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Abstract Context: Trait composition has inspired new research in the area of code reuse for object oriented
(OO) languages. One of the main advantages of this kind of composition is that it makes possible to separate
subtyping from subclassing; which is good for code-reuse, design and reasoning [15]. However, handling of
state within traits is difficult, verbose or inelegant.

Inquiry: We identify the this-leaking problem as the fundamental limitation that prevents the separation of
subtyping from subclassing in conventional OO languages. We explain that the concept of trait composition
addresses this problem, by distinguishing code designed for use (as a type) from code designed for reuse
(i.e. inherited). We are aware of at least 3 concrete independently designed research languages following this
methodology: TraitRecordJ [6], Package Templates [26] and DeepFJig [16].

Approach: In this paper, we design 42µ, a new language, where we improve use and reuse and support
the This type and family polymorphism by distinguishing code designed for use from code designed for reuse.
In this way 42µ synthesise the 3 approaches above, and improves them with abstract state operations: a new
elegant way to handle state composition in trait based languages.

Knowledge and Grounding: Using case studies, we show that 42µ’s model of traits with abstract state oper-
ations is more usable and compact than prior work. We formalise our work and prove that type errors cannot
arise from composing well typed code.

Importance: This work is the logical core of the programming language 42. This shows that the ideas
presented in this paper can be applicable to a full general purpose language. This form of composition is very
flexible and could be used in many new languages.
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1 Introduction

In Java, C++, Scala and C#, subclassing implies subtyping. A Java subclass decla-
ration, such as class A extends B {} does two things at the same time: it inherits code
from B; and it creates a subtype of B. Therefore a subclass must always be a subtype
of the extended class. Such design choice where subclassing implies subtyping is
not universally accepted. Historically, there has been a lot of focus on separating
subtyping from subclassing [15]. This separation is claimed to be good for code-reuse,
design and reasoning. There are at least two distinct situations where the separation
of subtyping and subclassing is helpful.

Allowing inheritance/reuse even when subtyping is impossible: Situations where inher-
itance is desirable are prevented by the enforced subtyping relation. A well-known
example are the so-called binary methods [13, 15]. For example, consider a class
Point with a method Point sum(Point o){return new Point(x+o.x,y+o.y);}. Can we reuse the Point
code so that ColorPoint.sum would take and return a ColorPoint? In Java/C# declaring
class ColorPoint extends Point{..} would result in sum still taking a Point and returning a
Point. Moreover, manually redeclaring a ColorPoint sum(ColorPoint that) would just induce
overloading, not overriding. In this case we would like to have inheritance, but we
cannot have (sound) subtyping.

Preventing unintended subtyping: For certain classes we would like to inherit code
without creating a subtype even if, from the typing point of view, subtyping is still
sound. A typical example [29] is Sets and Bags. Bag implementations can often
inherit from Set implementations, and the interfaces of the two collection types
are similar and type compatible. However, from the logical point-of-view a Bag is
not a subtype of a Set.

Structural typing [15] may deal with the first situation, but not the second. Since
structural subtyping accounts for the types of the methods only, a Bag would be a
subtype of a Set if the two interfaces are type compatible. For dealing with the second
situation, nominal subtyping is preferable: an explicit subtyping relation must be
signalled by the programmer. Thus if subtyping is not desired, the programmer can
simply not declare a subtyping relationship.

While there is no problem in subtyping without subclassing, in most nominal OO
languages subclassing fundamentally implies subtyping. This is because of what we
call the this-leaking problem, illustrated by the following (Java) code, where method
A.ma passes this as A to Utils.m. This code is correct, and there is no subtyping/subclassing.

1 class A{ int ma(){ return Utils.m(this); } }
2 class Utils{ static int m(A a){..} }

Now, lets add a class B:
1 class B extends A{ int mb(){return this.ma();} }

We can see an invocation of A.ma inside B.mb, where the self-reference this is of type B.
The execution will eventually call Utils.m with an instance of B. However, this can be
correct only if B is a subtype of A.
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Suppose Java code-reuse (the extends keyword) did not introduce subtyping1: then
an invocation of B.mb would result in a run-time type error. The problem is that the
self-reference this in class B has type B. Thus, when this is passed as an argument to
the method Utils.m (as a result of the invocation of B.mb), it will have a type that is
incompatible with the expected argument of type A. Therefore, every OO language
with the minimal features exposed in the example (using this, extends and method
calls) is forced to accept that subclassing implies subtyping.

