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Abstract
Artificial intelligence (AI) has seen tremendous growth over the past decade and 
stands to disrupts the medical industry. In medicine, this has been applied in 
medical imaging and other digitised medical disciplines, but in more traditional 
fields like medical physics, the adoption of AI is still at an early stage. Though AI 
is anticipated to be better than human in certain tasks, with the rapid growth of 
AI, there is increasing concerns for its usage. The focus of this paper is on the 
current landscape and potential future applications of artificial intelligence in 
medical physics and radiotherapy. Topics on AI for image acquisition, image 
segmentation, treatment delivery, quality assurance and outcome prediction will 
be explored as well as the interaction between human and AI. This will give 
insights into how we should approach and use the technology for enhancing the 
quality of clinical practice.
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Core Tip: Artificial intelligence (AI) applications in medical physics and radiotherapy 
represent an important emerging area in AI applications in medicine. The most notable 
improvements for the many aspects of radiotherapy are the ability to provide an 
accurate result with consistency and eliminate inter-and intra-observer variations. 
Perspectives from physicians and medical physicists about the use of AI are presented, 
and suggestions of how human can co-exist with AI are made to better equip us for the 
future.
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INTRODUCTION
Radiotherapy (RT) is an important component of cancer treatment and nearly half of 
all cancer patients receive RT during their treatment pathways[1]. Increasingly, the use 
of new technologies such as artificial intelligence (AI) tools plays an important role in 
RT in various aspects from image acquisition, tumour segmentation, treatment 
planning, delivery, quality assurance (QA), etc. The list will no doubt continue to 
develop and grow over time as the technology continues to mature. Advancements in 
computing power and data collection have increased the utilization of AI. The 
adaptation of a more sophisticated modelling approach has become more widespread 
creating more accurate predictions. Available datasets from radiation oncology have 
been generally smaller and more limited than datasets from other medical disciplines 
such as medical imaging, so the performance of AI is constrained in medical physics 
disciplines by the available data[2].

According to the data on PubMed search engine performed in Figure 1, which is 
queried on March 20, 2021, there is a clear increasing trend in AI in the medical 
literature. Both graphs show an increasing trend but the numbers in medical physics 
and RT disciplines are several orders of magnitudes lower than in the general medical 
diagnosis groups. However, the increasing interest in AI applications in medical 
physics and RT is clear.

In this review article, we will focus on the different aspects of medical physics 
practice and RT applications and discuss the emerging applications and potentials 
relating to each area. This is summarised in Figure 2. The structure of this paper is as 
follows. In section 1, we introduce image synthesis application and benefit in image 
acquisition. In section 2, we discuss how AI is being used in image segmentation 
moving from the traditionally manual labour-intensive task to a more automated 
system. In section 3, we present the function of treatment planning and demonstrate 
how AI techniques can improve the plan accuracy. In section 4, we describe the benefit 
in treatment delivery, such as accuracy in position/motion management, organ 
tracking and dose calculation. In section 5, we explain how AI can be used to improve 
the performance in the QA process and the advantages of using AI in QA. In section 6, 
we talk about the prediction of patient outcome and discuss the concerns of patients 
and clinicians when using AI in the fields that mentioned above. In section 7, we 
discuss aspects of human-AI interaction. Finally, in section 8, we summarize and 
evaluate whether AI involved in medical decision making is a benefit or a threat?

IMAGE ACQUISITION 
Image synthesis application in RT
RT planning images are used to segment and contour organ at risks (OARs) and target 
volume (TV), and to plan the treatment. The images require accurate geometric 
coordinates and excellent image contrast to accurately contour the target in question. 
A summary, flow chart of image acquisition is shown in Figure 3. The other 
prerequisites include having a correct electron density of the tissues being imaged to 
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Figure 1 Number of papers in ‘Artificial intelligence in diagnosis’, ‘Artificial intelligence in medical physics’, and ‘Artificial intelligence in 
radiotherapy’. AI: Artificial intelligence.

Figure 2 Potential applications of artificial intelligence in medical physics and radiotherapy. AI: Artificial intelligence; QA: Quality assurance; IMRT: 
Intensity modulated radiotherapy; VMAT: Volumetric-modulated arc therapy; CT: Computed tomography; MRI: Magnetic resonance imaging.

calculate the amount of dose from the treatment beams being attenuated and absorbed 
by tissues in treatment planning so that an accurate dose can be delivered to the 
tumour.

Since magnetic resonance imaging (MRI) has advantages in soft tissue contrast for 
tissues such as brain and prostate (and allows for more accurate lesion localization) 
but MRI does not have a correlation of electron density in its image. There is a need to 
fuse the images together with computed tomography (CT) in the current practice. 
Therefore, when physicians contour on a set of images, the aligned geometric 
coordinates can ensure a correct contour registration. However, the patient might 
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Figure 3 Flow chart of Image processing.

require scanning both MRI and CT image and even the diagnostic PET images 
beforehand. To reduce the workload or increase the efficiency of those MRI, CT 
machines, many kinds of image synthesis research have been carrying on based on 
deep learning technique[3]. The followings are the different applications of image 
synthesis and advancement using AI as applied to image acquisition. Table 1 
summarises the most recent contemporary work.

Pseudo CT/ MRI synthesis
There are several pieces of research on pseudo CT image synthesis from MRI images to 
help registration of different image modalities or target delineation[4]. Fu et al[5] 
synthesized CT image using cycle consistent generative adversarial network which is 
an image synthesis network to assist registration of CT-MRI images by directly 
registering synthetic-CT to original CT images or to have MR-only treatment planning 
by generating synthetic-CT for treatment planning based on scanned MR image . In 
addition, Liu et al[6,7] researched on generating synthetic-CT from MRI-based 
treatment planning to derive electron density from routine anatomical MRI so that it 
can be possible to have MRI-only treatment planning for liver, and prostate cancer.

