretation. For brevity, if
e1 and e2 are the same (i.e. e1 = e2 = e), we use the syntactic sugar Γ ⊢ e : A (see Figure 3), which
also has the same form of typing judgment in traditional systems. We also use Γ ⊢ A : ⋆ to check if
type A is well-formed, i.e., has the kind ⋆. Thus in λI≤ , subtyping, typing and well-formedness of
types are all unified by the unified subtyping judgment:

Unified Subtyping Γ ⊢ e1 ≤ e2 : A

Typing Γ ⊢ e : A ≜ Γ ⊢ e ≤ e : A

Well-formed Types Γ ⊢ A : ⋆ ≜ Γ ⊢ A ≤ A : ⋆
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⊢ Γ Context Well-formedness
W-Empty

⊢ ∅

W-Cons

Γ ⊢ e : A Γ ⊢ A : ⋆

⊢ Γ, x ≤ e : A

Γ ⊢ e1 ≤ e2 : A Unified Subtyping

S-Ax

⊢ Γ

Γ ⊢ ⋆ ≤ ⋆ : ⋆

S-VarRefl

⊢ Γ x ≤ e : A ∈ Γ

Γ ⊢ x ≤ x : A

S-VarTrans

x ≤ e1 : A ∈ Γ Γ ⊢ e1 ≤ e2 : A

Γ ⊢ x ≤ e2 : A

S-Top

Γ ⊢ e : A

Γ ⊢ e ≤ ⊤ : A

S-TopRefl

Γ ⊢ A : ⋆

Γ ⊢ ⊤ ≤ ⊤ : A

S-Abs

Γ ⊢ e1 : A Γ ⊢ A : ⋆

Γ, x ≤ e1 : A ⊢ e2 ≤ e′
2
: B Γ, x ≤ e1 : A ⊢ B : ⋆

Γ ⊢ (λx ≤ e1 : A. e2) ≤ (λx ≤ e1 : A. e
′
2
) : Πx ≤ e1 : A. B

S-App

Γ ⊢ e1 ≤ e2 : Πx ≤ e3 : B. C Γ ⊢ A ≤ e3 : B

Γ ⊢ e1 A ≤ e2 A : C[x 7→ A]

S-Prod

Γ ⊢ A′ ≤ A : ⋆ Γ ⊢ e : A′
Γ ⊢ A : ⋆

Γ, x ≤ e : A ⊢ B : ⋆ Γ, x ≤ e : A′ ⊢ B ≤ B′ : ⋆

Γ ⊢ (Πx ≤ e : A. B) ≤ (Πx ≤ e : A′
. B′) : ⋆

S-CastUp

Γ ⊢ B : ⋆ Γ ⊢ e1 ≤ e2 : A B ֒→ A

Γ ⊢ cast↑ [B] e1 ≤ cast↑ [B] e2 : B

S-CastDn

Γ ⊢ B : ⋆ Γ ⊢ e1 ≤ e2 : A A ֒→ B

Γ ⊢ cast↓ e1 ≤ cast↓ e2 : B

S-Sub

Γ ⊢ e1 ≤ e2 : A Γ ⊢ A ≤ B : ⋆

Γ ⊢ e1 ≤ e2 : B

Syntactic Sugar Γ ⊢ e : A ≜ Γ ⊢ e ≤ e : A

Fig. 3. Static Semantics

A key benefit of unified subtyping is that the mutual dependency issue between typing and
subtyping found in many traditional higher-order subtyping systems can be avoided since typing
is just a special case of subtyping.

The context well-formedness judgment ⊢ Γ is defined inductively on the structure of Γ. Whenever
adding a fresh binding x ≤ e : A to the context Γ, the judgment ensures e has a well-formed type A.

We briefly introduce the basic rules and discuss the rest in detail. S-Ax defines the reflexivity of
the kind ⋆ and follows the łtype-in-typež axiom [Cardelli 1986b] for the typing of ⋆. S-VarRefl
defines the reflexivity of a variable and its typing by looking up the context. S-VarTrans defines
the variable lookup followed by transitivity, which follows the algorithmic version of System
F≤ [Curien and Ghelli 1992].

Generalized Top Type. S-Top defines subtyping for the generalized top type: a supertype of any
term e which has the same type A as e . A special case is when e is also a top type. For this case we
need to define the reflexivity of top type as in the rule S-TopRefl, which indicates that the top type
can have any well-formed type A. In other words, any well-formed type can be inhabited by the
generalized top type, which causes logical inconsistency. Note that allowing łtype-in-typež axiom in
S-Ax already brings logical inconsistency [Barendregt 1992]. Our goal is to investigate the calculus
for traditional programming that allows general recursion, which is logically inconsistent any way.
Thus, we do not consider generalized top type or łtype-in-typež axiom problematic. With top type
generalized, bounded and unbounded quantification are unified, which significantly simplifies the
system.
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Functions and Function Types. S-Abs defines the relation between functions, which follows the
invariant rule for type operators in System Fω≤ [Pierce and Steffen 1997]. It requires the bounds
and argument types being compared to be identical. The first line of premises in S-Abs checks the
well-formedness of binding. The second line of premises checks if the function bodies are covariant
and their type is well-formed.

S-Prod defines the relation between function types. Unlike S-Abs, it only requires the bounds to
be identical. The argument types can vary and are contravariant. Such design follows the Kernel
Fun variant [Cardelli and Wegner 1985] of System F≤ . S-Prod can be viewed as a combination of
the subtyping rules for arrow types and universal types of System F≤ :

FS-Arrow

∆ ⊢ T1 ≤ U1 ∆ ⊢ U2 ≤ T2

∆ ⊢ U1 → U2 ≤ T1 → T2

FS-Forall

∆,X ≤ U ⊢ T1 ≤ T2

∆ ⊢ ∀X ≤ U . T1 ≤ ∀X ≤ U . T2

The first premise of S-Prod checks the contravariance of argument types, similar to the rule for
arrow types. The last premise checks the covariance of co-domains of function types with bound
fixed, similar to the rule for universal types. Other premises check the well-formedness.

Pointwise Subtyping. S-App defines subtyping between applications and uses a pointwise subtyp-
ing rule originated from System Fω≤ [Pierce and Steffen 1997], which is also used in many systems
with higher order subtyping [Aspinall and Compagnoni 1996; Hutchins 2010; Zwanenburg 1999].
When comparing two applications, we require the arguments to be identical and only compare
the head terms, equivalently to type operators in Fω≤ . The first premise of S-App ensures the head
term to have a function type, e.g., Πx ≤ e3 : B. C. The second premise checks the bound and typing
requirements: if the argument A is a subtype of e3 and A has the type B.

