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Abstract 13 

Motivation: Many rare diseases and cancers are fundamentally diseases of the genome. In 14 

the past several years, genome sequencing has become one of the most important tools in 15 

clinical practice for rare disease diagnosis and targeted cancer therapy. However, variant 16 

interpretation remains the bottleneck as is not yet automated and may take a specialist several 17 

hours of work per patient. On average, one-fifth of this time is spent on visually confirming 18 

the authenticity of the candidate variants. 19 

Results: We developed Skyhawk, an artificial neural network-based discriminator that 20 

mimics the process of expert review on clinically significant genomics variants. Skyhawk 21 

runs in less than one minute to review ten thousand variants, and about 30 minutes to review 22 

all variants in a typical whole-genome sequencing sample. Among the false positive 23 

singletons identified by GATK HaplotypeCaller, UnifiedGenotyper and 16GT in the HG005 24 

GIAB sample, 79.7% were rejected by Skyhawk. Worked on the Variants with Unknown 25 

Significance (VUS), Skyhawk marked most of the false positive variants for manual review 26 

and most of the true positive variants no need for review. 27 

 28 

Availability: Skyhawk is easy to use and freely available at 29 

https://github.com/aquaskyline/Skyhawk 30 
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Introduction 35 

The dramatic reduction in the cost of whole genome, exome and amplicon sequencing has 36 

allowed these technologies to be increasingly accessible for genetic testing, opening the door 37 

to broad applications in Mendelian disorders, cancer diagnosis and personalized medicine [1]. 38 

However, sequencing data include both systematic and random errors that hinder any of the 39 

current variant identification algorithms from working perfectly. Even using state-of-the-art 40 

approaches, typically 1-3% of the candidate variants are false positives with Illumina 41 

sequencing [2]. With the help of a genome browser such as IGV [3], or web applications such 42 

as VIPER [4], a specialist can visually inspect a graphical layout of the read alignments to 43 



assess supporting and contradicting evidence to make an arbitration. Though necessary, this 44 

is a tedious and fallible procedure because of three major drawbacks. 1) It is time-consuming 45 

and empirical studies report it requires about one minute per variant, sometimes summing up 46 

to a few hours per patient [5]. 2) It is tedious, not infallible, and even experienced genetic-47 

specialists might draw different conclusions for a candidate variant with limited or 48 

contradicting evidence. 3) There is no agreed standard between genetic-specialists to judge 49 

various types of variants, including SNPs (Single Nucleotide Polymorphisms) and Indels. A 50 

specialist might be more stringent on SNPs because there are more clinical assertions and 51 

fewer candidate SNPs will be less likely to get contradicting medical conclusions, whereas 52 

another specialist might be more demanding on indels because they are rarer and harder to be 53 

identified. 54 

 55 

An efficient, accurate and consistent computational method is strongly needed that automates 56 

assessing the candidate variants as they would be visually validated. Importantly, the new 57 

validation method needs to be orthogonal, i.e., independent of the algorithms used to identify 58 

the candidate variants. The new validation method also needs to capture the complex non-59 

linear relationship between read alignments and the authenticity of a variant from a limited 60 

amount of labeled training data. Variant validation is a task with a different nature from 61 

variant filtration. Our target is to indicate the need of a variant being manually reviewed, as 62 

opposed to a hard filter that removes a variant from consideration. To achieve our target, 63 

failing to flag a false positive variant for review is less favorable than flagging a true variant 64 

for manual review, i.e., as a validation method, the precision must be maximized, and false 65 

positives must be minimized. Consequently, instead of using hand-coded models or rule-66 

based learning, a more powerful and agnostic machine learning approach such as an Artificial 67 

Neural Network (ANN) is needed. 68 

 69 

Implementation 70 

We implemented Skyhawk, a computational discriminator that is fast and accurate for 71 

validating candidate variants in clinical practice. Skyhawk mimics how a human visually 72 

identifies genomic features comprising a variant and decides whether the evidence supports 73 

or contradicts the sequencing read alignments. To reach this goal, we repurposed the network 74 

architecture we developed in a previous study named Clairvoyante [6]. The multi-task ANN 75 

was designed for variant calling in Single Molecule Sequencing, and the method is 76 

orthogonal to traditional variant callers using algorithms such as Bayesian or local-assembly. 77 



