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Simple Summary: DNA polymerase theta, encoded by the human POLQ gene, is upregulated in
several cancers and is associated with poor clinical outcomes. The importance of POLQ, however, has
yet to be elucidated in esophageal cancer. In this study, we explored the functional impacts of POLQ
and looked into its underlying mechanisms. POLQ was overexpressed in esophageal squamous
cell carcinoma (ESCC) tumors associated with unfavorable prognosis and contributed to malignant
phenotypes by promoting genome stability, suggesting that targeting polymerase theta may provide
a potential therapeutic approach for improving ESCC management.

Abstract: Overexpression of the specialized DNA polymerase theta (POLQ) is frequent in breast,
colon and lung cancers and has been correlated with unfavorable clinical outcomes. Here, we aimed
to determine the importance and functional role of POLQ in esophageal squamous cell carcinoma
(ESCC). Integrated analysis of four RNA-seq datasets showed POLQ was predominantly upregulated
in ESCC tumors. High expression of POLQ was also observed in a cohort of 25 Hong Kong ESCC
patients and negatively correlated with ESCC patient survival. POLQ knockout (KO) ESCC cells
were sensitized to multiple genotoxic agents. Both rH2AX foci staining and the comet assay indicated
a higher level of genomic instability in POLQ-depleted cells. Double KO of POLQ and FANCD2,
known to promote POLQ recruitment at sites of damage, significantly impaired cell proliferation both
in vitro and in vivo, as compared to either single POLQ or FANCD2 KOs. A significantly increased
number of micronuclei was observed in POLQ and/or FANCD2 KO ESCC cells. Loss of POLQ
and/or FANCD2 also resulted in the activation of cGAS and upregulation of interferon-stimulated
genes (ISGs). Our results suggest that high abundance of POLQ in ESCC contributes to the malignant
phenotype through genome instability and activation of the cGAS pathway.

Keywords: POLQ; genomic instability; innate immune response

1. Introduction

Esophageal cancer (EC) was the eighth most frequent cancer and the sixth most preva-
lent cause of the cancer-related mortality worldwide in 2020 [1]. Esophageal squamous cell
carcinoma (ESCC) is the main histological subtype, accounting for about 90% of ECs [2].
The majority of ESCC cases present only subtle, if any, symptoms until the late stages, which
results in delayed diagnosis and unfavorable clinical outcomes [3]. Therefore, it is critical
to identify novel clinical biomarkers and druggable targets for the better management
of ESCC.
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DNA polymerase theta (POLQ), encoded by the POLQ gene in humans, is an error-
prone A-family DNA polymerase involved in several biological activities including DNA
double-strand break (DSB) repair, translesion synthesis, base-excision repair (BER), and the
repair of replication forks [4–7]. It is a critical component of alternative end joining (alt-EJ),
which acts as the predominant DSB repair in mammalian cancer cells under circumstances
of defective homology-directed repair [8]. The expression of POLQ is normally repressed in
somatic cells but upregulated in several human cancers. It was firstly found in a Japanese
study that POLQ was upregulated in tumor tissues, as compared with the paired non-tumor
control samples in lung, colon and gastric malignancies [9]. A French study of colorectal
cancer revealed that POLQ was among a list of 47 DNA replication-related genes, whose
overexpression in tumors was significantly associated with poorer patient survival [10].
POLQ was also frequently upregulated in a group of oral squamous cell carcinomas from
Brazil [11]. In addition, POLQ levels were found to be remarkably high in homologous
recombination (HR)-deficient breast and ovarian cancers and correlated with unfavorable
clinical outcomes [8,12].

Despite the important roles that POLQ plays in various cancers, there have been
few studies characterizing its functional role in esophageal cancers to date. Our previous
study utilizing the targeted gene next-generation sequencing (NGS) approach revealed
the germline loss-of-function (LOF) mutations of POLQ and other DNA damage repair-
related genes (BRCA2 and MSH2) associated with the elevated risk of familial ESCC [13].
Nevertheless, the expression level of wildtype POLQ and its functions in ESCC have yet to
be reported. In this study, we investigated the expression level and the functional impact
of POLQ in ESCC to understand its mechanistic function.

Several recent studies have associated the deficiency of DNA damage repair genes
(such as BRCA2) with the activation of innate immunity through the cGAS-STING path-
way [14–18]. The 2’,3’-cGAMP, produced by cyclic GMP-AMP (cGAMP) synthase (cGAS)
upon sensing the aberrant or self-leaked cytosolic DNA, activates the stimulator of inter-
feron genes (STING) proteins and this leads to the expression of Type I interferon (IFN)
and the secretion of other cytokines and chemokines triggering the anti-cancer immune
response [19–22]. In this study, we also explored the potential innate immunity activation
upon the loss of POLQ via the cGAS-STING pathway.

2. Materials and Methods
2.1. Clinical Specimens

Twenty-five pairs of ESCC patient tissues were collected from Hong Kong Queen
Mary Hospital between 2001 and 2003, as previously reported [23]. Approval for this study
was obtained from the Hospital Institutional Review Board at the University of Hong Kong
(IRB UW-14-457).

2.2. RNA Sequence Analysis

We sequenced the RNAs of four tumor and non-tumor pairs of patient tissues using
the Illumina HiSeq 2000 (San Diego, CA, USA) (2 × 100 bp paired reads). Three sets
of public RNA sequencing (RNA-seq) data (SRP007169, SRP008496, SRP064894) were
obtained from Sequence Read Archive (SRA) database. All the clean RNA-seq reads
were aligned to reference genome hg19 using TopHat (version 2.0.14, bowtie version 2.2.4,
College Park, MD, USA) [24]. The gene expression levels (FPKM) were calculated using
Cufflinks (version 2.2.1, Seattle, WA, USA) [25].

2.3. Cell Lines

The immortalized human normal esophageal epithelial cell line NE1, human em-
bryonic kidney 293T cell line, human colon cancer cell line RKO, human osteosarcoma
cell line U2OS and 13 ESCC cell lines used in this study were cultured as previously
described [12,26,27]. KYSE70TS and KYSE180TS were derived from subcutaneous nude
mouse tumors established with KYSE70 and KYSE180 cell lines, respectively. Cell line
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authentication by STR DNA profiling was performed for all cell lines used. Cell lines were
tested routinely for mycoplasma contamination with both 4’,6-diamidino-2-phenylindole
staining and polymerase chain reaction amplification of DNA [26].