What the this-leaking problem shows is that adopting a more flexible nominally
typed OO model where subclassing does not imply subtyping is not trivial: a more
substantial change in the language design is necessary. In essence we believe that in
languages like Java, classes do too many things at once. In particular they act both as
units of use and reuse: classes can be used as types and can be instantiated; classes can
also be subclassed to provide reuse of code. We are aware of at least 3 independently
designed research languages that address the this-leaking problem:

In TraitRecordJ (TR) [6, 7, 8] each construct has a single responsibility: classes
instantiate objects, interfaces induce types, records express state, and traits are
reuse units.
Package Templates (PT) [2, 3, 26]: an extension of (full) Java where new packages
can be “synthesized” by mixing and integrating code templates. Such “synthesized”
packages can be used for code reuse without inducing subtyping.
DeepFJig(DJ) [16, 27, 37] is a module composition language where nested classes
with the same name are recursively composed.
This paper shows a simple language design, called 42µ, addressing the this-leaking

problem and decoupling subtyping from inheritance. We build on traits to distinguish
code designed for use from code designed for reuse. We synthesize and simplify the
best ideas from those 3 very different designs, and couple them with an elegant novel
approach to state and self instantiation in traits that avoids the complexities and
redundancies introduced by fields and their initialisation.

In 42µ, there are two separate concepts: classes and traits [18]. Classes are meant
for code use, and cannot be inherited/extended. Classes in 42µ are like final classes
in Java, and can be used as types and as object factories. Traits are meant for code
reuse only: multiple traits can be composed to form a class. However, traits cannot
be instantiated or used as types. This allows fine-grained control of subtyping while
handling examples like Set/Bag.

In 42µ, as in many module composition languages [1], all methods can be abstract,
including static ones. Moreover, module composition can be used to make an already
implemented method abstract. Thus, as for dynamic dispatch, the behaviour of a
method call is never set in stone. We will show how in 42µ, state is induced by an
implicit fixpoint operation over abstract methods, where an abstract static method can

1 C++ allows ”extending privately”; this is not what we mean by not introducing subtyping:
in C++ it is a limitation over subtyping visibility, not over subtyping itself. Indeed, the
former example would be accepted even if B were to ”privately extends” A.
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perform the role of a constructor. This allows handling examples like Point/ColorPoint in
a natural way, without requiring code duplication.

Our design brings several benefits. In particular, Family Polymorphism [20] is
radically simpler to support soundly. This is already clear in the 3 lines of research
above, and is even more outstanding in the clean 42µ model.

We first focus on an example-driven presentation to illustrate how to improve
use and reuse. In appendix A, we then provide a compact formalization. The hard
technical aspects of the semantics have been studied in previous work [2, 3, 6, 7, 8, 16,
26, 27, 37]; the design of 42µ synthesizes some of those concepts. The design ideas have
been implemented in the full 42 language, which supports all the examples we show in
the paper, and is available at: http://l42.is. Work on 42 is now slowly reaching maturity
after about 5 years of intense research and development. The current implementation
is now robust enough to create realistic medium sized programs running on the JVM,
and the standard library consists of over 10000 lines of 42 code.

In summary, our contributions are:

We identify the this-leaking problem, that makes separating inheritance and sub-
typing difficult.
We synthesize the key ideas of previous designs that solve the this-leaking problem
into a novel and minimalistic language design. This language is the core logic of
the language 42, and all the examples in this paper can be encoded as valid 42
programs. This design improves both code use and code reuse.
We propose a clean and elegant approach to the handling of state in a trait based
language.
We illustrate how 42µ, extended with nested classes, enables a powerful (but at
the same time simple) form of family polymorphism.
We show the simplicity of our approach by providing a compact 1 page formalization
(in Appendix A).
We perform 3 case studies, comparing our work with other approaches, and we
collect clear data showing that we can express the same examples in a cleaner and
more modular manner.