There is also pseudo MRI synthesis from a CT image for prostate target delineation 
based on the synthetic MR image from CT image using fully convolution network[8].

Super-resolution image synthesis
To improve the image resolution and quality, Dong et al[9] presented a novel super-
resolution convolution neural network approach to map between low and high-
resolution images in order to synthesize superior-resolution images than other 
approaches. Bahrami et al[10] and Qu et al[11] also focus on pseudo synthesis of 7T 
MRI image from normal 3T MRI using deep learning technique. The high resolution 
can have a better tissue contrast which can enhance contouring accuracy and on the 
other hand, will not pose additional dose or scanning time for the patient simulation.

Image denoising
Image denoising is important to improve the signal-to-noise ratio of low-dose CT. 
Yang et al[12] have introduced a CT image denoising method using a generative 
adversarial network (GAN) with Wasserstein distance and perceptual similarity, so 
that it can function as conventional CT while keeping a low radiation dose level to the 
patient. Wang et al[13] and Chen et al[14] also train the low-dose CT data with a fully 
convolution neural network with residual blocks and attention gates so to generate a 
set of data with improved noise, contract-to-noise ratio.

Benefits of using image synthesis technique in RT planning
With the introduction of machine learning and deep learning, various modalities of 
images can be artificially synthesized for oncologists to take reference, draw different 
contours on images with superior tissue contrast and fuse together afterwards with the 
treatment planning software. This can greatly reduce patient scanning time with 
different modalities. On the other hand, the improvement of images tissue contrast 
and resolution can help to reduce the margin of the target in order to reduce the 
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Table 1 Summary of contemporary deep learning methods in image acquisition

Ref. Architecture Purpose

Fu et al[5], 2020 Cycle consistent generative adversarial network To enable pseudo CT-aided CT-MRI image registration

Liu et al[6], 2019 Cycle generative adversarial network To derive electron density from routine anatomical MRI for MRI-
based SBRT treatment planning

Liu et al[7], 2019 3D Cycle-consistent generative adversarial network To generate pelvic synthetic CT for prostate proton therapy treatment 
planning

Lei et al[8], 2020 Cycle generative adversarial network for synthesis and fully 
convolution neural network for delineation

To help segment and delineate of prostate target by pseudo MR 
synthesis from CT

Dong et al[9], 
2016

Super resolution convolution neural network To develop novel CNN for high- and low-resolution images mapping

Bahrami 
et al[10], 2016

Convolution neural network To reconstruct 7T-like super-resolution MRI from 3T MR images

Qu et al[11], 
2020

Wavelet-based affine transformation layers network To synthesize superior quality of 7T MRI from its 3T MR images than 
existing 7T MR images

Yang et al[12], 
2018

Generative adversarial network with Wasserstein distance and 
perceptual loss function

To denoise low-dose CT image and improve contrast for lesion 
detection

Chen et al[14], 
2017

Deep convolution neural network To train the mapping between low- and normal-dose images so to 
efficiently reduce noise in low-dose CT

Wang et al[13], 
2019

Cycle-consistent adversarial network with residual blocks and 
attention gates

To improve the contrast-to noise ratio for low-dose CT simulation in 
brain stereotactic radiosurgery radiation therapy

CNN: Convolutional neural network; CT: Computed tomography; MRI: Magnetic resonance imaging.

uncertainty and improve the dosimetric accuracy of the RT treatment.

IMAGE SEGMENTATION
What is image segmentation?
Image segmentation is an important routine for RT for distinguishing anatomical 
structures and target[15], as well as comprising sets of pixels[16]. Before the advent of 
AI, radiation oncologists segment those regions of interest on RT simulation scans (i.e., 
CT and MRI) manually. They originally used a rigid algorithm and need human 
interference, professional judgement, and experience. These include thresholding, K-
means clustering, histogram-based image segmentation and edge detection[16].

The long duration for manual segmentation is one of the main reasons for the delay 
in the start of RT treatment, especially in clinics with limited resources. The 
locoregional control and overall survival rates are lowered because of the inefficiency 
in the workflow. It also hinders the adaptive RT treatment, because the new images 
indicating the anatomical changes of the patients have to be segmented for an accurate 
dose accumulation estimation after each treatment cycle[15].

AI in image segmentation
Accurate segmentation for TV and OARs are necessary for RT plans, but inconsistency 
such as inter-and intra-observer variability for manual segmentation has been 
reported. This is because the task is subjective in nature; the decision is made based on 
an individual’s knowledge, judgement and experience. The quantitative and 
dosimetric analyses are therefore affected, with a varying degree of impact. If an AI 
tool can be developed with less inherent variability, this would be an invaluable tool 
for addressing this issue. In order to keep up with modern development, automatic 
segmentation is needed. It has to overcome image-related problem and provide 
accurate, efficient and safe RT planning[15].

There are many segmentation types, such as Atlas-based segmentation and Image-
based segmentation etc. Deep learning in segmentation is a very broad topic, and in 
broader medical applications, there are several architectures used (Table 1).

The availability of segmented data and computer power were the main reason for 
manual segmentation in the earlier years. Most segmentation techniques utilised little 
to no prior knowledge, and these are regarded as low-level segmentation approach. 
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Examples of these techniques are region growing, heuristic edge detection and 
intensity thresholding algorithms[15].