2.4. Plasmids and Lentivirus Preparation and Infection

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems were
used with sgRNA oligos (sequences of oligos are listed in the Table S1) targeting POLQ
and FANCD2 to generate POLQ and FANCD2 knockout (KO) cell lines, respectively [27].
Lentivirus preparation and infection were performed as described [28]. To establish
the POLQ/FANCD2 double KO cell lines, ESCC cells were co-incubated with a pool of
lentiviruses containing 2 KO oligos for POLQ and 2 KO oligos for FANCD2 in the presence
of 5mg/mL polybrene. The non-targeting oligo with a sequence of GTTCCGCGTTA-
CATAACTTA was used as a CRISPR negative control [29].

2.5. RNA Isolation and Real-Time Quantitative Polymerase Chain Reaction

RNA isolation, reverse transcription, and quantitative polymerase chain reaction
(Q-PCR) were performed as described [30]. Q-PCR was used to determine gene expression
at the mRNA level in cell lines and tissue samples. FastStart™ Universal SYBR Green
Master (Rox) (Roche Applied Science, Basel, Switzerland) was used according to the manu-
facturer’s instructions. Human glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and
mouse TATA-box-binding protein (TBP) were used as the endogenous loading controls
for human and mouse genes, respectively. All Q-PCR reactions were carried out with
the LightCycler 480 System (Roche, Basel, Switzerland) using the default SYBR green
protocol. The expression level of the target gene was compared with the reference gene
by calculating their fold differences using the 2−∆∆Ct method. Experiments were repeated
3 times independently. Expression with average fold-changes larger than 2 or smaller than
0.5 were considered altered. All primers used in this study for Q-PCR are listed in Table S2.

2.6. Protein Extraction and Western Blot Analysis

Protein extraction was performed, as previously described [31]. Cell protein lysates
were electrophoresed on 6% SDS-PAGE gels for POLQ analysis and 10% SDS-PAGE gels
for all other protein targets. Proteins were transferred to PVDF membranes, blocked with
3% bovine serum albumin (BSA) and incubated with primary antibodies, as previously
described [28]. POLQ antibodies are mouse monoclonal antibodies, affinity purified
with protein A ceramic hyperDF (Akta System, Marlborough, MA, USA) (0.1 mg/mL).
They were raised against the peptide antigens CSIFRARKRASLDINKEKPG, derived from
regions of the central domain of POLQ. Their specificity was checked using an siRNA
strategy [32]. Detailed information for the antibodies used in this study is summarized in
Table S3.

2.7. MTT Assay Following Genotoxic Drug Treatments

The proliferation and viability of cells were determined by the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay, as previously described [23]. Cells were
counted and seeded at a concentration of 3 × 103 cells per well in triplicate in 96-well cell
culture microplates. Fresh medium with 10% fetal bovine serum and stated concentrations
of the designated drug was added on day 2. Measurements were taken starting from day 3,
as described earlier [28]. As dimethyl sulfoxide (DMSO) was used for the drug dilution,
medium containing equivalently diluted DMSO was added to control cells.

2.8. Colony Formation Assay

Cells were seeded in 12-well plates at a concentration of 5 × 103 cells/well. After a
10-day culture, cells were fixed in 4% paraformaldehyde followed by 1 × Giemsa stain
(Sigma Aldrich, Saint Louis, MO, USA). Excess Giemsa was removed by rinsing the plate
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with running water. Images were then captured and cell colonies were counted using the
Gel Doc XR system (Bio-Rad Laboratories, Hercules, CA, USA).

2.9. Ionizing Radiation

Ionizing radiation was used to induce different degrees of DNA DSBs in living cells. A
cell irradiator with cesium as its radioactive source, MDS Gammacell 3000 Elan II (Nordion,
Ottawa, ON, Canada), was operated by well-trained and licensed individuals rigorously
following the manufacturer’s manual.

2.10. Immunofluorescence (IF) Staining and Confocal Microscopy

Cells were seeded on pre-sterilized 22 mm square coverslips placed in 35 mm plates
and cultured for 1–2 days until roughly 60% confluence was reached. On the day of staining,
cells were gently washed with PBS and fixed in 4% paraformaldehyde (PFA) in PBS at
room temperature for 15 min. After washing with PBS three times, cells were subjected
to permeabilization by incubating with 0.3% Triton-X100 in PBS at room temperature for
20 min. Cells were then washed three times with PBS and blocked with 4% BSA in TBST for
60 min at room temperature. Upon the removal of the blocking buffer, cells were incubated
with diluted primary antibody overnight at 4 ◦C. On the next day, cells were rinsed twice
with PBS and then incubated with Alexa Fluor-conjugated antibodies (Invitrogen, Waltham,
MA, USA) at room temperature for 90 min, avoiding light exposure. The coverslips were
washed three times with PBS and then mounted onto the slides using SlowFade™ Gold
Antifade Mountant (Thermo Fisher Scientific, Waltham, MA, USA). Images were captured
by LSM800 confocal microscopy (Zeiss, Jena, Germany) or BX51 fluorescence microscopy
(Olympus, Tokyo, Japan).

2.11. Single Cell Gel Electrophoresis Assay (Comet Assay)

The alkaline comet assay was performed according to a method published in Nature
Protocol [33] with only minor optimizations. In brief, around 1 × 104 cells were collected and
resuspended in 100 µL 0.6% UltraPure™ (Thermo Fisher Scientific, Waltham, MA, USA) low
melting agarose dissolved in PBS. Then 50 µL of the suspension was cast onto microscope
slides precoated with 1% normal melting agarose. Another layer of 0.6% low melting
agarose was then added on top before cells were lysed overnight at 4 ◦C in lysis buffer
(2.5 M NaCl, 0.1 M EDTA, 10 mM Trizma Base, 1% N-laurylsarcosine, 10% DMSO, pH = 10,
freshly supplied with 0.1% Triton X-100 before use). On the next day, electrophoresis was
conducted at 4 ◦C for 60 min at 15 V in electrophoresis buffer (300 mM sodium acetate,
100 mM Tris-HCL, pH = 8.3). The slides were then rinsed with PBS, dehydrated/fixed
using absolute ethanol, and stained with 5 µg/mL DAPI before mounting with coverslips.
Images were captured with BX51 fluorescence microscopy (Olympus, Tokyo, Japan) and
analyzed with OpenComet software (Cambridge, MA, USA) [34].