2 The Design of 42µ: Separating Use and Reuse

2.1 Classes in 42µ: a mechanism for code use

Consider the example of section 1 rewritten in 42µ, introducing classes Utils and A:
1 A={ method int ma(){ return Utils.m(this); } }
2 Utils={ static method int m(A a){ return ..; } }

Classes in 42µ use a different declaration style compared to Java: there is no class

keyword, and an equals sign separates the class name (which must always start with an
uppercase letter) and the class implementation, which is used to specify the definitions
of the class. In our example, in the class declaration for A, the name of the class is A

12:4
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and the code literal associated with the class is ‘{ method int ma(){return Utils.m(this);}}’ and
it contains the method ma(). In the 42µ code above, there is no way to add a class B
reusing the code of A: class A (uppercase) is designed for code use and not reuse. Indeed,
a noticeable difference with Java is the absence of the extends keyword. 42µ classes
are roughly equivalent to final classes in Java. This means that there is actually no
subclassing. Thus, unlike the Java code, introducing a subclass B is not possible. This
may seem like a severe restriction, but 42µ has a different mechanism for code-reuse
that is more appropriate when code-reuse is intended.

2.2 Traits in 42µ: a mechanism for code reuse

Traits in 42µ cannot be instantiated and do not introduce new types. However they
provide code reuse. Trait declarations look very much like class declarations, but trait
names start with a lowercase letter (even syntactically they can not be used as types).

1 Utils={ static method int m(A a){return ...} }
2 ta={ method int ma(){return Utils.m(this);}} //type error
3 A=Use ta

Here ta is a trait intended to replace the original class A so that the code of the method
ma can be reused. Then the class A is created by reusing the code from the trait ta,
introduced by the keyword Use. Note that Use expressions cannot contain class names:
only trait names are allowed. Referring to a trait is the only way to induce code reuse.

The crucial point is the call Utils.m(this) inside trait ta: the corresponding call in the
Java code is correct since Java guarantees that such occurrence of this will be a subtype
of A everywhere it is reused. In 42µ the type of this in ta has no relationship to the type
A; thus the code Utils.m(this) is illtyped.

The following second attempt would not work either:
1 Utils={ static method int m(ta a){return ...}} //syntax error
2 ta={ method int ma(){return Utils.m(this);}}
3 A=Use ta

ta is not a type in the first place, since it is a (lowercase) trait name. Indeed, trait
names can only be used in Use expressions, and thus they can not appear in method
bodies or type annotations. In this way, the code of a trait can stay agnostic of its
name. This is one of the key design decisions in 42µ: traits can be reused in multiple
places, and their code can be seen under multiple types. In 42µ, interfaces are the only
way to obtain subtyping. As shown in the code below, interfaces are special kinds of
code literals, where all the methods are abstract. Thus, to model the original Java
example, we need an interface capturing the commonalities between A and B:

1 IA={interface method int ma()} //interface with abstract method
2 Utils={static method int m(IA a){return ...} }
3 ta={implements IA //This line is the core of the solution
4 method int ma(){return Utils.m(this);}}
5 A=Use ta

This code works: Utils relies on interface IA and the trait ta implements IA. Any class
reusing ta will contain the code of ta, including the implements IA subtyping declara-
tion; thus any class reusing ta will be a subtype of IA. Therefore, while typechecking
Utils.m(this) we can assume this<:IA. It is also possible to add a class B as follows:
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1 B=Use ta, { method int mb(){return this.ma();} }

This also works. B reuses the code of ta, but has no knowledge of A. Since B reuses ta,
and ta implements IA, B also implements IA.

Later, in appendix A we will provide the type system. Here notice that the former
declaration of B is correct even if no method called ma is explicitly declared. DJ and
TR would instead require explicitly declaring an abstract ma method:

1 B=Use ta, { method int ma() //not required by us
2 method int mb(){return this.ma();} }

In 42µ, methods are directly accessible from ta, exactly as in the Java equivalent
1 class B extends A{ int mb(){return this.ma();} }

where method ma is imported from A. This concept is natural for a Java programmer,
but was not supported in previous work [8, 16]. Those works require all dependencies
in code literals to be explicitly declared, so that the code literal is self-contained; in
this way it can be typed in isolation before flattening. However, this results in many
redundant abstract method declarations.

Semantics of Use: The semantics of traits is defined with flattening, which is simple
to formalize and understand. However, if implemented naively, flattening may cause a
lot of bytecode duplication. The ‘delegation semantics’ [28], is a proposed alternative
semantic model for traits that is observationally equivalent to flattening but does
not require bytecode duplication. The formalism presented here will rely on simple
flattening, but we expect the techniques of [28] would be useful to produce an efficient
implementation in term of bytecode space. With the flattening semantics A and B are
equivalent to the inlined code of all used traits.