Improvement in auto-segmentation
In the past twenty years, a good amount of effort has been poured into the medical 
imaging field to make use of prior knowledge. Anatomical structures, such as the 
shape and appearance characteristics are used to compensate for the insufficient soft 
tissue contrast of CT data, in order to produce an accurate definition of the anatomical 
boundary[15].

In recent years, deep learning-based software for auto-segmentation has been 
shown to provide a great leap of improvements over previous approaches. The field of 
deep learning has become more popular, notably after the seminal paper by 
Krizhevsky et al[17] (2012) which showed a much-improved prediction in image 
classification and recognition tasks using a deep convolutional neural network (CNN) 
architecture called AlexNet. More researches followed this approach with the use of a 
CNN for image segmentation, and the results performed better than prior algorithms, 
leading to a quick adaptation for deep learning in auto segmentation for medical 
images[15].

The use of CNNs involves feeding segments of an image as an input, labelling the 
pixels. The image is scanned by the network, then the network observes the image 
with a small filter each time until the entire image is mapped[18].

The newest auto-segmentation
Automatic segmentation is usually used in conjunction with manual and 
semiautomatic segmentation. Manual segmentation requires considerable time and 
expertise, but often with poor reproducibility. Semiautomatic segmentation relies on 
human involvement, errors and mistakes can also be expected. Automatic 
segmentation can provide more accurate results with minimal errors, however, several 
limitations such as noise existence, partial volume effects, the complexity of three 
dimensions (3D) spatial multiclass features, spatial and structural variability hinder 
the effectiveness of automatic segmentation[19].

DeepLab[20], U-Net[21], fully convolutional networks (FCN)[22], dense FCN and 
residual dense FCN are some of the state-of-the-art neural networks that have been 
used to tackle this issue. Qayyum et al[23] proposed volumetric convolutions for 
processing 3D input slices as a volume, with no postprocessing steps required. It 
provided an accurate and robust segmentation that indicated the complete volume of a 
patient at once.

The test between the proposed model and the current state of the art methods using 
SegTHOR 2019 dataset was compared. The challenge for this dataset is the position 
and shape of each organ at each slice has low contrast in CT images as well as the great 
variation in shape and position. The dataset presented a multiclass problem, and 
performance metrics are used to evaluate existing deep learning methods and the 
method proposed by Qayyum et al[23] The proposed model provided an improved 
segmentation performance and produced superior results compared with existing 
methods.

Limitation in segmentation
The training of deep neural networks (DNNs) for 3D models is challenging, as most 
deep learning architectures are based on FCN. FCN uses a fixed receptive field and 
objects with varying size can cause a failure in segmentation. Increasing the field of 
view and using a sliding window based on complete images can solve the fixed field 
issue[23].

Several other issues have been reported, such as overfitting, prolonged training time 
and gradient vanishing. Target organs that do not have a homogeneous appearance 
and ill-defined borders pose a great challenge to automatic segmentation. In addition, 
the heterogeneity of appearances even for a single disease entity is a challenge e.g., the 
appearance of the target could change from patient to patient as well as intra-patient 
variation between treatment cycles (as if often caused by tumour necrosis). These 
issues can cause a decrease in performance in 3D deep learning models when handling 
3D volumetric datasets. Using an atrous spatial pyramid pooling module with 
multiscale contextual feature information can assist in handling the issue of changes in 
sizes, locations and heterogeneous appearances of the target organs and nearby 
tissues[23].

There is also an issue of paucity of data. A large amount of annotated data is 
required for training accurate segmentation using deep learning approach. 
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Increasingly there are several open-source labelled datasets in medical 
imaging[24-26]. Increasing numbers as well as diversity are needed to increase 
innovation in this field.

TREATMENT PLANNING 
The function of treatment plans
In modern RT, it is crucial to maximize the radiation to the cancer tumour while 
minimising radiation and potential damage to the surrounding healthy tissues. 
Intensity modulated RT (IMRT) and volumetric-modulated arc therapy (VMAT) are 
the two standard treatment techniques for external beam RT treatments that can 
achieve the tissue-sparing effect while delivering a suitable amount of dose to the 
planned TV. The treatment plan often involves dose calculations and dose-volume 
histogram (DVH) which are tools to evaluate the dose to various organs and help the 
medical staff to determine the quality of the plan. The plans require a lot of time and 
effort to produce due to the dose constraints and inter-operator variation[27-29].

Methods for improving plan accuracy
Accurate DVH predictions are essential for automated treatment planning, and the 
predictions keep on improving over the past decade. Concepts such as overlapping 
volume histogram to describe the geometry of OARs and method for searching similar 
plans in a clinical database to guide the treatment planning for new patients were 
proposed. Deep learning methods were used recently to predict the dose distribution 
in 3D. Because of the nature of DNNs, it relies heavily on the amount and quality of 
the sample to achieve a high prediction accuracy. The performance could also be 
affected by parameters such as beam arrangement and voxel spacing in the treatment 
plan. The robustness of the prediction model can be enhanced with additional pre-
processing layers and data augmentation. Through the usage of de-noising auto-
encoder for pre-training DNN, more robust feature can be learnt, and less complex 
neural network can also produce excellent feature fitting capabilities[27].

Benefits provided by automation
Treatment planning is time-consuming, and the method used by each person 
performing the optimisation can affect the quality of the outcome[30-32]. Automating 
the treatment planning process can potentially lower the time required for manual 
labour and reduce the interobserver variations for dose planning. It is generally 
anticipated that the overall plan quality should improve with the use of AI[32].