2.12. Enzyme-Linked Immunosorbent Assay (ELISA)

To measure the level of CCL5 protein secreted by the cells, the Human CCL5/RANTES
Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA) was used according to the
manufacturer’s protocol. For in vitro cultured cells, conditioned medium was collected
two days after the cells were seeded in a 6-well microplate (Thermo Fisher Scientific,
Waltham, MA, USA). The conditioned medium containing the proteins was first spun
down to remove the cell debris and then concentrated using a 3 K MWCO Microsep™
Advance Centrifugal Device (Pall, New York, NY, USA). For mouse subcutaneous tumors,
tissues were first homogenized in radioimmunoprecipitation buffer (100 mM of sodium
chloride, 1% of Triton X-100, 0.5% of sodium deoxycholate, 0.1% of SDS, in 50 mM of
Tris-Cl buffer, pH = 7.4) at 4 ◦C before centrifugation for the removal of the insoluble
components. The BSA assay was performed to standardize the protein concentrations
in each sample. The absorbance was measured at a wavelength of 450 nm using the
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ELX800 Absorbance Microplate Reader (BioTek, Winooski, VT, USA) and the readings were
corrected by subtracting the reading at 540 nm to achieve higher accuracy.

2.13. In Vivo Tumorigenicity Assay

Female BALB/c/nu/nu athymic nude mice (7–9 weeks of age) were obtained from
and housed in the Laboratory Animal Unit of the University of Hong Kong. The housing
environment was kept between 16 ◦C and 26 ◦C with relative humidity between 30–70%
under a regular 12-h light, 12-h dark cycle. All experimental procedures were approved
by the Committee on the Use of Live Animals in Teaching and Research in the University
of Hong Kong. Mice were randomly assigned to different cell line groups with three
mice in each group. An optimal number (1.8 × 106/site for SLMT and 2.4 × 106/site
for KYSE180TS) of cells resuspended in serum-free medium and injected subcutaneously
into both flanks of the mice. The mouse’s health condition was monitored closely and the
subcutaneous tumor volume was measured weekly using a caliper. Cervical dislocation
was used for animal euthanasia.

2.14. Statistical Analysis

Data are presented as the mean ± SD. Two-sided Student’s t-test was applied unless
stated otherwise. The results were considered as statistically significant when the p value
was less than 0.05.

3. Results
3.1. POLQ Is Upregulated in ESCC and Correlates with Unfavorable Clinical Outcome

To determine the clinical significance of POLQ in ESCC, the POLQ expression was
first examined in paired ESCC tumors and adjacent normal tissues using RNA-seq. In our
transcriptomic profiling analysis, POLQ was found to be overexpressed in ESCC tumors,
when compared with the adjacent normal esophageal epithelial tissues in all three public
and one in-house RNA-seq datasets (Figure 1a). In line with this result, POLQ upregulation
in ESCC tumor was found in a NCBI GEO microarray dataset (GSE23400) (Figure 1b). We
then determined the POLQ mRNA levels in 25 Hong Kong ESCC patient tumors and paired
adjacent normal tissues using Q-PCR. As shown in Figure 1c, POLQ was upregulated in
16 out of 25 of these ESCC tumor-normal pairs. When stratifying these 25 ESCC patients
by the cause of death, we found 9 patients died due to ESCC, while others died of other
unrelated causes. By applying the simple regression analysis model, a negative correlation
was found between the relative mRNA expression levels of POLQ of these 9 patients and
their survival times after surgical resection. As shown in Figure 1d, the high expression
of POLQ in ESCC tumors was associated with unfavorable survival time after resection
(R2 = 0.656, p = 0.008).

Consistently, the expression of the POLQ, at both mRNA and protein levels, was
upregulated in 62% (8/13) of ESCC cell lines using an immortalized normal esophageal
epithelial cell line, NE1, as a reference (Figure 1e,f). Four ESCC cell lines, namely, KYSE70TS,
KYSE180TS, 81T and SLMT, had higher POLQ expression levels even when compared with
RKO, a colon cancer cell line well-known for expressing high endogenous levels of POLQ.

3.2. POLQ Maintains Genome Stability in ESCC Cells

To better characterize the functional impacts of POLQ in ESCC, POLQ was knocked
out using the CRISPR technology in high-POLQ expressing ESCC cell lines for further
investigation. The successful depletion of POLQ protein in ESCC cell lines was validated
by Western blotting (Figure S1).
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Figure 1. POLQ is upregulated in ESCC and correlates with unfavorable clinical outcome: (a) RNA-seq transcriptome from
one in-house and three NCBI SRA datasets (accession numbers are SRP007169, SRP008496, and SRP064894): set 1, n = 5 
pairs Hong Kong ESCC samples (in-house); set 2, n = 3 pairs; set 3, 5 normal and 7 ESCC tumors, set 4, n = 15 pairs (* p < 
0.05, *** p < 0.001). (b) NCBI GEO microarray dataset: GSE23400, n = 53. (c) Relative POLQ mRNA expression levels in
Hong Kong ESCC patient tumors. (d) Relative POLQ mRNA expression levels correlated with survival after resection for
ESCC-related deaths: n = 9 (simple regression analysis, R2 = 0.656, p = 0.008). POLQ expression in ESCC cell lines at the 
mRNA and protein levels were determined by Q-PCR (e) and Western blotting (f), respectively. 