Explicit Casts and Syntactic Equality. S-CastUp and S-CastDn are rules for explicit cast oper-
ators. They can be seen as a generalization of typing rules of fold and unfold from iso-recursive
types [Pierce 2002; Yang et al. 2016]. Weak-head reduction (֒→) is used for type-level conversion.
Note that when comparing cast↑ terms, we require the annotations to be the same. S-Sub is the
subsumption rule. The second premise checks the subtyping relation between well-formed types by
reusing the unified subtyping judgment. Note that S-Sub does not subsume the implicit conversion
rule, which can be found in Fω≤ and Pure Type Systems. Because the unified subtyping judgment
does not subsume beta conversion, i.e., (λx : ⋆. x) Int ≤ Int does not hold. As a consequence, types
of expressions are equal only up to syntactic equality (i.e. alpha equality), but not beta equality.
Nevertheless, we can recover type-level computation through cast operators in a similar way to
iso-types [Yang et al. 2016].

Algorithmic up to Subtyping. The unified subtyping rules shown in Figure 3 are declarative

because of the subsumption rule S-Sub. But the system is almost algorithmic: if we ignore the
typing result and only consider the subtyping part, the system becomes algorithmic. Like the
algorithmic version of System F≤ , there is no built-in transitivity rule defined in λI≤ . Actually,
transitivity can be proved from other rules (see Section 4.2).

4 THE METATHEORY OF UNIFIED SUBTYPING

In this section, we discuss the metatheory of λI≤ by focusing on two main targets: transitivity and
type safety. We emphasize here that in previous work the metatheory for the combination between
dependent types and subtyping was a key difficulty, greatly due to the entanglement between the
metatheory of subtyping and typing. With unified subtyping we develop a single metatheory for
the new relation instead. Traditional theorems related to the metatheory of typing and subtyping
can then be viewed as particular instantiations of the unified subtyping theorems. Because the
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Type Preservation (4.13)

Generalized Subtype Preservation (4.15)

Substitution (4.10)

Right Reflexivity (4.3)

Correctness of Types (4.11)

Weakening (4.4)

Left Reflexivity (4.2)

Bound Narrowing (4.7)

Transitivity (4.9)

Type Narrowing (4.6)

Consistency of Typing (4.5)

Fig. 4. Dependency of Lemmas for the Metatheory of Unified Subtyping

unified subtyping relation is new, working out the metatheory for our system actually required
figuring out which theorems to prove (i.e. what form should they have); and in which order to prove
them. It is crucial (and non-trivial) to prove the right theorems in the correct order. Nevertheless,
once the form of the theorems and the order in which they should be proved are set, then the proofs
can actually be done with simple techniques similar to those used in more traditional systems. The
dependency diagram of main lemmas in this section is shown in Figure 4. We only show the proof
sketch and discuss interesting cases in this section. The full proofs (mechanized in Coq) can be
found in the extended version [Yang and Oliveira 2017].

4.1 Basic Lemmas

Before going to the proof of transitivity, we first discuss several important basic lemmas including
reflexivity, weakening, consistency of typing and narrowing.

Reflexivity. The subtyping relation in System F≤ is reflexive, i.e., ∆ ⊢ T ≤ T holds for any
well-formed type T and context ∆. Since unified subtyping in λI≤ tracks typing results, the relation
in reflexive form, i.e., Γ ⊢ e ≤ e : A, works like a typing judgment Γ ⊢ e : A (recall the syntactic
sugar in Figure 3). Reflexivity does not hold for arbitrary e and A. However reflexivity does hold
for any well-(sub)typed terms. That is:

Lemma 4.1 (Reflexivity). If Γ ⊢ e1 ≤ e2 : A, then both Γ ⊢ e1 : A and Γ ⊢ e2 : A hold.

This lemma is also called validity in some literature [Abel and Rodriguez 2008]. Here we call it
łreflexivityž because conclusions are still (unified) subtyping relations in reflexive form. It also
meets the interpretation of unified subtyping mentioned in Section 3.3. We separate the reflexivity
lemma into two sub-lemmas by dividing the conclusion:

Lemma 4.2 (Left Reflexivity). If Γ ⊢ e1 ≤ e2 : A, then Γ ⊢ e1 : A holds.

Lemma 4.3 (Right Reflexivity). If Γ ⊢ e1 ≤ e2 : A, then Γ ⊢ e2 : A holds.

Left reflexivity can be proved by induction on the derivation of Γ ⊢ e1 ≤ e2 : A. However, right
reflexivity is difficult to prove due to the generalized top type. Consider the case of S-Top, i.e.,
Γ ⊢ e ≤ ⊤ : A. We know Γ ⊢ e : A from the premise. The target Γ ⊢ ⊤ : A requires A to be well-
formed, i.e., Γ ⊢ A : ⋆, as indicated by the premise of S-TopRefl. To prove Γ ⊢ A : ⋆ from Γ ⊢ e : A,
we need a lemma called correctness of types (Lemma 4.11), which is not available currently. We
will show the full proof later in Section 4.3. Currently without right reflexivity, we add redundant
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premises in typing rules to simplify the proofs. For example, in rule S-Prod, the third premise
Γ ⊢ A : ⋆ is derivable from the first premise Γ ⊢ A′ ≤ A : ⋆ by right reflexivity. Once right reflexivity
is shown, such additional premises can be removed without changing the type system.

Weakening. The weakening lemma is standard:

Lemma 4.4 (Weakening). If Γ1, Γ3 ⊢ e1 ≤ e2 : A and ⊢ Γ1, Γ2, Γ3, then Γ1, Γ2, Γ3 ⊢ e1 ≤ e2 : A.

The proof is by induction on the derivation of Γ1, Γ3 ⊢ e1 ≤ e2 : A. The only interesting case is when
S-Prod is the last derivation. The last premise of S-Prod adds binding x ≤ e : A′ into the context
Γ. We need to ensure A′ is well-formed, i.e., Γ ⊢ A′ : ⋆, as required by context well-formedness.
Though not included in the premise, it can be derived by applying left reflexivity (Lemma 4.2) to
the first premise, i.e., Γ ⊢ A′ ≤ A : ⋆.