The dose objective defined by the dosimetrist determines the dose distribution, 
usually according to the institution-specific guidelines. However, guidelines cannot 
provide an optimal dose distribution for specific patients, since the lower achievable 
dose limit to healthy surrounding tissues for the patient is not known. So, each 
treatment plan is patient-specific and is produced by trained dosimetrists. 
Optimisation of the plan is still labour-intensive, it makes it difficult to ensure the 
clinical treatment plan is properly optimised. All of these concerns lead to the need for 
automation as a solution to reduce the amount of time spent on the plans and the 
variations between dosimetrists[32].

The outcome of automated plans
Auto planning software produces comparable or better results for prostate cancer 
according to Nawa et al[28] (2017) and Hazell et al[32] (2016). Most OARs receive 
significant better results with the dose level of the DVHs, and auto planning managed 
to give clinically acceptable plans for all cases. The results were similar with head and 
neck cancer treatment. Dosimetrists can potentially have more time to focus on 
difficult dose planning goals, fine-tuning specific area and spend less time on the 
mundane tasks of the planning process[32].

TREATMENT DELIVERY
AI in the future will have the ability to accurately identify both normal and TV during 
treatment and estimates the best modality and beam arrangement from various clinical 
options. This will lead to an increase in local tumour control and reduces the risk of 
toxicity to surrounding normal tissue. Integration of clinically relevant data from other 
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sources in addition will allow AI system to tailor the treatment approach beyond the 
current state of the art methods. The time burden of human intervention and the time 
taken for the overall process can be reduced substantially[2].

Position and motion management
Integrated cone-beam CT (CBCT) is commonly used to image the position of the 
patients. As CBCT has a much lower quality than planning CT images, AI is needed to 
improve the image quality of CBCT to enable more accurate positioning for 
treatment[33]. Other imaging techniques such as onboard MRI, ultrasound and 
infrared surface camera, are used to monitor the motion of the patients as shown in 
Figure 4. These provide an opportunity for AI to refine and enhance the monitoring 
during the treatment[34].

The motion of the patient or organ throughout the treatment contributing to 
inaccuracies in treatment delivery will inevitably increase the radiation dose to 
surrounding healthy tissues. Motion managements are used for monitoring the extent 
of the motion from respiration or digestion[35]. There is a potential for the use of AI to 
predict the diverse variables by creating patient-specific dynamic motion management 
models[36]. Complex breathing patterns in real-time to accurately track tumour 
motion are the major task for predictive algorithms[37].

Throughout the treatment, there are changes in the patient’s anatomy between the 
planning appointment and treatment delivery, or even throughout the treatment. Re-
planning is necessary when the tumour shrinks or grows, or sometimes with 
anatomical variations such as the movement of internal organs and gas or liquid filling 
of the bowels and stomach. Adaptive treatments require a new plan to be created 
based on up-to-date images of the patient’s anatomy. AI tools help predict geometric 
changes in patient throughout the treatment, thus identify the ideal time point for 
adaptation[34].

Tumour tracking in MRI only workflow
Apart from conventional cone-beam CT images, AI is involved in the RT treatment for 
motion tracking using MR images. MRI provides superior soft-tissue contrast 
compared to conventional CT, and thus target delineation in prostate cancer RT using 
MRI has become more widespread[38]. However, in RT planning, the combination of 
MRI and CT image is there is a spatial uncertainty of < 2 mm from the image 
registration for prostate between MRI and CT[39]. A systematic registration error 
could lead to an error in treatment, so the dose distribution does not conform to the 
intended target and results in the tumour control being compromised[40].

As briefly mentioned in section 1, one way to minimize the error is to implement an 
MRI-only workflow so the plan does not rely on the image from CT scanners. Gold 
fiducial markers are commonly used in prostate cancer for target positioning, they are 
detected by using the difference in magnetic susceptibility between the gold markers 
and the tissue nearby. Multi-echo gradient echo sequence is proposed by Gustafsson 
et al[40] for identifying the fiducial markers. The automatic detection of gold fiducial 
markers can save time and resources, as well as removing inter-observer differences. 
From the experiment performed by Gustafsson et al[40] and Persson et al[41], the true 
positive detection rates achieved were 97.4% and 99.6% respectively. The results were 
comparable to manual observer results and they were better than most non deep 
learning automatic detection methods. A quality control method was also introduced 
to call upon the attention of the clinical staff when a failure in detection had occurred, 
which provided a step towards AI automation for MRI-only RT especially for the 
prostate[40].

Plan optimization for online adaptive planning
Besides monitoring the anatomical changes and motion during treatment, AI is heavily 
involved in the process of delivery of the treatment beam. VMAT delivery is one of the 
current standard RT technique. Currently, the treatment plan for VMAT is time-
consuming[42]. Machine parameter optimization (MPO) is used to determine the 
sequence of linac parameters such as multileaf collimators (MLCs) movements, the 
planning usually involves a manual trial and error approach to determine the best 
optimizer inputs to obtain an acceptable plan, and execution time for the optimizer is 
escalated further due to it being run multiple times. There is a need for a fast VMAT 
MPO algorithm, so while the patient is in the treatment position, the MPO can be 
executed multiple times for online adaptive planning[43-45].

Reinforcement learning (RL) is a form of machine learning approach, trained to 
estimate the best sequence of actions to reduce a cost as low as possible in a simulated 
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Figure 4 Different strategies used in motion management in radiotherapy. AI: Artificial intelligence.

environment through trial and error. It can be applied to new cases to quickly optimise 
treatment plans, machine parameters and corresponding dose distributions. The result 
shows RL VMAT approach produces a rapid and consistent result in both training and 
test cohort, showing a generalisable machine control policy without notable overfitting 
in the training cohort despite the small number of patients. The total execution time for 
plan optimisation was 30 s, with the potential to decrease the time even further 
because the algorithm can be implemented in parallel across different slices within the 
plan[45].