0

1

2

3

4

5

6

7

8

9

10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0

P1
1

P1
2

P1
3

P1
4

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

P2
1

P2
2

P2
3

P2
4

P2
5

Re
la

tiv
e 

m
RN

A 
ex

pr
es

si
on

(fo
ld

 d
iff

er
en

ce
)

POLQ mRNA expression levels in Hong 
Kong ESCC patient tumors

Fr
ag

m
en

ts
 P

er
 K

ilo
ba

se
 M

ill
io

n 
(F

PK
M

) 

POLQ 

⍺-tubulin --55kDa 

--245kDa 

Figure 1. POLQ is upregulated in ESCC and correlates with unfavorable clinical outcome: (a) RNA-seq transcriptome
from one in-house and three NCBI SRA datasets (accession numbers are SRP007169, SRP008496, and SRP064894): set 1,
n = 5 pairs Hong Kong ESCC samples (in-house); set 2, n = 3 pairs; set 3, 5 normal and 7 ESCC tumors, set 4, n = 15 pairs
(* p < 0.05, *** p < 0.001). (b) NCBI GEO microarray dataset: GSE23400, n = 53. (c) Relative POLQ mRNA expression levels
in Hong Kong ESCC patient tumors. (d) Relative POLQ mRNA expression levels correlated with survival after resection for
ESCC-related deaths: n = 9 (simple regression analysis, R2 = 0.656, p = 0.008). POLQ expression in ESCC cell lines at the
mRNA and protein levels were determined by Q-PCR (e) and Western blotting (f), respectively.

We first compared the DNA damage repair efficiency of POLQ-depleted versus control
ESCC cells exposed to different treatments by monitoring DNA breaks remaining after
incubation to allow repair to proceed with a single cell gel electrophoresis approach, the
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alkaline comet assay [35]. Three different parameters, namely, tail area, tail DNA percentage
and tail moment were used for the quantification. Significant higher levels of DNA damage
assessed by all parameters were found in POLQ-depleted cells, as compared with the
control cells, when treated with 2 mM replication stress inducer hydroxyurea or 2 µM ATR
inhibitor VE822 (Figure 2a). Meanwhile, the POLQ depletion group exhibited a higher
level of DNA damage, as compared with the control group, upon 4Gy ionizing radiation
treatment, by using the tail area as the parameter (p < 0.001) (Figure 2a). This difference,
however, was not statistically significant when analyzed using tail DNA percentage or tail
moment as the parameter (Figure 2a). Therefore, we used an additional method to visualize
and quantify DNA damage (especially DNA DSBs) after IR, the γH2AX foci formation
assay [36]. Control and POLQ KO ESCC cells were treated with 4Gy radiation and the
γH2AX foci formation assay was performed after 1 and 24 h post treatment (Figure 2b,c).
Cells with 10 or more γH2AX foci were defined as the positive cells. A slightly higher
percentage of γH2AX positive cells was observed in the POLQ KO group than in the
control group one hour after the radiation treatment. After 24 h of recovery, there were
still more than 40% γH2AX foci-positive cells in the POLQ KO group, while only less than
20% of the cells in the control group were γH2AX positive (Figure 2b,c). Basal levels of
DNA damage in control and POLQ-depleted cells were measured without IR treatment
(Figure S2). Delayed DSB repair upon POLQ depletion was also validated by Western
blotting probing γH2AX (Figure 2d). Collectively, these results indicate that depleting
POLQ significantly affects DNA break repair in ESCC.

Western blotting was next performed to assess the activation of DNA damage check-
point proteins upon the POLQ depletion. In the absence of external stress, POLQ loss
resulted in endogenous enhanced phosphorylation of checkpoint kinase 2 (CHEK2) at the
site of Thr68 (Figure 2e,f). When exposed to single/dual replication stress/DNA damage
inducers, CHEK2 activation seen in control cells was further exacerbated when POLQ
was depleted (Figure 2e,f). No significant change was found in ATM, ATR, or CHEK1
phosphorylation status upon POLQ depletion (Figure S3). Taken together with the findings
of undermined DNA damage repair efficiency in POLQ-depleted cells, these results suggest
a protective role of POLQ in maintaining the genome stability of ESCC cells.

3.3. POLQ Depletion Sensitizes ESCC Cells to Mutiple Genotoxic Agents

To determine whether POLQ may promote the genome stability of ESCC cells, we
examined the impact of POLQ depletion on cell viability. POLQ-depleted and control ESCC
cells were treated with different genotoxic agents including conventional platinum-based
chemotherapy drug cisplatin, replication stress inducer hydroxyurea, environmental toxin
formaldehyde, topoisomerase inhibitors camptothecin and etoposide and ATR inhibitor
VE822 before being subjected to the MTT assay. Compared with the control cells, POLQ
KO ESCC cells were, to different extents, sensitized to all these cytotoxic drugs (Figure 3).
Consistently, these data indicate that POLQ expression favors maintenance of ESCC genome
stability and cell viability.

3.4. Double Knockout POLQ and FANCD2 Drastically Inhibits ESCC Growth Both In Vivo and
In Vitro

While POLQ depletion strongly affected ESSC cell viability under treatment with
genotoxic agents, low impact on cellular proliferation was observed under normal growth
conditions (Figure 4), suggesting that the majority of endogenous DNA damage in ESCC
cells can be repaired in the absence of POLQ. FANCD2, another DNA damage repair gene
upregulated in ESCC [37], functions in both the Fanconi anemia pathway that repairs
inter-strand DNA crosslinks and the homologous recombination (HR) pathway that repairs
DNA DSBs [8,38,39]. FANCD2 has also been proven to be a central player in orchestrating
DNA repair pathway choice at the replication fork and promotes POLQ recruitment at
sites of damage [40]. Interestingly, our previous ESCC functional study demonstrating that
FANCD2 depletion significantly inhibited tumor growth and metastasis, already showing
that DNA damage repair is essential for ESCC progression [30]. Since both POLQ and
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FANCD2 are DNA damage repair genes conferring tumor progression, we explored the
possible synergistic or synthetic lethality relationships between POLQ and FANCD2 in
ESCC tumorigenesis.
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image). (c) Quantification of the staining results (cells with 10 or more foci were defined as the positive cells, Student’s t-
test, **, p < 0.01; ****, p < 0.0001). Data are presented as the mean ± SD. (d) The phosphorylation levels of CHK2 in un-
treated/treated KYSE180SE cells depleted or not for POLQ were measured by Western blotting (e) and quantified by Im-
ageJ software (Bethesda, MD, USA) in (f) UT, untreated; FA, 1 mM formaldehyde; 4Gy ionizing radiation (IR); HU, 4 mM 
hydroxyurea; CDDP, 2 uM cisplatin; LacZ, negative control of CRISPR KO; p84, loading control. Data are presented as the 
mean ± SD. 
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hydroxyurea; CDDP, 2 uM cisplatin; LacZ, negative control of CRISPR KO; p84, loading control. Data are presented as the
mean ± SD.
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test, **, p < 0.01; ****, p < 0.0001). Data are presented as the mean ± SD. (d) The phosphorylation levels of CHK2 in un-
treated/treated KYSE180SE cells depleted or not for POLQ were measured by Western blotting (e) and quantified by Im-
ageJ software (Bethesda, MD, USA) in (f) UT, untreated; FA, 1 mM formaldehyde; 4Gy ionizing radiation (IR); HU, 4 mM 
hydroxyurea; CDDP, 2 uM cisplatin; LacZ, negative control of CRISPR KO; p84, loading control. Data are presented as the 
mean ± SD. 

