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Abstract

Background: Gestational diabetes mellitus (GDM) is a metabolic disease that occurs in pregnant women and
increases the risk for the development of diabetes. The relationship between GDM and meconium microbiota and
metabolome remains incompletely understood.

Methods: Four hundred eighteen mothers (147 women with GDM and 271 normal pregnant women) and their
neonates from the GDM Mother and Child Study were included in this study. Meconium microbiota were profiled
by 16S rRNA gene sequencing. Meconium and maternal serum metabolome were examined by UPLC-QE.

Results: Microbial communities in meconium were significantly altered in neonates from the GDM mothers. A
reduction in alpha diversity was observed in neonates of GDM mothers. At the phylum level, the abundance of
Firmicutes and Proteobacteria changed significantly in neonates of GDM mothers. Metabolomic analysis of
meconium showed that metabolic pathways including taurine and hypotaurine metabolism, pyrimidine
metabolism, beta-alanine metabolism, and bile acid biosynthesis were altered in GDM subjects. Several changed
metabolites varying by the similar trend across the maternal serum and neonatal meconium were observed.

Conclusion: Altogether, these findings suggest that GDM could alter the serum metabolome and is associated
with the neonatal meconium microbiota and metabolome, highlighting the importance of maternal factors on
early-life metabolism.
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Background
Gestational diabetes mellitus (GDM) is defined as any
degree of glucose intolerance with an onset or first rec-
ognition during pregnancy, which is one of the most
common types of pregnancy complications [1]. Women
with GDM are more susceptible to other pregnancy

complications including pre-eclampsia, preterm delivery,
and metabolic syndrome. Besides that, GDM increases
not only the risk of fetal macrosomia, neonatal
hypoglycemia, jaundice, polycythemia, and hypocalcemia
during the perinatal period, but also the risk of develop-
ing childhood obesity and metabolic syndrome later in
life [2–4]. Although numerous studies have been done
to explore the potential connections between GDM
mothers and long-term consequences on their children,
it still has not been fully understood.
The human body harbors trillions of microbial cells

and they are indispensable for human health. The gut
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microbiota resides on the intestinal mucosal surfaces
and participates in epithelial homeostasis, energy har-
vest, and immune development [5, 6]. Colonization of
the infant’s gut has drawn great interest, because it links
to individual’s health and late-onset diseases [7–9]. Lots
of efforts have been made to understand the gut micro-
biota and its function in early infancy. However, factors
that affect neonatal gut microbiota and metabolome are
remained incompletely understood [10].
Microorganisms in meconium were the first colonizers

of the newborn, which come from the mother’s skin, va-
gina, and gut [7]. A wide variety of reports had demon-
strated that microbiotain meconium could be affected by
the delivery mode, perinatal antibiotics, and breastfeed-
ing [11, 12]. Wang et al. showed that GDM altered the
microbial community in meconium from neonates deliv-
ered by C-section, with a similar trend in maternal gut
microbiota changes [13]. Besides microbes or their
structural components, microbial metabolites were also
important to host physiology [14, 15], but it has been
barely studied in meconium [16]. Therefore, an inte-
grated analysis of the maternal metabolome and the neo-
natal meconium microbiota and metabolome may
provide a comprehensive understanding of the impact of
GDM on microbial colonization in early life.

Methods
Study design and participants
Mothers and their neonates in the GDM Mother and
Child Study (GMCS) were recruited at Women’s
Hospital of Nanjing Medical University (Nanjing, Jiangsu
Province, China). The study was approved by the Medi-
cine Ethics Committee at Women’s Hospital of Nanjing
Medical University (IRB Number: [2016]009). All partici-
pants provided written informed consent for themselves
and the neonates. All participants were offered a stan-
dardized 75-g oral glucose tolerance test (OGTT) be-
tween 25 and 26 weeks during pregnancy. Women with
GDM were diagnosed by qualified doctors if one or
more of the following glucose criteria were met: fasting
≥ 5.1 mmol/L, 1 h ≥ 10.0 mmol/L, or 2 h ≥ 8.5 mmol/L
[17]. A structured questionnaire was used to collect
demographic information, as well as information of po-
tential risk factors including age, pre-pregnancy body
mass index (BMI), abnormal pregnancy history, and
family history of diabetes. Additionally, the gestational
age, delivery mode, gender, and birth weight were ex-
tracted from a hospital computer-based patient record
(CPR) information system. In this study, subjects with
pre-existing diabetes, pre-existing metabolic diseases, an-
tibiotics usage within 3 months, alcohol or substance
abuse, and chronic diseases requiring medication were
excluded. Women with normal pregnancies were
matched for maternal age, BMI, living habits, and

medical history. A total of 455 mothers and their neo-
nates were recruited in this study.

