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Rare versus common diseases: a false dichotomy in precision
medicine
Brian Hon Yin Chung 1, Jeffrey Fong Ting Chau 1 and Gane Ka-Shu Wong 2,3✉

Precision medicine initiatives are being launched worldwide, each with the capacity to sequence many thousands to millions of
human genomes. At the strategic planning level, all are debating the extent to which these resources will be directed towards rare
diseases (and cancers) versus common diseases. However, these are not mutually exclusive choices. The organizational and
governmental infrastructure created for rare diseases is extensible to common diseases. As we will explain, the underlying
technology can also be used to identify drug targets for common diseases with a strategy focused on naturally occurring human
knockouts. This flips on its head the prevailing modus operandi of studying people with diseases of interest, shifting the onus to
defining traits worth emulating by pharmaceuticals, and searching phenotypically for people with these traits. This also shifts the
question of what is rare or common from the many underlying causes to the possibility of a common final pathway.
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INTRODUCTION
The 100,000 Genomes Project led by Genomics England has been
a huge success, based not only on their scientific publications1 but
also by their impact on the National Health Service (NHS). Since
2019, NHS has offered genome sequencing as part of healthcare,
and the plan is to sequence five million individuals over the next
5 years2. This has inspired similar initiatives worldwide, even in
middle-income countries like Thailand3. Many are focusing on rare
diseases, or to a lesser extent cancers. Others are studying the
general population and/or building infrastructure (see Table 1).
This reflects a longstanding categorization of medical disorders as
rare diseases of primarily monogenic etiology versus common
diseases of complex multifactorial etiology where most of the
healthcare spending resides. These projects all envision a future of
precision medicine (PM) where the availability of more data (not
necessarily always genomes) facilitates our ability to better
diagnose, treat, and prevent diseases. With limited resources,
debates on where to begin are inevitable. However, such debates
rest on a false dichotomy, i.e., that by starting with rare diseases
we have forsaken our obligation to address common diseases. To
the contrary, what we build and what we learn by implementing
PM for rare diseases is extensible to common diseases, not only
the immediate goal of better diagnoses but also the long-term
challenge of identifying drug targets for common diseases.

RARE DISEASES FOR THE SHORT TERM
First, what are rare diseases? In the United States, a rare disease is
defined as a condition that affects fewer than 200,000 people, or 1 in
1650 people given a current population size of 330 million. This
definition is based on the Orphan Drug Act of 1983. In the European
Union, rare is defined as fewer than 1 in 2000 people. Most of these
diseases present in children, but some present in adults. Although
rare in isolation, they are not rare in aggregate. The oft-cited number
is that they affect 7% of the population (see Box 1). Most of these
diseases are attributed to a single defective gene, i.e., Mendelian,
and the identity of this gene is known for many thousands of

diseases. The argument for rare diseases is not just that they are
better understood. Health economics are more favorable4. Because
they are so rare, few physicians are trained to recognize them.
Hence, they are poorly diagnosed. Affected individuals often endure
years of diagnostic odyssey, which is not only fruitless but more
expensive than sequencing their genomes upfront5,6. For infants
admitted to intensive care within the first 100 days of life,
sequencing produced diagnostic yields of 36.7%; and in 52.0% of
the diagnosed, medical management was affected7. Results
improved to 50.8% and 71.9%, respectively, when trio sequencing
was conducted. Other studies have given similar results8.
At its heart, PM is about making better diagnoses (see Fig. 1)

using the latest technologies to gather more data9 and letting that
guide our subsequent decisions. To transition from research to
routine healthcare requires input from many stakeholders. Every
jurisdiction has its own challenges. A good example for how this
might be done is the Melbourne Genomics Health Alliance10. To
diagnose rare diseases, we need sequencing machines, high-
throughput computers, and a multi-disciplinary team to manage/
interpret the outputs. Most of the costs are in salaries for skilled
experts. Much as the invention of magnetic resonance imaging
resulted in the creation of specialized referral facilities to acquire
and interpret the data, a similar arrangement is used in PM. The
referring physician ultimately gets a diagnosis from another
physician at the referral facility. Occasionally, the two physicians
interact to gather more data before a final diagnosis can be made.
Additional experiments are sometimes required to validate novel
gene and/or mutation functions, although this is being ameliorated
by large-scale phenotyping efforts11. The bottleneck, however, is in
the training and certification of these multi-disciplinary teams.
To what extent do the lessons of creating such referral facilities for