3.3. POLQ Depletion Sensitizes ESCC Cells to Mutiple Genotoxic Agents 
To determine whether POLQ may promote the genome stability of ESCC cells, we 

examined the impact of POLQ depletion on cell viability. POLQ-depleted and control 
ESCC cells were treated with different genotoxic agents including conventional platinum-
based chemotherapy drug cisplatin, replication stress inducer hydroxyurea, environmen-
tal toxin formaldehyde, topoisomerase inhibitors camptothecin and etoposide and ATR 
inhibitor VE822 before being subjected to the MTT assay. Compared with the control cells, 
POLQ KO ESCC cells were, to different extents, sensitized to all these cytotoxic drugs 
(Figure 3). Consistently, these data indicate that POLQ expression favors maintenance of 
ESCC genome stability and cell viability. 
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Figure 3. POLQ depletion sensitizes ESCC cells to multiple genotoxic agents. Cisplatin, hydroxyurea, formaldehyde,
camptothecin, etoposide and VE822 were used to treat KYSE180TS and SLMT cell lines. Relative survival curves are
illustrated. Student’s t-test, * p < 0.05; ** p < 0.01. Data are presented as the mean ± SD.

To compare the functional impact of POLQ single KO, FANCD2 single KO, POLQ/
FANCD2 double KO and the control ESCC cells, we constructed the FANCD2 KO (FANCD2KO)
and POLQ/FANCD2 KO (DK) ESCC cell lines. FANCD2KO cell lines were established as
previously described [37]. DK cell lines were established by infecting the ESCC cells with a
mixture of lentiviruses carrying two KO oligos for POLQ and two KO oligos for FANCD2.
Successful KOs were validated by Western blotting (Figure S4).

The 2D colony formation assay was conducted to evaluate clonogenic ability in
POLQ/FANCD2 single/double KO ESCC cells. Both FANCD2 single KO and POLQ sin-
gle KO ESCC cells formed significantly fewer colonies than the control cells, whereas
POLQ/FANCD2 double KO cells had less colonies than with the single KOs (Figure 4a). The
clonogenic ability was reduced by 22% in the POLQ KO group, 69% in FANCD2 KO group
and 94.5% in POLQ/FANCD2 double KO group in the KYSE180TS cell line (Figure 4a).
Similar results were also found with the SLMT cell line, in which the clonogenic ability
was reduced by 26% in the POLQ KO group, 78% in the FANCD2 KO group and 95% in
POLQ/FANCD2 double KO group (Figure 4a).

To examine the impact of the POLQ/FANCD2 double KO on ESCC cell proliferation
in vivo, the subcutaneous tumorigenicity assay was conducted on BALB/c nude mice.
POLQ/FANCD2 single/double KO and control KYSE180TS/SLMT cells were injected into
both flanks of the mice and the tumor volumes were measured weekly for 3 consecutive
weeks. In both cell lines tested, the POLQ or FANCD2 single KO group had significantly
smaller tumors in contrast to the control group, whereas the POLQ/FANCD2 double KO
group resulted in the drastic synergistic inhibition of subcutaneous tumors compared to the
two single KO groups (Figure 4b). These in vitro and in vivo findings collectively suggest
a potential synthetic lethality relationship between POLQ and FANCD2 in ESCC.
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Figure 4. Double KO POLQ and FANCD2 drastically inhibits ESCC growth both in vivo and in vitro. (a) POLQ/FANCD2
double KO significantly inhibited ESCC cell colony formation in comparison to the single gene KOs. Experiments were
done in triplicates in three independent experiments. Student’s t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
Data are presented as the mean ± SD. (b) POLQ/FANCD2 double KO significantly inhibited the tumorigenicity of ESCC cell
lines vs single gene KOs and control in vivo (n = 6; Student’s t-test, KYSE180TS, φ, LacZ vs. POLQKO, p < 0.05; #, LacZ vs.
FANCD2KO, p < 0.05; ψψ, POLQKO vs. DK, p < 0.01; ***, FANCD2KO vs. DK, p < 0.001; SLMT, φφ, LacZ vs. POLQKO,
p < 0.01; ##, LacZ vs. FANCD2KO, p < 0.01; ψ, POLQKO vs. DK, p < 0.05; *, FANCD2KO vs. DK, p < 0.05). The tumor
samples were collected at the end of week three. Data are presented as the mean ± SD.
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3.5. Double Knockout of POLQ and FANCD2 Significantly Induces Genome Instability and the
Formation of Micronuclei

To evaluate the activation status of CHEK2 in POLQ/FANCD2 double KO cells,
Western blotting was performed using KYSE180TS and SLMT cells. Figure 5a shows that
CHEK2 was hyperphosphorylated upon single depletion of POLQ or FANCD2 in both
cell lines. Double KO of these two genes caused an even higher level of phosphorylated
CHEK2 when compared with either of the single KOs.