In Skyhawk, we used a repurposed network to generate a probability of each possible option 78 

for multiple categories including 1) variant type, 2) alternative allele, 3) zygosity, and 4) 79 

indel-length. We then compare a candidate variant to Skyhawk’s prediction on each category. 80 

Skyhawk will agree with a variant if all categories are matched but will reject and provide 81 

possible corrections if any category is unmatched.  We have provided pre-trained models for 82 

Skyhawk on GitHub trained using the known variants and Illumina data of multiple human 83 

genomes, including sequencing libraries prepared by either the PCR or the PCR-free 84 

protocol. With a trained model, Skyhawk accepts a VCF input with candidate SNPs and 85 

Indels, and a BAM input with read alignments. Skyhawk outputs a judgment and a quality 86 

score on how confident the judgment was made for each candidate variant. Skyhawk was 87 

implemented in Python and Tensorflow and has been carefully tuned to maximize its speed. 88 

 89 

Results 90 

Using four deeply Illumina sequenced genomes (HG001, HG002, HG003, and HG004) with 91 

13.5M known truth variants from the Genome In A Bottle (GIAB) project [2], we trained 92 

Skyhawk to recognize how the truth variants are different from another 20M non-variants we 93 

randomly sampled from the four genomes. The sample details and the commands used are in 94 

the Supplementary Note. For benchmarking and identifying the false positive variant calls, 95 

we used the known truth variants in HG005, which was not included in the model training. A 96 

false positive variant is defined as a variant called by a variant caller but cannot be found in 97 

the HG005 GIAB truth dataset and will be used for the subsequent analysis. We expect the 98 

false positive variants that are supported by only one variant caller, but not the other variant 99 

callers are very likely to be erroneous and should be marked for manual review (i.e., rejected 100 

by Skyhawk) [7]. Thus, we called variants using three different variant callers with different 101 

calculation models, including GATK HaplotypeCaller (HC) [8], GATK UnifiedGenotyper 102 

(UG) [8] and 16GT [9]. A Venn diagram of the variant set called by the three callers 103 

comprise seven different types of variant: 1) three types of singleton variant that have support 104 

from only one caller, 2) three types of doubleton variant that have support from two of the 105 

three callers, and 3) one type of tripleton variant that is supported by all three callers. 106 

Empirically, doubleton and especially tripleton variants are relatively less likely to be real 107 

false positives and should be less likely to be rejected by Skyhawk. Conversely, singletons 108 

called by only one caller are more likely to be genuine false positive and should be more 109 

likely to be rejected by Skyhawk. The results are shown in Figure 1. Only 18.64% of the 110 

tripleton variants were rejected while 79.70% of the singletons were rejected by Skyhawk. 111 



Those doubletons have an intermediate 45.11% rejected by Skyhawk. In the true positive 112 

variants, only 1,879/3,232,539 (0.058%) in HC, 43/2,902,052 (0.0014%) in UG, and 113 

124/3,228,537 (0.0038%) in 16GT were rejected. By deducting the rejected variants from 114 

both the number of true positives and true negatives, the precision increased from 99.77% to 115 

99.92% for HC, 99.50% to 99.58% for UG and 99.51% to 99.84% for 16GT. 116 

 117 

 118 
Figure 1. The variant calling results of GATK HaplotypeCaller, GATK UnifiedGenotyper, 119 

and 16GT. The Venn diagram on the left shows 1) the precision rate (P), recall rate (R) and 120 

f1-score (F) of each variant caller on all variants of the entire HG005 genome, and 2) the 121 

number of false positive variants produced by each variant caller. The bars on the right shows 122 

the number of false positive variants rejected or agreed by Skyhawk. The bar length is 123 

proportionate to the total number of false positive variants in that type. 124 

 125 

Another experiment better mimics how medical doctors would use Skyhawk in clinical 126 

diagnosis. Instead of fully removing manual review, which is impossible in a stringent 127 

clinical context the emphasizes accountability, Skyhawk’s target is to help doctors to 128 

prioritize which variants should they invest efforts in further investigation and lab validation. 129 