rare diseases transfer to common diseases? Historically, medical
progress has often entailed splitting of a disease into a series of sub-
diseases, each treated differently. It is not inconceivable that PM will
eventually transform any common disease into a series of rare
diseases. How we stratify into sub-diseases is still to be determined,
and it need not always be genetic, let alone monogenic. PM is
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BOX 1: Lower bound for overall prevalence of rare diseases

It is very difficult to measure the prevalence for every known rare disease, not only because there are so many, but also, some are so rare we would need to sample a very
large population to obtain an accurate estimate. However, it is possible to establish a lower bound for overall prevalence by adding the numbers for all instances where
prevalence has been measured. This information is available from the Orphanet website37, organized into mutually exclusive categories: worldwide prevalence, worldwide
birth prevalence, European prevalence, and European birth prevalence. The sum is 6.38%, and sorted by categories it is 0.78%, 0.81%, 3.54%, and 1.25%, respectively. The oft-
cited estimate of 7%, for example in the UK-NHS report “Generation Genome”38, comes remarkably close to this bound. However, combining electronic health records with
genomics has identified subsets of people with distinct genetic causes for many common diseases, arguing that people with undiagnosed Mendelian diseases are more
prevalent than often assumed39. One could therefore ask how much larger the true prevalence might be.
We can extrapolate two ways. If the measured prevalences are an unbiased random sampling of rare diseases, and given that there are over 6000 rare diseases, the total
would be >50%. We believe this is highly implausible. More likely, the Orphanet website contains the most common diseases. Given how the cumulant is clearly approaching
an asymptote after just a few hundred cases (see Fig. 2), the more plausible total is unlikely to be much larger than 7%. An interesting comparison is the fraction of common
multifactorial diseases that can be attributed to early-onset familial forms driven by highly penetrant rare variants. A summary of the published estimates, based on extensive
genome-wide association studies and reanalyzes of the data, puts this number at about 10%40.

Table 1. Precision medicine initiatives.

Country Project/program name Expected size Common
diseases

Rare diseases (and
cancers)

AUSTRALIA Genomics Health Futures Missioni 200,000 ✔

CANADA Canadian Genomics Partnership for Rare Diseases and
Canadian Longitudinal Study on Agingii

Nationwide ✔ ✔

CHINA Precision Medicine Initiativeiii 100,000–100 million ✔ ✔

DENMARK Danish National Genome Centeriv 60,000 ✔ ✔

DUBAI Dubai Genomicsv Nationwide ✔

ESTONIA Personalised Medicine Programmevi 150,000 ✔

EUROPEAN UNION 1+ Million Genomes Initiativevii 1,000,000+ ✔

FINLAND FinnGenviii 500,000 ✔

FRANCE Genomic Medicine France 2025ix 235,000 each year ✔ ✔

HONG KONG Hong Kong Genome Projectx 50,000 ✔

ITALY SardiNIA Projectxi 60,000 ✔

JAPAN GEnome Medical alliance Japanxii Nationwide ✔ ✔

SAUDI ARABIA Saudi Human Genome Programxiii 100,000 ✔ ✔

SINGAPORE (AND
INTERNATIONAL)