Cancers 2021, 13, 3204 12 of 21 
 

 

Figure 4. Double KO POLQ and FANCD2 drastically inhibits ESCC growth both in vivo and in vitro. (a) POLQ/FANCD2 
double KO significantly inhibited ESCC cell colony formation in comparison to the single gene KOs. Experiments were 
done in triplicates in three independent experiments. Student’s t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
Data are presented as the mean ± SD. (b) POLQ/FANCD2 double KO significantly inhibited the tumorigenicity of ESCC 
cell lines vs single gene KOs and control in vivo (n = 6; Student’s t-test, KYSE180TS, ɸ, LacZ vs. POLQKO, p < 0.05; #, LacZ 
vs. FANCD2KO, p < 0.05; ψψ, POLQKO vs. DK, p < 0.01; ***, FANCD2KO vs. DK, p < 0.001; SLMT, ɸɸ, LacZ vs. POLQKO, 
p < 0.01; ##, LacZ vs. FANCD2KO, p < 0.01; ψ, POLQKO vs. DK, p < 0.05; *, FANCD2KO vs. DK, p < 0.05). The tumor 
samples were collected at the end of week three. Data are presented as the mean ± SD. 

3.5. Double Knockout of POLQ and FANCD2 Significantly Induces Genome Instability and the 
Formation of Micronuclei 

To evaluate the activation status of CHEK2 in POLQ/FANCD2 double KO cells, West-
ern blotting was performed using KYSE180TS and SLMT cells. Figure 5a shows that 
CHEK2 was hyperphosphorylated upon single depletion of POLQ or FANCD2 in both 
cell lines. Double KO of these two genes caused an even higher level of phosphorylated 
CHEK2 when compared with either of the single KOs. 

Micronuclei are often formed upon mis-segregation of DNA during cell division and 
are frequently associated with genomic instability [38,41]. Figure 5b shows representative 
micronuclei images. As shown in Figure 5c, the micronuclei were observed in only 1.4% 
of the control KYSE180TS cells, while 6.9% of POLQKO cells, 6.6% of FANCD2KO cells 
and 25.1% of POLQ/FANCD2 double KO cells exhibited micronuclei. Similar results were 
found in the SLMT cell line as well. Micronuclei were observed in only 2.9% of the control 
SLMT cells, while 10.1% of POLQKO cells, 9.7% of FANCD2KO cells and 21.5% of 
POLQ/FANCD2 double KO cells exhibited micronuclei (Figure 5c). These results imply 
that the loss of two DNA damage repair players, POLQ and FANCD2, leads to the sub-
stantial increase in genome instability and accumulation of cytosolic DNA. 

 
 

(a) (b) Cancers 2021, 13, 3204 13 of 21 
 

 

 
(c) 

Figure 5. Double KO POLQ and FANCD2 significantly induced genome instability and the formation of micronuclei. (a) 
Depleting POLQ and/or FANCD2 exacerbated the level of CHEK2 phosphorylation. DK, POLQ/FANCD2 double KO; F, 
FANCD2 KO; P, POLQ KO; LacZ, negative control of CRISPR KO; p84, loading control. (b) A representative image of 
micronuclei. (c) Quantification of the percentage of cells with micronuclei in KYSE180TS and SLMT cell lines. Magnifica-
tion: 63×/100× (zoomed-in image). Around 200 cells were counted for each group. Three independent experiments were 
performed. LacZ, negative control of CRISPR KO; DK, POLQ/FANCD2 double KO. Student’s t-test, * p < 0.05; ** p < 0.01; 
*** p < 0.001. Data are presented as the mean ± SD. 
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of cytokine signaling [42]. Figure 6c shows the elevated phosphorylation of STAT1 and 
the hyperactivation of cGAS upon POLQ/FANCD2 double KO. Taken together, these re-
sults indicate the potential activation of the innate immune response through the cGAS-
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Figure 5. Double KO POLQ and FANCD2 significantly induced genome instability and the formation of micronuclei.
(a) Depleting POLQ and/or FANCD2 exacerbated the level of CHEK2 phosphorylation. DK, POLQ/FANCD2 double KO;
F, FANCD2 KO; P, POLQ KO; LacZ, negative control of CRISPR KO; p84, loading control. (b) A representative image of
micronuclei. (c) Quantification of the percentage of cells with micronuclei in KYSE180TS and SLMT cell lines. Magnification:
63×/100× (zoomed-in image). Around 200 cells were counted for each group. Three independent experiments were
performed. LacZ, negative control of CRISPR KO; DK, POLQ/FANCD2 double KO. Student’s t-test, * p < 0.05; ** p < 0.01;
*** p < 0.001. Data are presented as the mean ± SD.

Micronuclei are often formed upon mis-segregation of DNA during cell division and
are frequently associated with genomic instability [38,41]. Figure 5b shows representative



Cancers 2021, 13, 3204 13 of 20

micronuclei images. As shown in Figure 5c, the micronuclei were observed in only 1.4% of
the control KYSE180TS cells, while 6.9% of POLQKO cells, 6.6% of FANCD2KO cells and
25.1% of POLQ/FANCD2 double KO cells exhibited micronuclei. Similar results were found
in the SLMT cell line as well. Micronuclei were observed in only 2.9% of the control SLMT
cells, while 10.1% of POLQKO cells, 9.7% of FANCD2KO cells and 21.5% of POLQ/FANCD2
double KO cells exhibited micronuclei (Figure 5c). These results imply that the loss of
two DNA damage repair players, POLQ and FANCD2, leads to the substantial increase in
genome instability and accumulation of cytosolic DNA.