Meconium collection, DNA extraction, and sequencing
First-pass meconium samples (around 200 mg) were col-
lected on sterilized diapers by well-trained nurses within
the first few hours of birth at the labor ward. Meconium
samples were stored temporarily in an ice box and trans-
ported to the laboratory within 24 h. Thereafter, the
samples were stored at −80°C until DNA or metabolite
extraction. QIAamp Fast DNA Stool Mini Kit (QIAG
EN, Germany) was used to extract the DNA in a decon-
taminated and sterile environment. Negative controls
during sample collection, transportation, and extraction
were included and used in the data analysis. The gen-
omic DNA was used as the template to amplify the V3
hypervariable region of the 16S rRNA gene with the for-
ward primer (5′-CCAGACTCCTACGGGAGGCAG-3′)
and the reverse primer (5′-CGTATTACCGCGGCTG
CTG-3′). The PCR products were checked by agarose
gel electrophoresis, and then the PCR product was used
as a template, and the index PCR was performed by
using index primers for adding the Illumina index to the
library. The amplification products were checked using
gel electrophoresis and were purified using the Agen-
court AMPure XP Kit (Beckman Coulter, CA, USA).
The purified products were indexed in the 16S V3 li-
brary. The library quality was assessed on the Qubit 2.0
Fluorometer (Thermo Scientific) and Agilent Bioanalyzer
2100 systems. Finally, the pooled library was sequenced
on an Illumina MiSeq Sequencer for generating 2×250
bp paired-end reads.

Sequencing data processing
Raw data were demultiplexed and quality-controlled (Q
score > 20, read length > 100). A total of 50,908,512 of
16S rRNA clean reads were generated from the 455 sam-
ples (mean reads per sample = 111,887; min to max =
20,237–420,428; SD = 60,009). And we obtained 34,269
± 3430 reads in sequencing negative controls (n = 15).
After removing singleton, a total of 10422 different
OTUs were picked against the RDP database at 97% se-
quence similarity. Sequencing contaminants (n = 33
from 10,422 total OTUs) were identified and removed
using the decontam package reads (frequency methods,
P < 0.5) [18]. The detailed contaminated OTUs are
shown in Additional file 1, Table S1. After decontamin-
ation, 37 samples were removed due to the low reads
number (less than 10000 reads per sample). Finally, 418
mothers (147 women with GDM and 271 normal preg-
nant women) and their neonates were retained in this
study with 36,995,740 (mean reads per sample = 88,507;
min to max = 10,007–420,308; SD = 60,644) reads
aligned to Ribosomal Database Project (RDP) by mother

Chen et al. BMC Medicine          (2021) 19:120 Page 2 of 10



(Additional file 1, Table S2) [19]. To adjust for differ-
ences in reads number, normalization was carried out by
rarefying reads to 10,007 per sample. Finally, 7987 OTUs
were remained after removing OTUs with an abundance
of 0. The detailed rarefied OTU table is shown in Add-
itional file 1, Table S3. PICRUSt2 was used to predict
the metagenomes from the OTU data based on 20,000
16S sequences from genomes in the Integrated Microbial
Genomes database [20].

Metabolomic sample preparation of meconium samples
A total of 50 mg of meconium was dissolved in 500 μL
of ultrapure water in a 2-mL centrifuge tube at room
temperature. Following ultrasonic homogenization for
5 min and centrifugation at 16,000×g for 15 min, the
supernatant was transferred into a new 2-mL centrifuge
tube. Then, methanol (1500μL) was added into the
tube. After ultrasonic homogenization for 5 min and
centrifugation at 16,000×g for 15 min, the supernatant
was transferred into a new 2-mL centrifuge tube, vor-
texed for 30 s, and filtered through a 0.22-μm filter.
The target analytes were concentrated under a speed
vacuum concentrator and reconstituted for further
analysis.