Genome Asia 100 Kxiv 100,000 ✔

THAILAND Genomics Thailandxv 50,000 ✔ ✔

TURKEY Turkish Genome Projectxvi 100,000–1,000,000 ✔ ✔

UNITED KINGDOM 100,000 Genomes Projectxvii 100,000 ✔

UNITED KINGDOM Accelerating Detection of Diseasexviii 5,000,000 ✔

UNITED STATES NHGRI Genomic-Medicinexix Nationwide ✔ ✔

UNITED STATES All of Us Research Programxx 1,000,000+ ✔

This is an updated version of a previous summary28 restricted to projects with over 20,000 genomes (or nationwide efforts where that threshold will likely be
exceeded). Funding is not necessarily secure in all instances; thus expected sizes and medical objectives are subject to change. We indicate if there is a focus
on diagnosing rare diseases (and cancers). Otherwise, population studies and infrastructure are merged under the common diseases heading as that is their
long-term objective.
ihttps://www.health.gov.au/initiatives-and-programs/genomics-health-futures-mission.
iihttps://www.genomecanada.ca/sites/default/files/cgp4-rd_mission_statement.pdf and https://www.clsa-elcv.ca.
iiihttps://www.bio-itworld.com/2019/08/12/national-genomic-data-initiatives-worldwide-update.aspx.
ivhttps://eng.ngc.dk/news/2019/december/nnf/.
vhttps://www.dha.gov.ae/en/Pages/DubaiGneomicsAbout.aspx.
vihttps://www.sm.ee/en/news/genome-project-100000-samples-collected-2019-least-50000-more-people-can-join.
viihttps://ec.europa.eu/digital-single-market/en/european-1-million-genomes-initiative.
viiihttps://www.finngen.fi/en.
ixhttps://solidarites-sante.gouv.fr/IMG/pdf/genomic_medicine_france_2025.pdf.
xhttps://www.fhb.gov.hk/download/press_and_publications/otherinfo/200300_genomic/SCGM_report_en.pdf.
xihttps://sardinia.nia.nih.gov/.
xiihttps://www.amed.go.jp/en/aboutus/collaboration/ga4gh_gem_japan.html.
xiiihttps://shgp.kacst.edu.sa/index.en.html.
xivhttps://genomeasia100k.org/.
xvhttps://www.nature.com/articles/d42473–020–00209–6.
xvihttps://www.bbmri-eric.eu/news-events/turkish-genome-project-launched/.
xviihttps://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project/.
xviiihttps://www.ukri.org/innovation/industrial-strategy-challenge-fund/accelerating-detection-of-disease/.
xixhttps://www.genome.gov/about-nhgri/Division-of-Genomic-Medicine.
xxhttps://allofus.nih.gov/about/all-us-research-program-overview.
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simply accelerating this process, with complex data sets that require
multi-disciplinary teams to manage and interpret. Hence, the
organizational lessons from diagnosing rare diseases are directly
transferable to common diseases. Note also that, as we stratify by
mutated genes, many therapeutics for otherwise common cancers
now qualify for orphan drug status12. This was certainly not the
intention of the orphan drug laws, and we may need to update
these laws. For example, perhaps orphan drug status should be
granted based on the number of patients across all indications. The
sooner policymakers are warned about this growing issue, the more
likely they can deal with the ramifications.

COMMON DISEASES IN THE LONG TERM
All that said, the fact remains that other than perhaps cancer, we
are not ready to implement PM in routine healthcare for most
common diseases. Therein lies the source of the tensions between
and within PM initiatives. Ironically, the way out of this conundrum
is to redirect the technology created to diagnose rare diseases
towards a strategy to find drug targets for common diseases. What
we outline here has its roots in a 22-years-old hypothesis on how

gene losses can drive evolutionary changes13. It is coupled to the
realization that human genetics should be a better model of drug
action than animal models or cell lines14. For previously approved
drugs, human genetics is known to be a good predictor of efficacy
and adverse effects15–17. Given that the mode-of-action with most
drugs is to simulate gene loss, this proposal can be encapsulated by
the acronym HKMDs, or Human Knockouts as Models of Drug
action. PCSK9 inhibitors, first approved in 2015, are the canonical
example. They are more effective than statins at lowering serum
cholesterol18 and were inspired by a discovery that individuals with
loss-of-function (LOF) mutations in PCSK9 exhibit low levels of
serum LDL and abnormally good cardiovascular health19. Other
examples are known in coronary artery diseases20. In 2019, a drug
(romosozumab) that increases bone density was approved for
osteoporosis. It was inspired by another rare LOF mutation, in SOST,
where the affected individuals have bones so dense they do not
break21,22. Although we are only aware of a small number of HKMDs
(see Table 2), there are reasons to believe they are widespread (see
Box 2). Historically, their discovery has been serendipitous, because
human geneticists do not as a matter of practice screen for rare
phenotypes. People screen themselves and report to a physician if
they are sick; but rare individuals with HKMDs are not typically sick,
and therefore, have no reason to self-report.
There are two approaches to make HKMD discovery more