3.6. Double Knockout POLQ and FANCD2 Induces the Expression of Interferon-Stimulated Genes
(ISGs) and Upregulates cGAS and STAT1 Phosphorylation

The DNA damage repair deficiency has been recently linked to the activation of
anti-tumor immunity by compelling evidence [14–18]. For example, the inactivation of
BRCA2 was reported to trigger the innate immune response [16]. We investigated the
relationship between inactivating POLQ and/or FANCD2, two important DNA damage
repair genes, and the potential activation of the innate immune response. ISGs play pivotal
roles in enhancing innate immune responses [39]. A panel of ISGs was designed and
their mRNA expression levels in subcutaneous mouse tumors inoculated with control,
POLQKO, FANCD2KO and POLQ/FANCD2 double KO ESCC cells were measured by
qPCR. Compared with the control group, POLQ/FANCD2 double KO subcutaneous tumors
inoculated by KYSE180TS cell line had significantly higher levels of IFIT1, IFI6, ISG15,
OAS2, MX1, CCL5, STING and TNRSF1B (Figure 6a). Similarly, ISGs (IFI6, CCL5, CXCL10,
STING and TNF-α) were found to be upregulated in POLQ/FANCD2 double KO SLMT
subcutaneous tumors as compared with the controls (Figure 6a). No statistically significant
difference in ISG expression levels was found between the single KO groups and the
control group. The CCL5 was upregulated at the protein level in KYSE180TS and SLMT
cells upon POLQ/FANCD2 double KO (Figure 6b). CCL5 is a commonly used marker for
activation of cytokine signaling [42]. Figure 6c shows the elevated phosphorylation of
STAT1 and the hyperactivation of cGAS upon POLQ/FANCD2 double KO. Taken together,
these results indicate the potential activation of the innate immune response through the
cGAS-STING-STAT1 pathway, after the loss of both POLQ and FANCD2 proteins.
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Figure 6. Double KO POLQ and FANCD2 induced the expression of interferon-stimulated genes 
and upregulated cGAS and STAT1 phosphorylation. (a) ISGs mRNA expression levels in 
KYSE180TS and SLMT subcutaneous tumors. Student’s t-test, ** p < 0.01; *** p < 0.001; **** p < 0.0001. 
Data are presented as the mean ± SD. (b) CCL5 Protein level in KYSE180TS and SLMT cell lines. 
Student’s t-test, * p < 0.05; ** p < 0.01. (c) Activation of cGAS-STING-STAT1 pathway upon 
POLQ/FANCD2 single/double KO. Data are presented as the mean ± SD. 
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Figure 6. Double KO POLQ and FANCD2 induced the expression of interferon-stimulated genes and
upregulated cGAS and STAT1 phosphorylation. (a) ISGs mRNA expression levels in KYSE180TS
and SLMT subcutaneous tumors. Student’s t-test, ** p < 0.01; *** p < 0.001; **** p < 0.0001. Data are
presented as the mean ± SD. (b) CCL5 Protein level in KYSE180TS and SLMT cell lines. Student’s
t-test, * p < 0.05; ** p < 0.01. (c) Activation of cGAS-STING-STAT1 pathway upon POLQ/FANCD2
single/double KO. Data are presented as the mean ± SD.

4. Discussion

Encoded by POLQ, DNA polymerase theta (POLQ) has long been portrayed as a key
player in mediating alternative end-joining repair of DNA DSBs [5]. The upregulation
of POLQ has been observed in a variety of malignancies, including those of breast, lung,
stomach, ovary and head and neck, and was associated with poor prognosis [8–10,12,43,44].
In this study, we discovered that POLQ is predominantly overexpressed in ESCC patient
tumors at the mRNA level. In addition, after stratifying a cohort of 25 Hong Kong patients
by the cause of death, a statistically significant negative correlation was uncovered between
the relative POLQ mRNA expression levels in ESCC tumors and the patient survival
upon surgical resection before ESCC-related death, highlighting the upregulation of POLQ
association in ESCC tumors with growth advantages. In the in vivo tumorigenicity assay
using KYSE180TS and SLMT cell lines, significantly smaller subcutaneous tumors were
consistently observed in the POLQ KO groups, when compared with their respective
controls. In line with these results, we also discovered that POLQ KO ESCC cells were
sensitized to multiple genotoxic agents, as assessed in the MTT assay. Collectively, the
current study is the first functional analysis suggesting that the upregulated POLQ in ESCC
is associated with malignant phenotypes associated with poor prognosis.

Higher levels of DNA damage were found in POLQ-depleted ESCC cells than in
control cells, especially under externally induced stresses. POLQ depletion concordantly
enhanced the phosphorylation of CHK2 with or without the presence of DNA damage-
inducing agents or ionizing radiation. In fact, whether POLQ promotes or suppresses
genome instability remains largely controversial. Some biochemical studies have demon-
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strated that the involvement of POLQ in DNA damage repair is frequently accompanied by
template insertion or large deletion, as POLQ has rather low fidelity in replication [45–47].
Conflicting evidence has been reported in the studies based on mouse or human systems. In
some studies, the depletion of POLQ leads to increased DNA DSB formation, destabilized
replication fork and elevated sensitivity to certain genotoxic drugs, suggesting the role
of POLQ as a protector of genomic stability [8,48–52]. In other studies, however, POLQ
depletion results in a reduced level of UV-induced mutation and chromosomal translo-
cation, while POLQ overexpression lowers the replication fork speed, impairs cell cycle
progression and increases the expression of DNA damage markers [53,54]. Recently, it has
been proposed that the overexpressed POLQ neutralizes the excessive genome instability
in cancer cells, which frequently possess higher levels of replication stress [55,56]. The
function of POLQ concerning the genomic instability has not yet been described in the
context of ESCC. Given the fact that POLQ is overexpressed in ESCC and is associated
with poor clinical outcome, we postulated that the upregulated expression of POLQ may
allow ESCC cells to better tolerate the increasing replication stress caused by uncontrolled
proliferation or anti-cancer drugs and, therefore, promote the cancer progression.