Metabolomic sample preparation of maternal blood
serum samples
During the course of the study, maternal blood samples
were collected on the day before delivery. Maternal
blood samples were centrifuged immediately to separate
serum and then stored in aliquots at −80 °C for further
analysis. A total of 40 μL of methanol was added to 10
μL of maternal serum for protein precipitation. After
vortexing for 30 s and centrifuging at 16,000×g for 20
min, the supernatant was transferred into a 1.5-mL cen-
trifuge tube. The target analytes were concentrated
under a speed vacuum concentrator at room
temperature and reconstituted for further analysis.

Metabolomic analysis
Metabolomic analysis was performed on a UPLC Ultim-
ate 3000 system (Dionex, Germering, Germany) coupled
to a Q-Exactive mass spectrometer (QEMS) (Thermo
Fisher Scientific, Bremen, Germany) in both positive and
negative modes simultaneously. The UPLC analysis was
carried out with a Hypersil GOLD C18 column (100
mm × 2.1 mm, 1.9 μm) (Thermo Fisher Scientific) with
the column temperature being set at 40 °C. A multistep
gradient consisted of mobile phase A (0.1% formic acid
in ultrapure water) and mobile phase B (acetonitrile
(ACN) acidified with 0.1% formic acid) with a flow rate
of 0.4 mL/min and a run time of 15 min. The UPLC
autosampler temperature was set at 4°C, and the injec-
tion volume for each sample was 10 μL. All samples

were analyzed in a randomized fashion to avoid compli-
cations related to the injection order. MS data were
collected by the QEMS equipped with a heated elec-
trospray ionization (HESI) source. For both positive
and negative modes, the operating parameters were as
follows: a spray voltage of 3.5 kV for positive mode
and 2.5 kV for negative mode, a capillary temperature
of 300°C, a sheath gas flow of 50 arbitrary units, an
auxiliary gas flow of 13 arbitrary units, a sweep gas of
0 arbitrary units, and an S-lens RF level of 60. In the
full-scan analysis (70 to 1050m/z), the resolution was
set at 70,000. The MS system was calibrated accord-
ing to the manufacturer’s instructions. Chemical iden-
tification was based on the retention time and
accurate mass of commercial standards.

Statistical analysis
For comparisons between the GDM and control
groups, demographic variables were analyzed by t-test
or Fisher’s exact test. For microbiota data, the alpha
diversity indices were compared by the Wilcoxon
rank sum test. The weighted unifrac distance metric
was used to determine multivariate sample distances
and visualized through principal coordinates analysis
(PCoA). Permutation-based analysis of variance
(PERMANOVA) was used to compute the difference
of β-diversity between GDM and control group using
the delivery mode as a covariate. Abundance of gen-
era between the two groups was assessed by Meta-
stats, a common tool to find differentially abundant
features among groups [21]. Correlation networks of
significantly differentiated genera were generated
within the GDM and control groups, using Spear-
man’s correlation (rho < −0.3 or rho > 0.3; FDR cor-
rected P < 0.05). Relative proportions of predicted
metagenome functions were compared by statistical
hypothesis tests with a corrected P-value in STAMP
2.1.3. For metabolomics data, orthogonal partial least
squares discrimination analysis (OPLS-DA) was ap-
plied to distinguish the differences of metabolomic
profile by SIMCA-P 13.0 (Umetrics, Umea, Sweden).
Pathway analysis for metabolomics data was con-
ducted by MetaboAnalyst (http://www.metaboanalyst.
ca/) to predict enriched pathway of differential
metabolites.

Results
Characteristics of study participants
Data from 418 mothers (147 women with GDM and 271
normal pregnant women) and their neonates from the
GDM Mother and Child Study were finally used in this
study. The dataset contained 418 meconium samples
from neonates and 315 blood samples from mothers. Of
these, 418 meconium samples were all used for 16S
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sequencing and 619 samples (304 meconium samples
and 315 blood samples) were used for metabolome pro-
filing. The characteristics of the participants are pre-
sented in Table 1. There were no significant differences
in maternal age, pre-pregnancy BMI, smoking, drinking
status, and second-hand smoking between the two
groups. In addition, the characteristics regarding multi-
paras, abnormal pregnancy history and family history of
diabetes, gestational age, and peripartum antibiotics
usage in the GDM group were also not significantly dif-
ferent from those in the control group. However, a
higher cesarean section (C-section) rate and increased
birth weight were observed in the GDM group than in
the control group (P < 0.001).