Dose calculation and organ tracking using a deep learning technique
Dose calculation of RT treatment using Monte Carlo (MC) simulation is very time 
consuming[1]. Kernel-based algorithm using DNN proposed by Debus et al[46] 
manages to calculate the peak dose and valley dose in a few minutes with little 
difference to MC simulation.

Besides the fast calculation speed for dose, kernel-based algorithm is used for 
identifying the irradiation angle to optimized beam angle for intensity-modulated RT 
plan. The optimized beam angle spares the organs at risk better in pancreatic and 
intracranial cancer[47]. It also gives a low-cost computational solution to markerless 
tracking of tumour motion, such as in kilovoltage fluoroscopy image sequence in 
image-guided RT (IGRT). The kernel-based algorithm provides a better tracking 
performance than the conventional template matching method, and it is comparable to 
the fluoroscopic image sequence[48]. DNN is used to interpret projection X-ray images 
for markerless prostate localization. The experimental result shows the accuracy is 
high and can be used for real-time tracking of the prostate and patient positio-
ning[1,49].

QUALITY ASSURANCE
QA is a way to figure out and eliminate errors in radiation planning and delivery but 
more importantly to ensure consistent quality of the treatment plans. It is an important 
tool in evaluating the dosimetric and geometric accuracy of the machine and treatment 
plans. There are a lot of QA researches based on deep learning and machine learning 
technique[50,51] for improving the accuracy and efficiency of QA procedures. Most 
adopt a ‘human creates while machine verifies’ approach. The followings are different 
sorts of applications of applying AI onto QA in RT. A summary is presented in 
Table 2.

Plan parameters QA validation
Machine learning can be applied to automated RT plan verification. It aims to verify 
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Table 2 Summary of contemporary deep learning methods in quality assurance

Ref. Architecture Purpose

Chang et al[52], 
2017

Bayesian network model To verify and detect external beam radiotherapy physician prescription errors

Kalet et al[53], 
2015

Bayesian network model To detect any unusual outliners from treatment plan parameters

Tomori et al[54], 
2018

Convolutional neural network To predict gamma evaluation of patient-specific QA in prostate treatment planning

Nyflot et al[55], 
2019

Convolutional neural network To detect the presence of introduced RT delivery errors from patient-specific IMRT QA 
gamma images

Granville et al[56], 
2019

Support vector classifier To predict VMAT patient-specific QA results

Li et al[57], 2017 ANNs and ARMA time-series 
prediction modelling

To evaluate the prediction ability of Linac’s dosimetry trends from routine machine data 
for two methods (ANNs and ARMA)

QA: Quality assurance; RT: Radiotherapy; IMRT: Intensity modulated radiotherapy; VMAT: Volumetric-modulated arc therapy; ANNs: Artificial neural 
networks; ARMA: Autoregressive moving average.

the human-created treatment plan to eliminate any outliners in plan parameters, error-
containing contours. Chang et al[52] developed a Bayesian network model to detect 
external beam RT physician order errors ranging from total prescription dose, 
modality, patient setup options so that these errors can be figured out and rectified as 
soon as possible without undergoing re-simulation and re-planning. Kalet et al[53] 
further investigated around 5000 prescription treatment plans within 5 years and 
construct a Bayesian learning model for estimating the probability of different RT 
parameters from given clinical information. It can act as a database to cross-reference 
with existing physicians’ prescription, for example, to safeguard against human errors, 
e.g., new doctors. However, such QA checking does not mean to override some 
exceptional case/physicians’ decisions but acts as supporting information as a safety 
net.

IMRT/VMAT QA results prediction
Patient-specific QA is time-consuming, but this is the most direct and comprehensive 
way to validate an IMRT or VMAT plan that uses sophisticated MLC patterns. Tomori 
et al[54] made use of a CNN network to predict and estimate the gamma passing rate 
of these planning plans for prostate cancer based on input training data (volume of 
planning TV and rectum, monitor unit values of individual field). In the future, 
patient-specific QA can hopefully be fully automated. Nyflot et al[55] also use a CNN 
with triplet learning to extract the features from IMRT QA gamma comparison results 
and train the model to distinguish any introduced RT treatment delivery errors like 
MLC mispositioning error just based on QA gamma results.

Granville et al[56] also trained a linear support vector classifier to predict the VMAT 
QA measurements results based on training measured dose distribution using 
biplanar diode arrays.

Machine performance prediction based on machine QA
To ensure the accuracy and stability of the treatment machine and plans, sufficient QA 
tests ought to be performed. Kalet et al[50] highlighted that by using machine 
performance and regular QA measurement logs as input, it can train the model to 
predict machine performance so as to trigger any preventive maintenance from the 
service engineers or save time spent to perform additional routine machine QAs.

Li et al[57] have used longitudinal daily Linear accelerator (Linac) QA results over 5 
years to build and train the model using artificial neural networks or autoregressive 
moving average time-series prediction modelling techniques so to help understand 
Linac’s behaviour over time and predict the trends in the output[57]. In the future, 
timely preventive maintenance can be scheduled if necessary after prediction.