Consistency of Typing. We prove a simple yet important lemma, called consistency of typing:

Lemma 4.5 (Consistency of Typing). If Γ ⊢ e1 : A and Γ ⊢ e1 ≤ e2 : B, then Γ ⊢ e1 ≤ e2 : A.

The proof is by induction on the derivation of Γ ⊢ e1 ≤ e2 : B. This lemma is the key to decoupling
typing from unified subtyping. To prove Γ ⊢ e1 ≤ e2 : A, we can individually show 1) e1 has the
type A and 2) e1 is a subtype of e2 regardless of typing, as long as there is some type B such that
Γ ⊢ e1 ≤ e2 : B.

Narrowing. We have two narrowing lemmas in λI≤ , type narrowing and bound narrowing:

Lemma 4.6 (Type Narrowing). Given Γ1, x ≤ e : B, Γ2 ⊢ e1 ≤ e2 : C, if Γ1 ⊢ A ≤ B : ⋆ and

Γ1 ⊢ e : A, then Γ1, x ≤ e : A, Γ2 ⊢ e1 ≤ e2 : C.

Lemma 4.7 (Bound Narrowing). If Γ1, x ≤ e : B, Γ2 ⊢ e1 ≤ e2 : C and Γ1 ⊢ e′ ≤ e : B, then

Γ1, x ≤ e′ : B, Γ2 ⊢ e1 ≤ e2 : C.

As indicated by the name, for a binding x ≤ e : B in the context, type narrowing changes its
type from B to a subtype A, while bound narrowing changes its bound from e to a subtype e ′.
We only prove type narrowing here, since bound narrowing depends on transitivity, as will be
discussed later in Section 4.3. The type narrowing lemma is proved by induction on the derivation of
Γ1, x ≤ e : B, Γ2 ⊢ e1 ≤ e2 : C. The only interesting case is when the last derivation uses S-VarTrans,
i.e., e1 is a variable. It is easy to prove by the induction hypothesis when e1 is not x . When e1 = x ,
we know B = C and our target is to show Γ1, x ≤ e : A, Γ2 ⊢ x ≤ e2 : B. By applying the subsumption
rule S-Sub and S-VarTrans, our target becomes Γ1, x ≤ e : A, Γ2 ⊢ e ≤ e2 : A. Note that we have
Γ1, x ≤ e : A, Γ2 ⊢ e ≤ e2 : B by the induction hypothesis. The only gap is the typing result, which
should be A but not B. Thus, we can apply the consistency of typing lemma (Lemma 4.5) and prove
Γ1, x ≤ e : A, Γ2 ⊢ e : A instead, which is immediate by weakening (Lemma 4.4).

4.2 Transitivity

Transitivity is a desirable property of systems with subtyping. Declarative presentations of calculi
often include a built-in transitivity rule:

Γ ⊢ e1 ≤ e2 : A Γ ⊢ e2 ≤ e3 : A

Γ ⊢ e1 ≤ e3 : A
S-Trans

This simplifies the proof of lemmas such as narrowing and substitution. However, noticing that e1
and e3 can be in any form, the rule can be applied any time during derivation, which complicates
the inversion of subtyping judgments. A process called transitivity elimination [Compagnoni 1995;
Pierce 2002; Pierce and Steffen 1997] can be used to avoid such complexity brought by the transitivity

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 47. Publication date: October 2017.



47:16 Yanpeng Yang and Bruno C. d. S. Oliveira

rule. The declarative system is reformulated into an algorithmic one without a transitivity rule.
The transitivity property is then proved against the algorithmic system. Similarly, we formulate
λI≤ without a built-in transitivity rule but only with a base case for variables (i.e. S-VarTrans), as
mentioned in Section 3.3. Next we show the proof of transitivity in λI≤ .
First, we need to generalize the form of transitivity. The form of rule S-Trans is too restricted:

conditions are required to have the same type. This causes issues when both conditions are derived
from S-Sub:

S-Sub
Γ ⊢ e1 ≤ e2 : B1 Γ ⊢ B1 ≤ A : ⋆

Γ ⊢ e1 ≤ e2 : A

S-Sub
Γ ⊢ e2 ≤ e3 : B2 Γ ⊢ B2 ≤ A : ⋆

Γ ⊢ e2 ≤ e3 : A

Γ ⊢ e1 ≤ e3 : A
S-Trans

We only know B1 and B2 are both subtypes of A but cannot determine the relation between them.
The induction hypothesis cannot be applied since it requires B1 and B2 to be the same. Thus, we
generalize the property into

Γ ⊢ e1 ≤ e2 : A Γ ⊢ e2 ≤ e3 : B

Γ ⊢ e1 ≤ e3 : A
S-Trans2

where the conditions are allowed to have different types and the conclusion needs to have the
same type as the first condition. The proof of the generalized transitivity is standard [Pierce 2002]
by induction on the size of e2 and an inner induction on the derivation of the first condition
Γ ⊢ e1 ≤ e2 : A. We only discuss the interesting case when both derivations end with S-Prod. We
have e1 = Πx ≤ e : A1. B1, e2 = Πx ≤ e : A2. B2, and e3 = Πx ≤ e : A3. B3, with

Γ ⊢ A2 ≤ A1 : ⋆ (1) Γ, x ≤ e : A2 ⊢ B1 ≤ B2 : ⋆ (2)

Γ ⊢ A3 ≤ A2 : ⋆ (3) Γ, x ≤ e : A3 ⊢ B2 ≤ B3 : ⋆ (4)

For clarity, we omit all derivations for well-formedness checking in the discussion, which can
be trivially proved by the induction hypothesis. Our target is to prove Γ ⊢ A3 ≤ A1 : ⋆ and
Γ, x ≤ e : A3 ⊢ B1 ≤ B3 : ⋆. The first target can be obtained by combining (1) and (3) using the
outer induction hypothesis since A2 has smaller size than e2. Noting that the context of the (2) is
different from (4) and the second target, we use Lemma 4.6 to narrow the type of the binding to
obtain Γ, x ≤ e : A3 ⊢ B1 ≤ B2 : ⋆. Then we can similarly obtain the second target by the outer
induction hypothesis since the size of B2 is smaller than e2. We conclude the generalized transitivity
by the following lemma:

Lemma 4.8 (Generalized Transitivity). If Γ ⊢ e1 ≤ e2 : A and Γ ⊢ e2 ≤ e3 : B, then

Γ ⊢ e1 ≤ e3 : A.