Meconium microbiota was different in neonates born to
mothers with GDM
Our study exhibited a significant reduction in α-diversity
(Chao1 index: P < 0.001) in neonates born to mothers
with GDM when compared with those of mothers with-
out GDM (Fig. 1a). GDM was significantly associated
with the shift of β-diversity (P = 0.001) (Fig. 1b). At the
same time, the β-diversity was significantly different be-
tween delivery modes (P = 0.011) (Additional file 2,
Figure S1). The dominant phyla across all samples were
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobac-
teria (Fig. 1c). Compared to the control group, the GDM
group showed significant increases in relative abundance
of Firmicutes and significant decreases in relative

Table 1 Characteristics of study participants

Variables GDM group (n=147) Control group (n=271) P

Maternal

Age, years (mean ± SD) 29.51±3.79 29.04±4.00 0.244

Pre-pregnancy BMI, kg/m2 (mean ± SD) 21.55±2.99 21.20±3.75 0.327

Smoking status [n (%)]

Ever 0 (0.00) 2 (0.74) 0.763

Never 147 (100.00) 269 (99.26)

Second-hand smoking [n (%)]

Yes 31 (21.09) 75 (27.68) 0.174

No 116 (78.91) 196 (72.32)

Drinking status [n (%)]

Ever 1 (0.68) 6 (2.21) 0.443

Never 146 (99.32) 265 (97.79)

Parity [n (%)]

Nulliparae 127 (86.39) 219 (80.81) 0.191

Multiparae 20 (13.61) 52 (19.19)

Family history of diabetes [n (%)]

Yes 24 (16.33) 35 (12.92) 0.418

No 123 (83.67) 236 (87.08)

Gestational age, days (mean ± SD) 277.75±7.47 276.37±7.96 0.085

Peripartum antibiotics [n (%)]

Yes 24 (16.33) 27 (9.96) 0.082

No 123 (3.67) 244 (90.04)

Neonatal

Sex [n (%)]

Boy 74 (50.34) 140 (51.66) 0.876

Girl 73 (49.66) 131 (48.34)

Delivery status [n (%)]

Vaginal 87 (59.18) 201 (74.17) 0.002

Cesarean 60 (40.82) 70 (25.83)

BW, g (mean ± SD) 3511.63±425.40 3329.22±347.42 < 0.001

Abbreviations: GDM gestational diabetes mellitus, SD standard deviation, BMI body mass index, BW birth weight
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abundance of Proteobacteria at the phylum level (Fig. 1d).
At the family level, the GDM group exhibited more
abundances of Streptococcaceae (P < 0.001), while other
families were less abundant in the GDM group than in
the control group (Fig. 1e).
Previous studies showed that meconium microbiota

was greatly affected by delivery mode [11, 12]. In order
to understand whether delivery mode had impacts on
meconium microbiota in our study, we further com-
pared the abundance at the family level stratified by

delivery modes (vaginal delivery and C-section) (Add-
itional file 2, Figure S2 a,b). Interestingly, we observed
bacterial family changing by the similar trend between
the different delivery modes, revealing the concordance
of microbial variation associated with GDM.
Co-occurrence networks of significantly differentiated

genera showed more balanced microbial correlations in
the control group than the GDM group (Additional file 2,
Figure S3). In the network of the control group, GDM-
associated genera such as Clostridium sensustricto,

Fig. 1 a Alpha diversity of the gut microbiome between the two groups. b PCoA (based on weighted unifrac distances) of the gut microbiome
between the two groups. c, d Bacterial composition of the meconium at the phylum levels. e Relative abundance of differential bacteria (FDR <
0.01) between the two groups. f The abundant pathways of microbial genes between the two groups. ***P < 0.001
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Rothia, and Lactobacillus were negatively correlated with
control-associated genera. This was not observed in the
network of the GDM group. The difference in co-
occurrence networks between the control and GDM
groups reflected maternal GDM might disrupt the ecol-
ogy of meconium microbiota.
In order to understand the potential function, we used

PICRUSt2 to predict the metagenome functions [20].
Among the predicted metagenome functions, pathways
related to carbohydrate transport and metabolism, nu-
cleotide transport and metabolism, translation, riboso-
mal structure and biogenesis, and transcription were
enriched in the GDM group (Fig. 1f). Pathways related
to post-translational modification, protein turnover, and
chaperones, lipid transport and metabolism, and signal
transduction mechanisms were enriched in the control
group (Fig. 1f).