The benefit of AI in QA
Chan et al[51] highlighted currently many research applications of AI in RT QA 
focused on predicting the machine performance and patient-specific QA passing rate 
results. These QA prediction tools based on deep and machine learning can be 
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incorporated into the treatment planning optimiser so that has a timely prediction of 
QA gamma rate before finalizing the plan. It minimises time spent on repeating 
measurement/replanning in case of failing QA tests. By monitoring the machine 
output performance, it can also help to give feedback to the treatment planning system 
to improve the accuracy of planning.

PREDICTING PATIENT OUTCOMES
AI also has a role in following outcomes of patients being treated with RT. Many 
prediction models have been developed, which can be organised by the outcomes 
predicted as well as the methods used. For RT, the main outcomes that have been 
investigated are treatment response (e.g., local tumour control and survival) and 
toxicity. However, the methods used to make these predictions vary widely based on 
the available data. As studies often acquire these data points retrospectively, the 
availability of ‘ground truth’ data may vary according to the clinical setting. To reflect 
the heterogeneity of data used in some studies, for example, Xu et al[58] predicted the 
chemoRT response of NSCLC patients using 2 datasets. The first set did not have 
surgery, whereas the second set required surgery and thereby providing data for the 
pathologic response.

Studies also required data in varying quantity. Various combinations of clinical, 
imaging, dosimetry, pathological, genomic data have been used to generate the 
models. Longitudinal data is also important, as shown by Shi et al[59] using both a pre-
treatment and mid radiation MRI to predict chemoradiation therapy response in rectal 
cancer . To overcome, difficulties of acquiring large amounts of medical data, 
techniques such as transfer learning has been used to allow algorithms to train on 
separate large data sets[60].

The outcome predicted: Treatment response assessment
Tumor control occurs when the appropriate dose is delivered to the tumor, leading to 
a reduction in the growth of the tumor. It can be assessed grossly by the degree to 
which the tumor’s size changes. Increasingly, changes have been assessed at a more 
microscopic level based on imaging characteristics (e.g., functional imaging and 
quantitative analysis such as radiomics). It can also be conceptualized over multiple 
time points, ranging from the initial treatment response to recurrence, and to the 
overall survival.

For example, Mizutani et al[61] used clinical variables and dosimetry to predict the 
overall survival of malignant glioma patients after RT using SVM. Oikonomou et al[62] 
analyzed radiomics of PET/CT to predict recurrence and survival after SBRT for lung 
cancer. Regarding treatment failure, Aneja et al[63] used a DNN to predict the local 
failure over 2 years after SBRT for NSCLC, while Zhou et al[64] predicted the distant 
failure after SBRT for NSCLC using SVM . In shorter time frames, Wang et al[65] 
predicted the anatomic evolution of lung tumors halfway through the 6-wk course of 
RT using a CNN. Furthermore, Tseng et al[66] used RL to allow ‘adaptation’ of RT to 
the tumor response. Several studies have also examined treatment response in terms of 
prediction of pathological response following neoadjuvant chemotherapy using pre-
treatment CT scans using radiomics with machine learning classification[67,68].

There are several studies utilising machine learning and AI in the task of 
prognostication. For example, a multi-centre study using a radiomics approach was 
utilised in predicting recurrence-free survival in nasopharyngeal carcinoma using MRI 
data[69]. In this study, an attempt was also made to explain the model using SHAP 
analysis which could help derive feature importance used in the predictive model.

The outcome predicted: Toxicity
Radiation toxicity is the other outcome that has been used for prediction. Whereas 
tumor control is the desired outcome from radiation targeting tumorous tissue, 
toxicity is the unwanted effects of radiation inevitably affecting surrounding normal 
tissue. Various applications have been applied to different sites of cancer. For example, 
Zhen et al[60] predicted rectum toxicity in cervical cancer using CNN, Ibragimov 
et al[70] predicted hepatobiliary toxicity after liver SBRT using CNN, and Valdes 
et al[71] predicted radiation pneumonitis after SBRT for stage I NSCLC using 
RUSBoost algorithm with regularization.

There have also been works that combine the outcomes of both the toxicity and the 
tumor response to RT. For example, Qi et al[72], applied a DNN to predict the patient 
reported quality of life in urinary and bowel symptoms, after SBRT for prostate cancer. 
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The model was trained on the dosimetry data alone. The urinary symptoms were 
predicted by the volume of the tumor, while the bowel symptoms represent the 
toxicity to the rectum.

HUMAN AI INTERACTION
As the use of AI technology progress, we need to examine the role of AI in conjunction 
with human. In the short term, this is likely to be in a collaborative/hybrid manner, 
rather AI operating autonomously, although this will depend on the tasks at hand. The 
impact of AI in the radiation oncology field is increasing rapidly, but at the same time 
the concern surrounding the use of AI is rising. One of the main concerns is the 
replacement of many jobs in the field of medical physics and radiation oncology, 
which can lead to a change in how patients are being treated. It is important to 
understand the perception of radiation oncology staff about the progression of AI and 
increase the awareness of the using of AI as a cooperative tool instead of job 
replacements. With the integration of AI in the profession, there is a huge potential in 
improving radiation oncology treatments and decision-making processes[73].

Limitations of AI
The efficiency and accuracy will be revolutionized by AI, but the future role of AI is 
not as clear, and the responsibility of the AI algorithm and clinicians using the AI 
needs to be addressed. In RT treatment planning, most plans are generated based on 
ground truth with low variability, but the optimization requires insights from 
clinicians to provide a creative solution for the patient. With the heavy reliance on 
technology, the innovative aspect may be reduced with the lack of human inputs. 
Safety risks such as AI being reluctant to highlight its own limitations are possible, 
with the potential of suboptimal plans being passed for treatment[74]. There is likely 
to be ongoing need of human/clinical oversight, not least due to regulatory 
requirements.