Thus, the original transitivity is an immediate corollary:

Lemma 4.9 (Transitivity). If Γ ⊢ e1 ≤ e2 : A and Γ ⊢ e2 ≤ e3 : A, then Γ ⊢ e1 ≤ e3 : A.

As shown in Figure 4, the proof of generalized transitivity depends on type narrowing (Lemma
4.6) and type narrowing depends on consistency of typing (Lemma 4.5). Actually, we can view
consistency of typing as a special case of generalized transitivity by letting e1 = e2 = e ′1 and e3 = e ′2.
This indicates that type narrowing can also be proved using generalized transitivity. Thus, an
alternative approach is to prove generalized transitivity and type narrowing simultaneously. A
potential issue is that this approach makes these two lemmas mutually dependent. We choose to
first prove a weaker version of generalized transitivity, i.e., consistency of typing, which has a much
simpler proof. Then we can show type narrowing before transitivity without causing circularity.
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4.3 Basic Lemmas, Revisited

Recall that in Section 4.1 we leave two lemmas unproved, i.e., right reflexivity (Lemma 4.3) and
bound narrowing (Lemma 4.7), which depend on other lemmas that were not available yet. As we
have proved transitivity in Section 4.2, we can recover the proof of these two lemmas.

Bound Narrowing. Similar to type narrowing (Lemma 4.6), bound narrowing (Lemma 4.7) is
proved by induction on the derivation of Γ1, x ≤ e : B, Γ2 ⊢ e1 ≤ e2 : C. We consider the interesting
case when the derivation ends with S-VarTrans. If e1 is not x , it is trivial to prove by the induction
hypothesis. If e1 = x , we have B = C and our target is to show Γ1, x ≤ e′ : B, Γ2 ⊢ x ≤ e2 : B.
By the induction hypothesis, we have Γ1, x ≤ e′ : B, Γ2 ⊢ e ≤ e2 : B. Noticing that by weakening
(Lemma 4.4), we can obtain Γ1, x ≤ e′ : B, Γ2 ⊢ e

′ ≤ e : B from the second condition. By transitivity
(Lemma 4.9), we have Γ1, x ≤ e′ : B, Γ2 ⊢ e

′ ≤ e2 : B. Also noticing that x ≤ e′ : B ∈ Γ1, x ≤ e′ : B, Γ2,
we obtain the target by the rule S-VarTrans.

Substitution. We show that the substitution lemma holds in λI≤ :

Lemma 4.10 (Substitution). If Γ1, x ≤ e : B, Γ2 ⊢ e1 ≤ e2 : A and Γ1 ⊢ e′ ≤ e : B, then

Γ1, Γ2[x 7→ e′] ⊢ e1[x 7→ e′] ≤ e2[x 7→ e′] : A[x 7→ e′] .

The proof is standard by induction on the derivation of the first condition. It is similar to the proof
of bound narrowing. Transitivity and weakening are also required for the case when S-TransVar

is the last derivation. Note that the second condition Γ1 ⊢ e′ ≤ e : B contains both subtyping
requirement (e ′ is a subtype of e) and typing requirement (e ′ has type B). Thus, the substitution
lemma in λI≤ has only one form.

Right Reflexivity. As mentioned in Section 4.1, right reflexivity (Lemma 4.3) depends on correct-
ness of types:

Lemma 4.11 (Correctness of Types). If Γ ⊢ e1 ≤ e2 : A, then Γ ⊢ A : ⋆.

But correctness of types also depends on right reflexivity. Consider the last derivation of Γ ⊢ e1 ≤

e2 : A is S-Sub, where the premises are Γ ⊢ e1 ≤ e2 : B and Γ ⊢ B ≤ A : ⋆. The conclusion
Γ ⊢ A : ⋆ holds if we apply right reflexivity to the second premise. Thus, we prove these two
lemmas simultaneously by induction on the derivation of Γ ⊢ e1 ≤ e2 : A. Note that the proof of
correctness of types also depends on the substitution lemma (Lemma 4.10) when the derivation
ends with S-App.
With both left and right reflexivity proved, we conclude the reflexivity (Lemma 4.1) holds and

the interpretation of unified subtyping in Section 3.3 is correct. One key insight here is that we
do not prove the full reflexivity lemma first. Otherwise, it will cause circular dependency in the
metatheory (imagine merging two nodes of left and right reflexivity in Figure 4).

4.4 Type Safety

We prove type safety by showing type preservation and progress lemmas [Wright and Felleisen
1994]. Though both lemmas have the same form as traditional systems, the typing judgment is just
syntactic sugar of unified subtyping, as mentioned in Section 3.3.

Determinacy of Reduction. We first show that the one-step reduction relation is deterministic:

Lemma 4.12 (Determinacy of Reduction). If e ֒→ e1 and e ֒→ e2, then e1 = e2.

The proof is straightforward by induction on the derivation of e ֒→ e1. Note that the equality used
in the conclusion is syntactic equality. The result of type-level reduction in the rule S-CastDn (i.e.
type B) is unique. Thus, the cast↓ term is not required to be annotated with the result type.
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Type Preservation. Type preservation, also known as subject reduction [Wright and Felleisen
1994], states that reducing a term does not change its type:

Lemma 4.13 (Type Preservation). If Γ ⊢ e : A and e ֒→ e′, then Γ ⊢ e′ : A.

However, if we try to directly prove this lemma by induction on the derivation of Γ ⊢ e ≤ e : A

(i.e. Γ ⊢ e : A), the proof will get stuck. Consider the last derivation is S-CastDn and e ֒→ e′ is
an instance of R-CastElim with e = cast↓ (cast↑ [B

′] e) and e ′ = e . We have Γ ⊢ cast↑ [B
′] e : B

and B ֒→ A. By inversion of S-CastUp, we can obtain Γ ⊢ e : A′, B′
֒→ A′ and Γ ⊢ B′ ≤ B : ⋆.

Our target is to show Γ ⊢ e : A. If we can prove Γ ⊢ A′ ≤ A : ⋆, then the target can be obtained
immediately by the subsumption rule S-Sub. The relation is shown as follows:

B′ B

A′ A

≤

≤

The subtyping relation in the second line requires a proof, which can be shown by the following
lemma with a more general typing result other than the kind ⋆:

Lemma 4.14 (Subtype Preservation). If Γ ⊢ e1 ≤ e2 : A, e1 ֒→ e′1, e2 ֒→ e′2, then Γ ⊢ e′1 ≤ e′2 : A.