Meconium metabolome was different in neonates born to
mothers with GDM
A total of 118 metabolites were detected from 304
meconium metabolomic samples (105 GDM cases and
199 controls). OPLS-DA analyses of meconium metabo-
lites between the two groups were performed based on
the whole research population (R2X = 0.566, R2Y =
0.572, Q2 = 0.465) (Fig. 2a), vaginal delivery population
(R2X = 0.569, R2Y = 0.554, Q2 = 0.408), and cesarean
section population (R2X = 0.536, R2Y = 0.511, Q2 =
0.428) (Fig. 2b, c), indicating that the metabolites in
meconium were significantly different between two
groups.
Among the identified metabolites, 36 showed consist-

ently significant differences between the two groups in
the total population, vaginal delivery population, and
cesarean section population (Fig. 2d), indicating that
these changes were GDM-related metabolic changes.
The abundances of a total of 22 metabolites were signifi-
cantly increased in the GDM group, including riboflavin
and taurine, while those of 14 metabolites were signifi-
cantly decreased, e.g., glycerophosphocholine (GPC), gly-
cocholic acid, and rhamnose.
Through pathway analysis based on the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways,
we found that these metabolites were enriched in 7
pathways, namely, taurine and hypotaurine metabolism;
pyrimidine metabolism; beta-alanine metabolism; bile
acid biosynthesis; phenylalanine, tyrosine, and trypto-
phan biosynthesis; riboflavin metabolism; and
aminoacyl-tRNA biosynthesis (Fig. 2e). Through enrich-
ment analysis based on the SMPDB database, we found
that taurine and hypotaurine metabolism, pyrimidine
metabolism, beta-alanine metabolism, and bile acid bio-
synthesis were also included in the top 6 pathways
(Fig. 2f, Additional file 1, Table S4). These results

showed the enrichment significances of metabolic path-
ways in offspring’s meconium of GDM mothers.

Serum metabolome was different in mothers with GDM
A total of 113 metabolites were detected in 315 maternal
blood samples (59 GDM cases and 256 controls).
Twenty-two of them showed significant differences be-
tween the two groups. These metabolites were enriched
in pathways including riboflavin metabolism, arachidonic
acid metabolism, and taurine and hypotaurine metabol-
ism, based on a KEGG pathway analysis (Fig. 3a). In
addition, taurine and hypotaurine metabolism was in-
cluded in the top three pathways in an enrichment ana-
lysis based on the SMPDB database (Fig. 3b, Additional
file 1, Table S5). These results showed the enrichment
significances of metabolic pathways in GDM mothers’
blood samples.
To verify whether the metabolomic profile of meco-

nium was related to the maternal metabolomic profile in
relation to GDM, we divided the meconium into the va-
ginal delivery and C-section groups. Interestingly, we
found that five metabolites changed in their abundances
in the similar trend in both meconium and maternal
blood in relation to GDM. They were GPC, glycocholic
acid, rhamnose, riboflavin, and taurine (Fig. 3c). GPC,
glycocholic acid, and rhamnose abundances were de-
creased in the neonatal meconium and maternal blood
of the GDM group, while those of riboflavin and taurine
were increased.