As a critical component of the DNA damage repair orchestra, FANCD2 functions in
both the Fanconi anemia pathway that repairs inter-strand DNA crosslinks and the HR
pathway that repairs DNA DSB breaks [8,57]. More importantly, FANCD2 is critical in the
choice of DNA repair pathway at the replication fork and has been reported to facilitate
polymerase theta recruitment during alt-EJ at the DNA damage sites [40]. By presenting the
results showing the drastic inhibition of ESCC cell growth (both in vitro and in vivo) upon
double KO of POLQ and FANCD2, our study also identified the potential synthetic lethality
relationship between POLQ and FANCD2 in ESCC. Since both the FANCD2-involved HR
pathway and POLQ-mediated Alt-EJ pathway function in repairing DNA DSBs, efforts have
been made to investigate the potential synthetic lethality relationship between FANCD2 and
POLQ. It was observed in ovarian carcinoma that POLQ depletion hindered the survival
of FANCD2-deficient A2780 cells exposed to PARP inhibitors, cisplatin, and mitomycin
C [8]. Consistently, the co-knockdown of FANCD2 and POLQ in two lung cancer cell
lines resulted in hypersensitivity to cisplatin, as compared with the single knockdown of
FANCD2 or POLQ [58]. Exacerbated levels of chromosomal breakage, checkpoint activation,
and γH2AX phosphorylation in response to mitomycin C were also found upon POLQ-
depletion in FANCD2-deficient cells [8]. Collectively, these in vitro findings suggest that
FANCD2-deficient cancer cells are hypersensitive to inhibition of POLQ-mediated repair. In
the in vivo context, despite the fact that Fancd2−/− and Polq−/− mice are viable and exhibit
only subtle malignant phenotypes [49], viable Fancd2–/–Polq–/– mice were very uncommon
from mating and frequently died prematurely due to severe congenital malformations [59].
It has also been reported that double knockdown of POLQ and FANCD2 decreased the
tumor volumes of xenotransplants of a human ovarian cancer cell line [8]. Our recent study
revealed that FANCD2 is also overexpressed in ESCC tumors compared with the normal
tissues and the FANCD2 single KO hindered DNA double-strand repair and inhibited
ESCC cell growth both in vitro and in vivo [37]. As POLQ depletion also impairs the repair
of DNA damage induced by multiple agents, we hypothesize that the double KO of POLQ
and FANCD2 gravely impairs the repair efficiency of DNA DSBs and promotes the genomic
instability in ESCC to suppress ESCC cell proliferation in a synthetic lethal pattern.

Compelling evidence supports this linkage between the DNA damage repair defi-
ciency and the innate immune responses. It has been reported that replication stress/DNA
damage induced by ionizing radiation, cytotoxic drugs or defects in DNA damage repair
genes may induce whole chromosome mis-segregation during mitosis [60]. As a result,
the chromosome structures wrapped by their own nuclear membrane, also known as the
micronuclei, occur in the cytoplasm [61]. The micronuclei are widely recognized as the
consequence, and therefore, the marker of unresolved genome instability [17]. Meanwhile,
such micronuclei have been described as a potential source of immunostimulatory cytosolic
DNA, which is then recognized by the cytosolic nucleic acid sensor (cGAS). cGAMP then
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activates STING, which triggers transcriptional activation of interferon regulatory factor 3
(IRF3). IRF3 mediates the expression and then the secretion of proinflammatory cytokines
like Type 1 IFN. On the one hand, the binding of the IFNs to their respective receptors
activates Janus kinase 1 (JAK1) [21]. Then the players of the signal transducer and activator
of the transcription family (STAT) are phosphorylated and later on trigger the expression
of multiple interferon-stimulated genes (ISGs) like CCL5, CXCL10, OAS1, etc. [62]. On
the other hand, type 1 IFN also helps in activating T cells by facilitating tumor antigen
presentation of the dendritic cells. Lastly, activated T cells infiltrate tumors in response to
chemokines like CXCL10 and recognize the presented tumor antigens [63,64]. In the present
study, we showed that the double KO of POLQ and FANCD2, two important components
of the DNA damage repair/replication stress response genes, leads to (1) an exacerbated
level of micronuclei-harboring ESCC cells, (2) overexpression of ISGs including CCL5 in
ESCC cell lines and subcutaneous tumors, (3) upregulation of cGAS, and (4) exacerbated
phosphorylation of STAT1 at Tyr 701. These all indicate the potential anti-tumor activation
through a cGAS-STING-STAT1-mediated ISGs-involved pathway upon the loss of both
POLQ and FANCD2 in ESCC. Results also suggest that the single depletion of POLQ
or FANCD2 may also trigger this pathway, but in a much less intensive manner. To the
best of our knowledge, this is the first study that reports the possible activation of the
innate immune response caused by loss/deficiency of DNA damage repair proteins in
esophageal cancers. It also suggests the potential of targeting POLQ and/or FANCD2 in
combination with immunotherapy in the future management of ESCC. However, noting
the huge differences between the human and mouse systems [65], particular attention is
required when trying to extrapolate the mouse data from this study to human trials. It has
been discovered that STING may have an intrinsic species–specific role as a receptor for an
anti-cancer drug [66]. Meanwhile, the differences in transcriptional/post-transcriptional
kinetics and the regulation of immune components between mouse and human may pose
another challenge in translating mouse findings into clinical applications [67]. Further
investigations are certainly warranted to validate this very important novel evidence to
gain a deeper understanding of these findings.

5. Conclusions

By integrated analysis of one in-house and four public RNA-seq databases, we found
that POLQ is predominantly upregulated in ESCC tumors. This ectopic expression of POLQ
was also observed in a cohort of Hong Kong ESCC patients, in whom the expression level
of POLQ was negatively correlated with the patient survival before ESCC-related death.
The CRISPR technique was implemented to knock out POLQ in ESCC cell lines with high
endogenous POLQ expression levels. The POLQ-depleted ESCC cells were significantly
sensitized to stress inducers like hydroxyurea or platinum-based drugs compared with
control cells. Both rH2AX foci staining and the comet assay indicated a higher level of
genomic instability in POLQ KO cells than in control cells, when exposed to ionizing
radiation. Double KO of POLQ and FANCD2, a DNA damage repair gene functioning in
both Fanconi anemia and homologous recombination DNA damage repair pathways, sig-
nificantly sabotaged cell proliferation in vitro as well as in vivo, as compared with either of
these single KOs. Cells with POLQ and/or FANCD2 depletion also had exacerbated levels
of CHK2 phosphorylation. A significantly increased number of micronuclei was observed
in POLQ and/or FANCD2 KO ESCC cells. Loss of POLQ and FANCD2 also resulted in the
activation of cGAS and upregulation of several interferon-stimulated genes (ISGs).

As summarized in Figure 7, the results of this study suggest the role of POLQ as
a guardian of genome stability in ESCC. Meanwhile, the potential synthetic lethality
relationship between POLQ and FANCD2 in ESCC was described. More importantly,
exciting novel findings from this study present new evidence linking the deficiencies of
DNA damage repair genes (POLQ/FANCD2) with the activation of anti-tumor immunity
through the cGAS-STING-STAT1 signaling pathway.
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