We call this lemma subtype preservation indicating that the unified subtyping relation is preserved
by reduction. Type preservation is just a special case of it when e1 = e2 = e and e′1 = e′2 = e ′. A naïve
proof is by induction on the derivation of Γ ⊢ e1 ≤ e2 : A. The substitution lemma (Lemma 4.10)
is required for the case when the derivation ends with S-App and both reductions are instances
of R-Beta. However, the proof gets stuck when the derivation ends with S-CastDn, and both
reductions are instances of R-CastElim with e1 = cast↓ (cast↑ [B] e

′
1) and e2 = cast↓ (cast↑ [B] e

′
2).

The induction hypothesis does not work as it requires cast↑ [B] e
′
1 and cast↑ [B] e

′
2 to be reducible,

while both of them are values (see Figure 1). To solve this issue, we need to generalize the subtype
preservation lemma into the following one:

Lemma 4.15 (Generalized Subtype Preservation). Given that Γ ⊢ e1 ≤ e2 : A holds,

(1) if both e1 and e2 are cast↑ terms, i.e., e1 = cast↑ [B] e
′
1 and e2 = cast↑ [B] e

′
2, and A ֒→ A′,

B ֒→ B′, then Γ ⊢ e′1 ≤ e′2 : A
′;

(2) otherwise, if e1 ֒→ e′1 and e2 ֒→ e′2, then Γ ⊢ e′1 ≤ e′2 : A.

Now the proof by induction can proceed with the generalized lemma. For the case which was stuck
in the previous attempt, the conclusion is exactly the induction hypothesis that follows the case (1)
of the lemma. The non-trivial case is when the derivation ends with the subsumption rule S-Sub.
When e1 and e2 are not both cast↑ terms, the proof is trivial by the induction hypothesis. Otherwise,
we have e1 = cast↑ [C] e

′
1 and e2 = cast↑ [C] e

′
2 such that

Γ ⊢ cast↑ [C] e
′
1 ≤ cast↑ [C] e

′
2 : B (1) Γ ⊢ B ≤ A : ⋆ (2)

A ֒→ A′ (3) C ֒→ C ′ (4)

Our target is to show Γ ⊢ e′1 ≤ e′2 : A
′. Note that the annotations of cast↑ in both terms must be the

same (i.e. C) by S-CastUp. By inversion of (1), we have Γ ⊢ C ≤ B : ⋆. We first show there exists
some B′ such that B ֒→ B′ by proving the following lemma:

Lemma 4.16 (Reduction Exists in the Middle). Given that Γ ⊢ C ≤ B : D and Γ ⊢ B ≤ A : D, if

C ֒→ C ′ and A ֒→ A′, then there exists B′ such that B ֒→ B′.

Then by induction hypothesis, we have Γ ⊢ e′1 ≤ e′2 : B
′ from (1) by the first case of lemma and

Γ ⊢ B′ ≤ A′ : ⋆ from (2) by the second (1st case impossible). Thus, we can prove the target by S-Sub
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and conclude Lemma 4.15. Finally, it is trivial to show that the original subtype preservation lemma
is a corollary of the generalized one. Thus, we can conclude the type preservation lemma which is
an immediate corollary of subtype preservation.

Progress. Progress states that well-formed terms do not get stuck:

Lemma 4.17 (Progress). If ∅ ⊢ e : A then either e is a value v or there exists e′ such that e ֒→ e′.

As we mentioned in Section 3.2, the type-level reduction in cast operators may encounter open
terms. We prove a stronger progress lemma with a non-empty context:

Lemma 4.18 (Generalized Progress). If Γ ⊢ e : A then either e is a value v or there exists e′ such

that e ֒→ e′.

Then the original progress lemma is an immediate corollary of the stronger version. The proof is
straightforward by induction on the derivation of Γ ⊢ e : A. The definition of values is critical to
the proof as it covers many stuck terms with variables and the top type (see also the discussion of
inert terms in Section 3.2).

5 ALGORITHMIC VERSION

As we mentioned in Section 3.3, the unified subtyping judgment presented in Figure 3 is declarative
but almost algorithmic. The typing part is declarative because of the subsumption rule, while
the subtyping part is algorithmic. If we separately check the typing part and subtyping part, we
just need to develop an algorithm for type checking. We use bidirectional type checking [Pierce
and Turner 2000], a standard technique to develop the type checking algorithm for type systems
with subtyping. We only briefly introduce the bidirectional system without showing rules which
are mostly standard. For space reasons, the full specification is omitted and can be found in the
extended version [Yang and Oliveira 2017]. We show the soundness and completeness of the type
and subtype checking algorithm with respect to the original unified subtyping judgment. The full
proof (mechanized in Coq) is available in the extended version [Yang and Oliveira 2017]. Developing
a unified algorithmic system is left as future work, as will be discussed in Section 7.

5.1 Bidirectional Type Checking

We extend the syntax of λI≤ with annotations, denoted by (e : A) (parentheses are required). We
use |e | to denote the erasure of all annotation from a term and |Γ | for the erasure of a context. The
algorithmic subtyping judgment is denoted by Γ ⊢ e1 ≤ e2. It is developed by removing the typing
part of unified subtyping rules in Figure 3.
The algorithmic typing judgment has two directions: the checking judgment Γ ⊢ e ⇐ A and

the synthesis judgment Γ ⊢ e ⇒ A. They are developed by following the typing part of unified
subtyping. Most syntactic forms are typed by the synthesis judgment, including functions and
function types since both binders are annotated. Two syntactic forms that are not annotated require
the checking judgment, namely the top type (⊤) and cast↓ term. The subsumption rule from the
unified subtyping is adapted to the checking direction.