1 A=Use ta
2 B=Use ta, { method int mb(){return this.ma();} }
3 //equivalent to
4 A={implements IA method int ma(){return Utils.m(this);}}
5 B={implements IA
6 method int ma(){return Utils.m(this);}
7 method int mb(){return this.ma();} }

In the resulting code, there is no mention of the trait ta. Information about code-
reuse/inheritance is a private implementation detail of A and B; while subtyping
is part of the class interface.This position has been defended by Bracha [10]: the
choice of inheriting behaviour should be in the hands of the programmer; if a method
implementation is not appropriate, such method can be overridden. If too many
methods do not provide an appropriate behaviour, inheriting code from another
location or implementing the behaviour from scratch may also be considered. This
should not impact the interface exposed to the user, otherwise the programmer may
be unable to change their implementation decisions at a later time. In summary, to
leak this in 42µ, either code reuse is disallowed, or an appropriate interface (IA in this
case) must be implemented. We believe the code with IA better transmits programmer
intention. Some readers may instead see requiring IA as a cost of our approach. Even
from this point of view, such cost is counter balanced by the very natural and simple
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support for code reuse, ‘This’ type and (in the extensions with nested classes seen later)
family polymorphism. The syntactic cost of introducing new names can be reduced
with some syntactic sugar.

3 Improving Use

To illustrate how 42µ improves the use of classes, we model a simplified version of Set
and Bag collections first in Java, and then in 42µ. The benefit of 42µ is that we get
reuse without introducing subtyping between Bags and Sets. As shown below, this
improves the use of Bags by eliminating logical errors arising from incorrect subtyping
relations that are allowed in the Java solution.

3.1 Sets and Bags in Java: the need for code reuse without subtyping

An iconic example on why connecting inheritance/code reuse and subtpying is prob-
lematic is provided by LaLonde [29]. A reasonable implementation for a Set is easy to
extend into a Bag by keeping track of how many times an element occurs. We just add
some state and override a few methods. For example in Java one could have:

1 class Set {..//usual hashmap implementation
2 private Elem[] hashMap;
3 void put(Elem e){..}
4 boolean isIn(Elem e){..}}
5 class Bag extends Set{ ..//for each element in the hash map,
6 private int[] countMap;// keep track of how many occurrences are in the bag
7 @Override void put(Elem e){..}
8 int howManyTimes(Elem e){..}}

Coding Bag in this way avoids a lot of code duplication, but we induced unintended
subtyping! Since subclassing implies subtyping, our code breaks the Liskov substitution
principle (LSP) [30]: not all bags are sets!2 Indeed, the following is allowed:

1 Set mySet=new Bag(); //OK for the type system but not for LSP

This encumbers the programmer: to avoid conceptual errors that are not captured by
the type system, they have to use Bag very carefully.

A (broken) attempt to fix the Problem in Java: One could retroactively fix this problem
by introducing AbstractSetOrBag and making both Bag and Set inherit from it:

1 abstract class AbstractSetOrBag {/*old set code goes here*/}
2 class Set extends AbstractSetOrBag {} //empty body
3 class Bag extends AbstractSetOrBag {/*old bag code goes here*/}
4 ...
5 //AbstractSetOrBag type not designed to be used.
6 AbstractSetOrBag unexpected=new Bag();

2 The LSP is often broken in real programs because of the need of inheritance: the LSP allows
only refinement not extension. Traits provide extension without breaking the LSP.
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This looks unnatural, since Set would extend AbstractSetOrBag without adding anything,
and we would be surprised to find a use of the type AbstractSetOrBag. Worst, if we
are to constantly apply this mentally, we would introduce a very high number of
abstract classes that are not supposed to be used as types. Those classes would clutter
the public interface of our classes and the project as a whole. A useable API should
provide only the information relevant to the client. In our example, the information
Set<:AbstractSetOrBag would be present in the public interface of the class Set, but such
information is not needed to use the class properly! Moreover, the original problem is
not really solved, but only moved further away. For example, one day we may need
bags that can only store up to 5 copies of the same element. We are now at the starting
point again:

either we insert class Bag5 extends Bag and we break the LSP;
or we duplicate the code of the Bag implementation with minimal adjustments in
class Bag5 extends AbstractSetOrBag;
or we introduce an abstract class BagN extends AbstractSetOrBag and
class Bag5 extends BagN and we modify Bag so that class Bag extends BagN. Note that this
last solution is changing the public interface of the formerly released Bag class,
and this may even break backwards-compatibility (if a client program was using
reflection, for example).