In practice, those variants categorized as “Pathogenic” or “Likely Pathogenic” are rare and 130 

should be given priority [10], thus all these variants are preferred to be manually reviewed. 131 

“Benign”, and most of the time together with the “Likely Benign” category, suggest variants 132 

without much value in clinical diagnosis and therapy, thus not requiring manual review. The 133 

one category left, named Variant of Unknown Significance, or VUS, contains variants that 134 

are potentially impactful, and requires doctors to sort through them. The number of VUS is 135 



usually tens to even hundreds of time larger than the sum of other categories [11]. Thus, 136 

Skyhawk will benefit the clinical doctors if it can significantly decrease the number VUS to 137 

be manually reviewed. To assess the intended function, we firstly ran GATK 138 

HaplotypeCaller on the HG002 sample. In total about 5M variants were called. Then we 139 

annotated all variants using SeattleSeq version 151 (with dbSNP v151) [12]. We extracted 140 

those variants that are 1) not in dbSNP (RSID tag equals to 0) and, 2) are in a human gene 141 

(GL tag not empty). Finally, we ran Skyhawk on the extracted variants with a model trained 142 

on four samples including HG001, HG003, HG004, and HG005, and annotated the variants 143 

as either true positive (TP) or false positive (FP) against the HG002 GIAB truth dataset. 144 

Skyhawk performed as expected, and the results are shown in Table 1. For SNPs, 53.4% of 145 

the FPs are flagged for manual review, while only 0.3% of the TPs are flagged. For Indels, 146 

78.3% of the FPs are flagged for manual review, while only 25.5% of the TPs are flagged. A 147 

higher rate of TP Indels is flagged for manual review because longer Indels are usually more 148 

error-prone and can lead to more several clinical consequences than SNPs, thus we required 149 

all Indels ≥4bp to be manually reviewed. Noteworthy, although an ideal percentage of FP 150 

being marked for manual review is 100%, it is not yet achievable because as mentioned in the 151 

previous paragraph, FP still have a chance to be an authentic variant especially when it is 152 

supported by multiple variant callers. Nevertheless, the trend of having significantly more FP 153 

variants marked for manual review than TP variants verified Skyhawk’s effectiveness. 154 

 155 

Table 1.  Skyhawk’s performance on Variants of Unknown Significance (VUS) 156 

 157 
 158 

Discussion and Conclusions 159 

Skyhawk aims to relieve users from a heavy manual review workload without compromising 160 

the accuracy. Instead of taking over the review of all variants, Skyhawk was configured to 161 

review only 1) SNPs with a single alternative allele, and 2) Indels ≤4bp. Skyhawk also 162 

outputs a quality score ranging from 0 to 999 to indicate how confident a judgment is. 163 

Among the false positive singletons, 27.46% of the judgments were with a quality score 164 

lower than 150. Reviewing these variants manually shows that these variants were often 165 

# % # %
SNP 4,837 99.7% 14      0.3%
Indel 7,126 74.5% 2,434 25.5%
SNP 117    46.6% 134    53.4%
Indel 41      21.7% 148    78.3%

TP

FP

PASS CHECK



located in genome regions with homopolymer runs or very low depth. We suggest users to 166 

rely on Skyhawk only when the quality score of judgment is high and to manually review 167 

when the quality score falls below 150, or higher if the workload allows. Skyhawk requires 168 

less than a gigabyte of memory and less than a minute on one CPU core to review ten 169 

thousand variants, thus can be easily integrated into existing manual review workflows, such 170 

as VIPER [4] with minimal computational burden. Using 24 CPU cores, Skyhawk was able 171 

to review all five million whole genome sequencing variants of the HG002 sample in 30 172 

minutes. Overall, Skyhawk greatly reduces the workload on reviewing variants, and we 173 

believe Skyhawk will immediately increase the productivity of genetic-specialists in clinical 174 

practice. 175 
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