We use erasure in the typing judgment to ensure there are no annotations in 1) the typing result
and the context, 2) the terms being compared by the algorithmic subtyping judgment, and 3) the
terms checked by the reduction relation (֒→). However, if erasure is used in the typing result of
a premise using synthesis, i.e., Γ ⊢ e ⇒ |A|, the original form of A requires guessing. Referring
to the original A in other premises renders the typing rule not algorithmic. Thus, we make sure
there is no such form of synthesis in the premises of typing rules. Note that the typing rule is still
algorithmic if the erased typing result appears in the conclusion of a synthesis rule or a premise
using checking judgment.
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Types T ::= X | ⊤ | T1 → T2 | ∀X ≤ T1. T2
Terms t ::= x | λx : T . t | t1 t2 | ΛX ≤ T . t | t[T ]

Contexts ∆ ::= ∅ | ∆, x : T | ∆,X ≤ T

T∗
= A Mapping of Type t∗ = e Mapping of Term ∆

∗
= Γ Mapping of Context

⊤∗
= ⊤

X∗
= X

(T1 → T2)
∗
= Πx ≤ ⊤ : T1

∗
. T2

∗

(x Fresh)

(∀X ≤ T1. T2)
∗
= ΠX ≤ T1

∗ : ⋆. T2
∗

x∗ = x

(λx : T . t)∗ = λx ≤ ⊤ : T∗
. t∗

(t1 t2)
∗
= t1

∗ t2
∗

(ΛX ≤ T . t)∗ = λX ≤ T∗ : ⋆. t∗

(t[T ] )∗ = t∗ T∗

∅
∗
= ∅

(∆, x : T )∗ = ∆
∗
, x ≤ ⊤ : T∗

(∆,X ≤ T )∗ = ∆
∗
,X ≤ T∗ : ⋆

Fig. 5. Syntax and Translation of System F≤

5.2 Soundness and Completeness

We show that the algorithmic subtyping and typing are both sound and complete to the original
unified subtyping. We use Γ ⊢ e ⇔ A to denote a judgment which can either be the checking
judgment Γ ⊢ e ⇐ A or the synthesis judgment Γ ⊢ e ⇒ A. The main theorems are stated as
follows:

Theorem 5.1 (Soundness of Algorithm). If Γ ⊢ e1 ⇔ A, Γ ⊢ e2 ⇔ A and Γ ⊢ e1 ≤ e2, then

|Γ | ⊢ |e1 | ≤ |e2 | : |A|.

Theorem 5.2 (Completeness of Algorithm). If Γ ⊢ e1 ≤ e2 : A, then Γ ⊢ e1 ≤ e2 and there exists

e′1 and e
′
2 such that Γ ⊢ e′1 ⇒ A and Γ ⊢ e′2 ⇒ A with

�

�e′1
�

�

= e1 and
�

�e′2
�

�

= e2.

6 SUBSUMPTION OF SYSTEM F≤

λI≤ is a generalization of System F≤ with dependent types. In this section, we show that λI≤ can
completely subsume the Kernel Fun variant [Cardelli and Wegner 1985] of System F≤ . We first
show the translation from System F≤ to λI≤ and prove that the typing and subtyping judgments
of System F≤ still hold in λI≤ up to mapping. The full proofs and specification of System F≤ are
available in the extended version of this paper [Yang and Oliveira 2017].

6.1 Translating System F≤ to λI≤

We show the syntax of System F≤ and mapping (denoted by ∗) of types, terms and contexts from
System F≤ to λI≤ in Figure 5. We use the metavariable T for types, t for terms and ∆ for contexts
in System F≤ . The arrow type is non-dependent and unbounded and therefore mapped to a top-
bounded function type, similar to the treatment of syntactic sugar in Figure 1. The universal type
is mapped to the dependent function type since X can appear in T2. The bound T1 is a proper type
and mapped to T1

∗ with kind ⋆. The term and type abstraction, as well as term and type binding of
the context, are treated similarly. Other mappings hold few surprises.

6.2 Subsumption of Typing and Subtyping

We prove that the mapped typing and subtyping relations still hold in λI≤ . The type system of
System F≤ we used here is the algorithmic [Curien and Ghelli 1992] and Kernel Fun variant [Cardelli
andWegner 1985]. We first show the well-formedness of types and contexts still hold after mapping:

Lemma 6.1 (Mapping of Well-formedness). (1) If ∆ ⊢ T, then ∆
∗ ⊢ T ∗ : ⋆; (2) If ⊢ ∆, then ⊢ ∆

∗.

The proof is by simultaneous induction on the derivation of well-formedness of types ∆ ⊢ T and
contexts ⊢ ∆. Then we show the mapped subtyping and typing still hold:
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Theorem 6.2 (Subsumption of Subtyping). If ∆ ⊢ T1 ≤ T2, then ∆
∗ ⊢ T1

∗ ≤ T2
∗ : ⋆.

Theorem 6.3 (Subsumption of Typing). If ∆ ⊢ t : T, then ∆
∗ ⊢ t∗ : T ∗.

The proof is straightforward by induction on the derivation of subtyping relation ∆ ⊢ T1 ≤ T2
and typing relation ∆ ⊢ t : T , respectively. Note that the mapped typing relation ∆

∗ ⊢ t∗ : T ∗ is
syntactic sugar of unified subtyping relation, i.e., ∆∗ ⊢ t∗ ≤ t∗ : T ∗ (see Figure 1).

7 DISCUSSION

In this section, we discuss alternative designs for λI≤ and justify their trade-offs to the current
design.

Recursion and Recursive Types. The current syntax of λI≤ does not contain any form of recursion.
Adding recursion and recursive types is easy by simply following the treatment of recursion in
λI [Yang et al. 2016]. We have an alternative formulation of our system (including full proofs) with
those features. However subtyping recursive types reveals an interesting problem. The typical
Amber rule [Cardelli 1986a], or even the following restricted invariant rule

Γ,x ≤ ⊤ : A ⊢ e1 ≤ e2 : A Γ ⊢ A : ⋆

Γ ⊢ (µx : A. e1) ≤ (µx : A. e2) : A
S-MuI

does not work well with λI≤ . Here µx : A. e1 is a recursive type with the recursive binder x that
can appear in the body e1. The rule requires the types of recursive binders to be the same. We add a
new reduction rule to unroll a recursive type: µx : A. e ֒→ e[x 7→ µx : A. e]. In order to keep type
soundness, we need to ensure subtype preservation (Lemma 4.14) still holds. If f = λy : ⋆. y is an
identity type operator with type ⋆→ ⋆, consider

µx : ⋆. f x ≤ µx : ⋆. ⊤ x

This relation holds by the rule S-MuI because we have f ≤ ⊤ : ⋆ → ⋆ by S-Top and then
x : ⋆ ⊢ f x ≤ ⊤ x : ⋆ by S-App. Subtype preservation requires that the subtyping relation still
holds with both sides reduced by one step:

f (µx : ⋆. f x) ≤ ⊤ (µx : ⋆. ⊤ x) (1)

However, (1) does not hold because the pointwise subtyping rule S-App requires arguments of
two applications should be the same. Thus, types are not preserved using the invariant rule for
subtyping recursive types. This issue appears to be common to most systems with higher-order

subtyping [Aspinall and Compagnoni 1996; Pierce and Steffen 1997; Zwanenburg 1999], as it arises
from the interaction between the rules for recursive types and rules that use pointwise subtyping.