The concerns of using AI stem from the key issues surrounding the lack of empathy 
and intuition, unlike human practitioners. The development of empathy, which leads 
to the clinician focusing on the patients’ well-being could play a subconscious role in 
providing a creative, innovative and safe RT treatment. This philosophical issue relates 
to human consciousness, and it contributes to how health practitioners should 
approach, use and interact with AI. The term preconceptual understanding, can be 
referred to as common sense for human in general. Since AI is perceived to not possess 
human common sense, it may affect its ability to perform certain tasks that require 
incorporation of these kinds of thinking[74].

Human cognition has two main attributes, which are concept and intuition. Human 
relies on these attributes to relate to the world and people around us. The concept of 
being affected by other people has an impact on how we behave towards them. 
Affectivity between individuals makes us take responsibility for other people, altering 
our behaviours either consciously or unconsciously. The intended consequence is 
generally thought to be that humans will behave in an ethical manner. In RT practice, 
clinical guidance exists for clinicians to follow and failure to act ethically would have 
serious consequences[74].

With the lack of intuition, AI may not behave with identical traits as human. The 
focus of the AI will be based on preprogrammed objectives, instead of patient 
outcomes and may even display a lack of creative input. Patient care and 
communication should be performed by human professionals because human needs to 
be involved in the RT routines, so the safety, creativity and innovation can be 
maintained. In the short term, the use of AI may assist treatment planning, potentially 
saving time. Clinicians will be required to integrate the technology into their practice, 
being aware of limitations, and how it can assist decision making. The unintended 
consequence may be that there are less opportunities or experience in training, and the 
training the future generation of medical staff for providing competent oversight may 
need to be addressed[74].

Karches[75] proposed that AI should not replace physician judgement. Technology 
should help us to extract things from their context, but when technological 
advancement leads us to reduce qualitative into quantitative information, eventually 
interactions between people could become mere data and information, driven to the 
point where only the quantifiable entities matter. Karches[75] mentioned two 
examples, which are stethoscopes and electronic health record (HER), to explain 
technologies can both help or hinder primary care. A stethoscope allows the 
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physicians to pay attention to the sounds of the patients’ body functions. The 
physicians merely utilize a tool to increase their ability to extract information, the tool 
acts as an extension of the physician which still allows the physicians to conform their 
judgement to the patients’ reality. However, EHR tends to distance the physician from 
the patient. A collection of fact is presented to the physicians before meeting the 
patient can surely make the examination process to be more efficient, but the lack of 
interaction between physician and patient can lead the physician to be less adapted to 
handle aspects of patient care that is not quantifiable by technology[75]. Limiting 
patient interaction also leads to less empathy and rapport, potentially leading to less 
trust in medical professionals.

They are unlikely to devote more time to uncompensated activities such as 
educating students[75]. These examples are an important reminder of how clinicians 
should interact with AI, where AI needs to be a tool to assist the clinicians to gain a 
better understanding of the patient and situation, but not something to distract 
themselves which compromise primary care. The more optimistic model of AI usage 
may be that AI frees the physicians or medical practitioners from repetitive or 
mundane, enabling them to spend more time with patients.

AI perception
Wong et al have surveyed the Canadian radiation oncology staff in 2020 regarding 
their views towards the impact of AI. Even though more than 90% of the respondents 
were interested in learning more about AI, only 12% of them felt they were 
knowledgeable about AI. For the forecast of AI, the majority of the respondents felt 
optimistic, and it would save time and benefit the patients. Common concerns among 
the staff were the economic implications and the lack of patient interaction. The 
precision of AI in identifying organs at risk is the top priority, and most concurred that 
AI system could produce better than average performance, but human oversight is still 
necessary for providing the best quality of patient care. Many respondents, especially 
radiation trainees, had concerns about AI could replace their professional 
responsibilities[73].

Medical practitioners have expressed frustration at the technologies because the 
relationship between the patient and medical staff are undermined. The AI produces a 
medical judgement, often disregarding the particular circumstances of each patient. 
This is because any extra consideration for the patient may lead to an increase in cost, 
lowering efficiency. Many experienced clinicians would not rely solely on the patients’ 
verbal description because patients could be untruthful about their purpose of visit, or 
they might understate the burden of their symptoms. AI would tend to take the 
history of patients at face value, and depending on the technology used, it may never 
have the ability to interpret subtle non-verbal cues. The ability to understand the 
patients’ needs remain questionable, as the best patient outcome does not always have 
a binary result which computers are good at producing[75].

The reduction of time-consuming tasks due to the AI integration may cause a 
reduction in job opportunities. On the other hand, the decrease in a more time-
consuming task can lead to better inter-professional collaboration and an increase in 
interaction time with the patient. According to the survey from Wong et al[73], the cost 
benefits of AI was unclear for the respondents and it can be one of the reasons for the 
limitation on AI advancement. There could be a need for incorporating the knowledge 
of AI in the early stages of education, this is because the trainees which will be the 
future generation of practitioners, showed the least positivity towards AI. The fear of 
the unknown is part of human nature, and therefore, the investment of educating 
professionals to raise the knowledge and importance of AI is essential[73].