3.2 Sets and Bags in 42µ

Instead, in 42µ, if we were to originally declare
1 Set={/*set implementation*/}

Then our code would be impossible to reuse in the first place for any user of our
library. We consider this an advantage, since unintended code reuse runs into under-
documented behaviour nearly all the time!3 If the designer of the Set class wishes to
make it reusable, they can do it explicitly by providing a set trait:

1 set={/*set implementation*/}
2 Set=Use set

Since set can never be used as a type, there is no reason to give it a fancy-future-aware
name like AbstractSetOrBag. There are two different ways to add the concept of bags:

1 set={/*set implementation*/} //version 1
2 Set=Use set
3 Bag= Use set, {/*bag implementation*/}
4
5 set={/*set implementation*/} //version 2
6 Set=Use set
7 bag=Use set, {/*bag implementation*/}
8 Bag=Use bag

3 See “Design and document for inheritance or else prohibit it” [9]: the self use of public
methods is rarely documented, thus is hard to understand the effects of overriding a library
method.
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Notice how, thanks to flattening, the resulting code for Bag is identical in both versions
and, as shown in Section 2, there is no trace of trait bag at run time. Thus if we are the
developers of bags, we can temporarily go for the first version. Then, when for example
we need to add Bag5 as discussed before, we can introduce the bag trait without adding
new undesired complexity for our old clients.

4 Improving Reuse

To illustrate how 42µ improves reuse, we show a novel approach to smoothly inte-
grating state and traits: a challenging problem that has limited the flexibility of traits
and reuse in the past. The idea of flattening is elegant and successful in module
composition languages [1] and several trait models [5, 8, 18, 27]. Flattening is elegant
in these two settings since traits (or modules) only have one kind of member: methods
(or functions). In this way flattening is defined as simply collecting all members from
all used traits (or composed modules), where methods with same name and type
signature are summed into a single one. At most one of those summed methods
can have a body, which will be propagated into the result. However the research
community is struggling to make it work with object state (constructors and fields)
while achieving the following goals:

managing fields in a way that borrows the elegance of summing methods;
actually initializing objects, leaving no null fields;
making it easy to add new fields;
allowing self instantiation: a trait method can instantiate the class using it.

An in-depth discussion on how such goals are difficult to achieve and how they have
been challenged in the existing literature is available in Section 7.3.

4.1 State of the art

We first present the state of the art solution: traits have only methods but classes also
have fields and constructors. The idea is that the trait code just uses getter/setters/-
factories, while leaving classes to finally define the fields/constructors. That is, in this
state of the art solution, classes have a richer syntax than traits, allowing declaration
for fields and constructors.

Points: Consider two traits dealing with point objects with coordinates x and y.
1 //idealized state of the art trait language, not 42
2 pointSum= { method int x() method int y()//getters
3 static method This of(int x,int y)//factory method
4 method This sum(This that){//sum code
5 return This.of(this.x()+that.x(),this.y()+that.y());//self instantiation
6 }}
7 pointMul= { method int x() method int y()//repeating getters
8 static method This of(int x,int y)//repeating factory
9 method This mul(This that){//multiplication code
10 return This.of(this.x()*that.x(),this.y()*that.y()); }}
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The first trait provides a binary method that adds the point object to another point
to return a new point. The second trait provides multiplication. In this code all the
operations dealing with state are represented as abstract methods. Notice the abstract
static method This of(..) which acts as a factory/constructor for points. As for instance
methods, static methods are late bound: flattening can provide an implementation
for them. Thus, in 42µ they can be abstract, and abstract static methods are similar to
the concept of member functions in the module composition setting [1]. Following
the traditional model of traits and classes common in literature [18], we can compose
the two traits, by adding glue-code to implement methods x, y and of. This approach is
verbose but very powerful, as illustrated by ClassLess Java [40].