To solve this issue, we either change the S-App rule to be polarized [Steffen 1998], or only allow
subtyping two identical recursive types. The former approach is interesting, but requires a major
modification to the system. We leave that approach for future work. The latter approach is relatively
simple by using the following rule:

Γ,x ≤ ⊤ : A ⊢ e : A Γ ⊢ A : ⋆

Γ ⊢ (µx : A. e) ≤ (µx : A. e) : A
S-Mu

Due to the unified syntax, µx : A. e can serve as both the term-level fixpoint and recursive type.
Though full subtyping of recursive types is not possible in λI≤ currently, we are still able to introduce
general recursion and recursive types to the system with S-Mu. This is precisely the approach used
in our alternative formulation.
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Operational Semantics. λI≤ uses the same call-by-name (CBN) operational semantics that λI [Yang
et al. 2016] uses. However most OO languages use call-by-value (CBV). CBV semantics is more
complicated because of the existence of dependent types and explicit casts in λI≤ , but we believe
that it should also be possible to have a variant of the calculus with CBV. We also treat cast↑ [A] e
as a value (see Section 3.2), which follows the standard call-by-name semantics of iso-recursive
types [Harper 2013]. Such design makes the cast↑ operator computationally relevant. Alternatively,
we can take the approach from λI , which treats cast↑ [A] v as a value and adds a reduction rule to
further reduce the inner term of cast↑. However, the alternative semantics of cast↑ leads to more
complex reduction rules and metatheory. The cast canceling rule R-CastElim (See Figure 2) now
needs to check if the inner term of cast↑ is a value, which requires some non-trivial changes to
current proofs of the metatheory. We leave the CBV semantics and computational irrelevance of
casts as future work.

Top Types. For top types, we can alternatively treat only ⊤ as a value but not ⊤ e1 . . . en , which
is an inert term (see Figure 1). In such design additional reduction rules similar to the β⊤-reduction
rules of System Fω≤ [Pierce and Steffen 1997] are needed to further reduce łstuckž terms to values,
i.e., ⊤ e ֒→ ⊤. However, the approach of using β⊤-reduction needs to define reduction rules for
each form of stuck terms, e.g., ⊤ e and cast↓ ⊤, while the definition of inert terms deals with stuck
terms in a more uniform way.

Weak vs Full Casts. Cast operators in λI≤ use the same weak-head reduction for type-level
computation. As mentioned in Section 2.4, certain type conversions cannot be performed by weak-
head reduction/expansion if they require reduction at non-head position, e.g., converting Vec (1+ 1)
to Vec 2. To address this limitation we can use an alternative design from the λIp variant [Yang et al.
2016] of λI . In that design full reduction is used in cast operators, which allows reduction at any
position of a term. However the metatheory of λIp variant is significantly more complicated than
the weak-head version. Since weak-head reduction was simpler and sufficient for our purposes (to
model object encodings) we opted for that variant. It would be interesting to study the full-cast
variant of λIp with subtyping as well in future work.

Unified Algorithmic System. In Section 5, we present an algorithmic version of λI≤ . A notable
difference from the declarative system is that the typing and subtyping relation are defined sepa-
rately. An alternative design is to create an algorithmic unified subtyping relation directly from the
declarative version. The checking and synthesis judgments are denoted by Γ ⊢ e1 ≤ e2 ⇐ A and
Γ ⊢ e1 ≤ e2 ⇒ A, respectively. However, the design is only a sketch and currently we do not have a
completeness proof for the unified algorithmic system.

Full Contravariance of Function Types. As mentioned in Section 3.3, the unified subtyping rule of
function types is partially contravariant in the sense that bounds of function types are identical,
which follows the treatment of universal types in the Kernel Fun variant [Cardelli andWegner 1985]
of System F≤ . An alternative is to follow the full System F≤ that allows bounds to be contravariant:

Γ ⊢ A′ ≤ A : ⋆ Γ ⊢ e′ ≤ e : A Γ, x ≤ e′ : A′ ⊢ B ≤ B′ : ⋆

Γ ⊢ e : A Γ ⊢ e′ : A′
Γ ⊢ A : ⋆ Γ, x ≤ e : A ⊢ B : ⋆

Γ ⊢ (Πx ≤ e : A. B) ≤ (Πx ≤ e′ : A′
. B′) : ⋆

S-ProdF

We formulated an alternative system with such full contravariant rule and proved all lemmas in
Section 4 still hold. The corresponding Coq formalization can be foundwith the companionmaterials
of this paper available online. However, full System F≤ is proved to be undecidable [Pierce 1992].
With contravariance of bounds, λI≤ using rule S-ProdF can subsume full System F≤ , rendering
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the system undecidable. Though we have not proved the decidability of λI≤ yet, we adopt the
Kernel-Fun rule in λI≤ and can at least rule out the undecidability caused by the full contravariance.

8 RELATED WORK

Subtyping with Unified Syntax. It is appealing to combine subtyping with the unified syntax of
Pure Type Systems [Barendregt 1991] (PTS) for obtaining a concise and expressive system. Chen
proposed λC≤ [Chen 1997], an extension of the calculus of constructions (λC) with subtyping. λC≤

supports neither top types nor bounded quantification in order to simplify themetatheory. The proof
of transitivity in λC≤ is simpler and does not depend on strong normalization, though decidability
still depends on strong normalization as in λC . Zwanenburg proposed PTS≤ [Zwanenburg 1999]
by extending PTS with subtyping and bounded quantification. It has the PTS-style unified syntax
but with two distinct forms of abstraction for type and bound. In PTS≤ , the subtyping rules do not
depend on the typing rules, which allows proving subtyping properties independently from typing
properties. However, such design makes it difficult to extend the framework with two desirable
features: 1) subtyping on bounded abstractions, since subtyping rules are defined only for pre-terms;
2) top types, since the subtyping rule of top types depends on typing. Neither of those features are
supported by PTS≤ .