Techniques to improve human-AI interaction
Although AI has the potential to expand or extend beyond the cognitive abilities of 
humans, it still has its limitations in its current form that only humans can 
demonstrate such as generalisability and empathy. These limitations are especially 
pronounced in fields where data is limited and social context is paramount, such as in 
medicine and RT. There is an idea to create systems that combine humans and AI in 
symbiosis, with the intention that the whole is greater than the sum of its parts[76]. 
The ideal hybridized system would allow the two parties to combine the strengths yet 
hide the weaknesses of each other. However, the key to optimizing these systems is to 
have an efficient Human-AI interaction process. The interaction process has been 
subject to recent research. Design principles have been set forth, though applications 
within RT may be in its infancy.
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To conceptualise the process of human-AI interaction, some groups have written 
guidelines and taxonomies for the design of such processes. Amershi et al[77] have 
created design guidelines for human-AI interaction, based on the feedback and 
experience of design practitioners. The focus is on a human-centric system with AI as 
an assistant. Key features can be divided over different time points of the interaction: 
(1) Before interaction (initiation): How does AI set expectations on its strengths and 
limitations? (2) On interaction: How does AI present information to a human? How 
does human provide feedback to AI? and (3) After interaction (over time): How does 
AI learn and adapt to human preferences?

The initiation phase occurs before any interaction occurs when expectations are set 
out for each other. Cai et al[78] have investigated what medical practitioners desired to 
know about the AI before using it. The requirements were akin to what the users 
desired to know about their human colleagues when consulting or cooperating with 
them. The properties of the AI can be described along these lines including its known 
strengths and limitations (e.g., bias of training data), its functionality (e.g., the task it 
was trained to perform), its objective (e.g., was it designed to be sensitive or specific) 
and socioeconomic implications. With appropriate expectations set, the user may be 
motivated to adopt the system in various modes of collaboration. For example, the 
human-AI system can divide labour according to their strengths, or they can perform 
the same task as a second opinion to each other.

During the interaction, the AI and human communicate to share information. 
Firstly, there is a consideration of what information is to be shared. With current AI 
systems using deep learning, a decision or prediction is made based on given inputs. 
However, there is a common concern of interpretability of such decisions of AI 
systems because of the lack of explicit steps of reasoning between input and output. In 
order to gain trust in AI decision, interpretability or explanability has been a growing 
area in AI research in general. To this end, Luo et al[79] reviewed different AI 
algorithms with improved interpretability for RT outcome prediction. Some examples 
include using handcrafted features or activation maps. However, there is a trade-off 
between the algorithm’s interpretability and its accuracy. Other methods include using 
SHAP analysis which is used to explain feature importance in tree-based models[80]. 
Secondly, there is a consideration of how to present the information in the workflow 
so that this integrates well in clinical practice. Ramkumar et al[81] explored the user 
interaction in semi-automatic segmentation of organs at risk. It was shown that the 
physicians’ subjective preferences of different workflows play an important role, 
suggesting flexibility in system design needs to be bourne in mind. The experience 
and/or personal preference of an individual practitioner may also play a role. A recent 
study demonstrated that humans are susceptible to bias when given advice and this is 
particularly more pronounced with doctors with less experience on the task of chest 
radiograph interpretation[82]. Figure 5 shows the likely future direction of the 
development of AI and human-AI interaction. The incorporation of AI under human 
supervision will likely become mainstream in clinical practice in the future, until the 
AI has sufficient or near-human consciousness to perform tasks autonomously. In 
between, there may also be a hybrid mode of operation, whereby a direct interface 
with human may be used. For example, there are developments to implant chips in 
human brain so that we can directly interface with a computer system. This mode of 
operation could be used for example, for real-time adjustment in treatment plan 
during treatment delivery.

CONCLUSION
The examples of applications and potential of AI provide insights on how and why 
health care professionals such as medical physicists and radiation oncologists should 
use AI. The pros and cons with AI usage needs to be understood fully in order to both 
strengthen our ability to provide primary care and reduce the amount of weaknesses 
that human and AI possess.

The role of medical physicists will likely migrate away from QA of equipment, 
towards the QA of the patient treatments and overall treatment environment and 
processes. The decision-making capacity is expected to be improved and the 
knowledge gaps between experts and non-experts of a specific domain may be 
lowered. Clinicians are going to interact with computers more often and the efficiency 
of the human-computer interface will play a larger role in reducing duplicative and 
manual efforts. With the advancement of AI in the near future, the performance may, 
if not already, have surpassed human in specific tasks. It is crucial to re-think the 
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Figure 5 Future direction of human and artificial Intelligence. AI: Artificial intelligence.

ethical clinical practice, when do we decide to let a human make a “correction” to the 
output provided by an AI[2], or when can we allow AI system to operate 
autonomously.

The growth of AI also poses security challenges as the data are shared more often 
across governance structures and stakeholders. Implications of unintended third-party 
data reuse may be more common. As a consequent, already there are some efforts such 
as the increased requirements of European Union’s General Data Protection 
Regulation to reduce the concern of the breach in privacy. Early AI that is clinically 
adopted might have flaws that result in patient harm just as some early IMRT systems. 
Nevertheless, AI will one day become widespread and effective technology[2].

Despite the potential drawbacks, the enormous benefit provided by AI will allow 
medical practitioners to provide a better healthcare service to patients. In the previous 
sections of this review, many techniques are currently in research. The clinical practice 
will be adopting the use of AI more in the future, and the examples listed above will 
likely become available and applied within the next decade.

While we are still a long way from having fully autonomous AI to determine the 
best treatment options, steps were taken in this direction such as improving AI 
algorithms through trainings and feedbacks. In the short term, there are likely to be 
some changes in the working environment. It would be foolhardy to expect that we 
maintain the status quo. Although medical practitioners are unlikely to be replaced 
any time soon, we expect the profession to evolve. Displacement of practitioner’s roles 
rather than replacement may be the impact in the foreseeable future.
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