systematic23. The genotype-first method would sequence a large
number of individuals and analyze their genomes for LOFs that
might create the opposite of a disease state (e.g., high bone
density) or confer protection against disease (e.g., low serum LDL).
As electronic health records are finite, recontact permission will be
essential to confirm inferred phenotypes. This is being done with
consanguineous populations24 and at the UK Biobank25. The
phenotype-first method would ideally screen a much larger
population for hypothesized HKMD phenotypes; for example,
using social media to entice individuals to self-report. Considering
the multifactorial nature of common diseases, we would expect
there to be many causes—not all genetic, let alone a LOF—for any
given phenotype. Since the people we sequence are not sick, if we
cannot identify a promising LOF in one person, we can move on to
the next. Once a candidate HKMD is identified, we can use the
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Fig. 1 Five different epilepsies, five different treatments. Worldwide, ~50 million people have epilepsy, making it one of the most common
neurological diseases. Pediatric‐onset intractable cases are defined by onset before 18-years-of-age with two failed trials of tolerated
appropriately-chosen-and-used anti-epileptic drugs (AED) to achieve sustained seizure freedom. An estimated 30% of epilepsy patients fall
into this category. Diverse disease etiologies make accurate and specific diagnoses challenging. From the ClinGen Epilepsy Gene Curation
Expert Panel35, there are 2702 genes associated with epilepsy. A proper molecular diagnosis is therefore essential. Here, we show five
examples from the University of Hong Kong (HKU) Paediatric Exome Project, demonstrating how genome medicine enables personalized
treatment of difficult epilepsy cases36. Informed consent was obtained from the parents for the use of these clinical photographs.
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growing human genome sequencing databases to validate the
genotype–phenotype relationship across a larger number of
individuals. Importantly, we can ascertain if a certain genetic
background (i.e., the population in which the LOF was discovered)
is necessary for that phenotype to manifest. This level of validation
would be inconceivable with animal models or cell lines.
Of the two approaches, the phenotype-first method is most

compatible with PM facilities set up to diagnose rare diseases.
Rather than identify rare mutations specific to sick individuals,
they would now identify rare mutations specific to individuals with
a phenotype that mimics a desired pharmaceutical objective.
Anyone with the large-scale capacity to diagnose rare diseases can
easily devote 10% of that capacity to screen phenotypically-
defined individuals for HKMDs. This flips on its head a prevailing

narrative in medical genetics that views LOFs as detrimental to a
small number of people. In the future, rare LOFs may be seen as
key to drug development that benefits a large number of people.

DISCUSSION
Some readers will have noticed a contradiction between two of
our key points. If a common disease is a series of rare diseases,
might that require a series of HKMD-inspired drugs? Much has
been written about the genetic and environmental architecture of
complex multifactorial diseases26,27, and it is dangerous to
generalize to all common diseases. However, to the extent that
a disease has a common final pathway of phenotypic or clinical
expression triggered by many different genetic and environmen-
tal factors, one HKMD-inspired drug may be effective for a large
fraction of affected individuals. This certainly is the hope for PCSK9
inhibitors, although more years of data are required to see if they
improve cardiovascular health under all genetic and environ-
mental backgrounds. The bigger change that we wish to catalyze
is the idea that sequencing people without the disease of interest
may be a more efficient way to identify drug targets. Finding a
LOF that causes a Mendelian disease does not immediately point
us towards a drug target, but finding a LOF that confers a
pharmaceutically desirable phenotype does. HKMDs need not be
inherited. Some might be de novo mutations. Many are likely to
be even rarer than the Mendelian disease alleles that have been
the focus of so many fruitful studies. The challenge is to define
traits worth emulating by drugs, and to phenotypically screen a
very large population for people with these traits.
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