Hutchins proposed another framework called Pure Subtype Systems [Hutchins 2010] (PSS) which
also adopts the unified syntax based on PTS. The design is simplified by making the system solely
based on subtyping without the typing relation. The simplicity of the system comes at the cost of
the complexity of metatheory. The proof of transitivity elimination is partial, and therefore subject
reduction cannot be proved. Note that although λI≤ shares the similar idea of being based on the
subtyping relation, it has two major differences from PSS. First, λI≤ unifies subtyping with typing
in a more conservative way. The unified subtyping relation still tracks types and it intuitively
subsumes the traditional typing relation. In contrast, PSS takes a more aggressive approach to make
the typing relation completely absent from the system. In PSS there are no types or typing. Second,
PSS eliminates the distinction of function and function types, which are unified into the same
syntax of abstraction. In contrast, λI≤ still distinguishes these two concepts as in PTSs. Since the
subtyping rule of abstractions in PSS is pointwise, any form of contravariance is not supported. An
unfortunate consequence is that PSS cannot subsume System F≤ with contravariant arrow types,
including the Kernel Fun variant [Cardelli and Wegner 1985].

Stratified Syntax with High-Order Subtyping. System Fω≤ is a lambda calculus with stratified syn-
tax by extending System Fω [Girard 1972] with higher-order subtyping. To simplify the metatheory,
early formalizations of System Fω≤ [Compagnoni 1995; Pierce and Steffen 1997] do not allow a
bounded type operator. Compagnoni and Goguen later proposed a technique called typed opera-
tional semantics [Compagnoni and Goguen 2003] to fully enable bounded quantification in System
Fω≤ . But its metatheory becomes quite complicated and relies on strong normalization, making
it hard to apply such technique to systems with general recursion. Note that Compagnoni and
Goguen’s presentation of System Fω≤ contains a kinded subtyping judgment Γ ⊢ A ≤ B : K which
has a similar shape to the unified subtyping relation in λI≤ . But the typing relation is separately
defined in their system and not subsumed by the kinded subtyping judgment.

Stratified Subtyping Systems with Dependent Types. System λP≤ [Aspinall and Compagnoni 1996]
is a stratified system with dependent types and higher-order subtyping. The metatheory becomes
more complex than System Fω≤ due to the circular dependency of typing, kinding and subtyping.
A novel proof technique that splits beta reduction on terms and types is proposed to break such
dependency. However, System λP≤ does not support polymorphism (i.e. abstraction over types),
bounded quantification or top types. System λΠ≤ [Castagna and Chen 2001; Chen 1998] is an
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improvement of λP≤ . It has the property of type-level transitivity elimination, while System λP≤

has transitivity elimination only for normalized types. However, λΠ≤ is proved to be equivalent to
λP≤ in typing and subtyping, meaning that it has no increased expressiveness.

Subtyping with Restricted Dependent Types. There have been several studies focusing on exploring
subtyping with restricted forms of dependent types but not full dependent types in the context
of object-oriented (OO) programming. The Dependent Object-Oriented Language [Campos and
Vasconcelos 2015] (DOL) is an imperative OO programming language with subtyping and index

refinements, a restricted notion of dependent types originated from Dependent ML [Xi and Pfenning
1999], which allows types to depend on static indices of natural numbers. DOL supports the
verification of mutable objects and unrestricted use of shared objects. The type checking of DOL is
decidable. However, the metatheory of DOL is not fully developed yet.
νObj [Odersky et al. 2003] is a dependently typed calculus for objects with type members. It is

developed as a theoretic foundation for Scala [Odersky et al. 2004] and features a weaker form
of dependent types called path-dependent types. In νObj, types can depend on paths which are
type selections on variables, i.e., x .L. Compared to traditional dependent types used in λI≤ , it is
difficult to use path-dependent types to model dependency on non-path values, e.g., Πn : Int. Vec n.
The richness of the type system makes the metatheory of νObj complex and type checking is not
decidable. Another recent effort of developing a core calculus for Scala is the Dependent Object
Types (DOT) calculus [Amin et al. 2016, 2012, 2014; Rompf and Amin 2016]. DOT is also based on
path-dependent types. It is simpler and has fewer type forms than νObj, e.g., no class types, but
still expressive to model many features of Scala. Similarly to λI≤ , DOT subsumes System F≤ but
has a richer notion of bounds. Type variables can be quantified by both lower bounds and upper
bounds, as opposed to the traditional bounded quantification used in λI≤ that only supports upper
bounds. The metatheory of DOT is well-developed [Rompf and Amin 2016], though the soundness
proof requires many non-standard techniques. Transitivity of subtyping needs to be treated as an
axiom and transitivity elimination is not possible [Rompf and Amin 2016]. Both νObj and DOT use
the stratified syntax in contrast to the unified syntax of λI≤ .

Dependent Types with Explicit Casts. One key difference of λI≤ to other systems with higher-
order subtyping is the absence of a conversion rule. Instead, explicit casts are used for performing
type-level computation. The motivation of using casts in λI≤ is to decouple strong normalization
from the proofs of metatheory, which also makes it possible to allow general recursion. There have
been several studies [Kimmell et al. 2012; Sjöberg et al. 2012; Sjöberg and Weirich 2015; Stump et al.
2008; van Doorn et al. 2013; Weirich et al. 2013; Yang et al. 2016] working on using explicit casts
instead of conversion rule in a dependently typed system. We follow the iso-types approach from
λI calculus [Yang et al. 2016] which is a generalization of iso-recursive types. However, λI and
other mentioned studies do not deal with subtyping in their systems.

9 CONCLUSION AND FUTURE WORK

This paper presented the λI≤ calculus, a dependently typed calculus with unified syntax, which
supports higher-order polymorphism, bounded quantification and top types. The calculus unifies
typing and subtyping into a single relation, eliminating the circularity of typing and subtyping. The
transitivity and type safety of λI≤ are proved. For the future, we intend to show the decidability
of λI≤ . We already have a sound and complete algorithmic system and we believe it is decidable,
though we do not have the proof yet. We also hope to explore several alternative designs of the
calculus, such as full subtyping of recursive types, casts with full reduction and unified algorithmic
subtyping. We would also like to incorporate the more general kinds of bounds of DOT into λI≤ ,
and study whether that would suffice for λI≤ to express common Scala programming idioms.
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