Discussion
In this study, we identified the relationship between the
meconium microbiota, metabolome in neonates born to
mothers with GDM. In addition, we also found five
changed metabolites in the similar trend across the
meconium and maternal blood. Taken together, our
findings illustrated a connection between the bacterial
composition and metabolism of neonates, which might
be affected by the metabolic state of mothers.
Previous studies reported low richness, low diver-

sity, and a predominance of the phylum Proteobac-
teria in meconium samples [12]. In this study, we
also identified a limited number of taxa and Proteo-
bacteria as the dominant phylum in the meconium
samples. In addition, significantly lower alpha diver-
sity was observed in the GDM group than in the con-
trol group. These results were in accordance with
decreased microbial richness and diversity of the en-
teric microbiota in GDM mothers reported previously
[22, 23]. Moreover, decreased richness of the enteric
microbiota has been associated with elevated insulin
resistance and proinflammatory markers [24].
In this study, the abundances of the families Rothia

and Clostridium sensustricto, which may contain
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opportunistic pathogens that might cause enteric infec-
tions and childhood metabolic disorders [25], were signifi-
cantly increased in the GDM neonates revealed by
network analysis. In addition, bacterial family changing
was in the similar trend when stratified by delivery modes,
which indicated the variation of GDM-related bacteria
was consistent. However, the consistency of changed bac-
teria in neonates might dramatically be altered within days
based on feeding (breast/formula) etc., and further studies

on gut microbiota in infancy and childhood should be per-
formed to validate the persistence of our findings.
Using metagenome function prediction, we demon-

strated that pathways related to carbohydrate and nu-
cleotide metabolism were enriched, which are associated
with metabolic diseases, including macrosomia and
hypoglycemia of neonates born to GDM mothers. This
indicates that maternal GDM may facilitate the succes-
sion of high-energy-providing microbiota with altered

Fig. 2 a–c OPLS-DA models of the meconium metabolomic profiles between the two groups in the whole research population (a), vaginal
delivery population (b), and cesarean section population (c). d Thirty-six metabolites showed consistent significant changes between the two
groups. e, f Meconium metabolic pathway analysis of differentially abundant metabolites between the two groups
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metabolism in their children; consequently, this could me-
diate the development of childhood obesity in later life.
For the five consistently changed metabolites in meco-

nium and maternal blood, the declining trends of GPC,
glycocholic acid, and rhamnose in mothers with GDM
and their neonates were consistent with previous studies
[26–29]. GPC is a subclass of the glycerophospholipids
and is associated with lipid metabolism, whereas

glycocholic acid is related to the digestion and absorp-
tion of lipids. These results indicate that GDM may be
associated with altered lipid and carbohydrate metabol-
ism in neonates, possibly mediated by maternal blood
metabolites. Collectively, the five consistently changed
metabolites indicated the possible hazardous effect of
GDM on children via the disruption of metabolism,
which may be through GDM mothers. In addition, in

Fig. 3 a Metabolic pathway analysis by KEGG of maternal blood. b Metabolic pathway analysis by enrichment analysis of maternal blood. c Key
changed metabolite abundances in meconium and maternal blood in relation to GDM. *P < 0.05; **P < 0.01
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the pathway analysis of the metabolomes, similar to the
findings in the microbiota meconium analysis, nucleo-
tide metabolism pathways (pyrimidine metabolism) were
also enriched in the metabolomic profile of meconium
of the GDM group, indicating the importance of this nu-
cleotide change in neonates in relation to GDM.
One strength of our study is that it contains both

mothers and their neonates, allowing us to investigate po-
tential trans-generation effects of GDM. Another strength
is that we performed sensitivity analysis by the mode of
delivery in the analysis of the meconium microbiota and
meconium metabolome. This implies their associations
with GDM without being confounded by birth modes.
Despite having these strengths, a causal relationship be-
tween the metabolites and microbiota in meconium can-
not be confirmed by the cross-sectional study design. As
meconium is the sample with low biomass, the method
we used to remove OTUs may fail to detect contaminants
that are uniformly present in the samples. More effective
negative control samples are needed to detect the poten-
tial technical contaminants in future studies. In addition,
all participants in the current study were Han Chinese.
Given that the enteric microbiota varies among different
races, further studies should be performed in other popu-
lations to validate and extend our findings.

Conclusions
Our study provided information about the relationships of
maternal metabolome, meconium microbiota, and metab-
olome. We observed that certain meconium metabolites
varied in a similar trend with the maternal serum metabo-
lites associated with GDM. These data highlight the im-
portance of understanding the effects of pregnancy
complications on the formation of early-life microbiota
and metabolome. Further studies are warranted to explore
their implications for infant health later in life.
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