1 //idealized state of the art trait language, not 42
2 class PointAlgebra=Use pointSum,pointMul, {//not 42 code
3 int x int y//unsatisfactory state of the art solution
4 constructor PointAlgebra(int x, int y){ this.x=x this.y=y }
5 method int x(){return x;}//repetitive code
6 method int y(){return y;}// in traits terminology, this is all "glue code"
7 static method This of(int x, int y){return new PointAlgebra(x,y);} }

With a slightly different syntax, this approach is available in both Scala and Rust,
and they both require glue code. It has some advantages, but also disadvantages:

Advantages: This approach is associative and commutative, even self instantiation
can be allowed if the trait requires a static method returning This. The class will
then implement the methods returning This by forwarding a call to the constructor.

Disadvantages: The class needs to handle all the state, even state conceptually private
to a trait. Moreover, writing such obvious code to close the state/fixpoint in the
class with the constructors and fields and getter/setters and factories is tedious
and error prone; such code could be automatically generated [40].

4.2 Our proposed approach to State: Coherent Classes

In 42µ there is no need to write down constructors and fields. In fact, in 42µ there is
not even syntax for those constructs! The intuition is that a class where all abstract
methods can be seen as field getters, setters, or factories, is a coherent class. In most
other languages, a class is abstract if it has abstract methods. Instead, we call a class
abstract only when the set of abstract methods are not coherent. That is, the abstract
methods cannot be automatically recognised as factory, getters or setters. Methods
recognised as factory, getters and setters are called abstract state operations.
A definition of coherent classes is given next, and is formally modelled in appendix A:

A class with no abstract methods is coherent (just like Java Math, for example).
Such classes have no instances and are only useful for calling static methods.
A class with a single abstract static method returning This and with parameters
T1 x1, . . . , Tn xn is coherent if all the other abstract methods can be seen as abstract
state operations over one of x1, . . . , xn. That is:
– A method Ti x i () is interpreted as an abstract state method: a getter for x i.
– A method void x i (Ti that) is a setter for x i.
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Note how the single, abstract static method acts as a factory method. The signature
of the factory method plays an important role, since abstract state operations
are identified by using the names of the factory method arguments. The idea of
creating objects in a single atomic step by providing a value for all their fields is
well explored (such as with primary constructors in Scala) and does not limit the
freedom of programmers to specify personalised initialisation strategies. A static
method can freely compute concrete field values before creating objects. Appendix
B.4 discusses usability implications of this pattern.

While getters and setters are fundamental operations, it is possible to support more
operations. For example:

method This withX(int that) may create a new instance that is like this except that field x

now has value that. Those kinds of methods performs functional field updates and
are called withers.
method This clone() may do a shallow clone of the object.
The concept of ‘abstract state operations’ is novel, and we think it is a promising

area for further research. ClassLess Java [40] explores a particular set of such abstract
state operations, but we suspect there are more unexplored possible options that could
be even more beneficial.

Points in 42µ: In 42µ and with our approach to handle the state, pointSum and pointMul
can indeed be directly composed. This works because the resulting class is coherent.

1 PointAlgebra= Use pointSum,pointMul //no glue code needed

Improved solution: So far the current solution still repeats the abstract methods x,
y and of. Moreover, in addition to sum and mul we may want many operations over
points. It is possible to improve reuse and not repeat such declaration by abstracting
the common declaration into a trait p:

1 p= { method int x() method int y()
2 static method This of(int x,int y)
3 }
4 pointSum= Use p, {
5 method This sum(This that){
6 return This.of(this.x()+that.x(),this.y()+that.y());
7 }}
8 pointMul= Use p, {
9 method This mul(This that){
10 return This.of(this.x()*that.x(),this.y()*that.y());
11 }}
12 pointDiv= ...
13 PointAlgebra= Use pointSum,pointMul,pointDiv,...

Now the code is fully modularized, that is: each trait defines exactly one method and
contains its abstract dependencies. In this way it can be modularly composed with
any code requiring such a method.

Case Study 1: In order to evaluate our approach we performed a case study: we con-
sider 4 different operations Sum, Subtraction, Multiplication and Division. These operations
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can be combined in 16 different ways. We wrote this example in four different styles:
(a) Java7 (115 lines), (b) Classless Java (82 lines), (c) Scala (81 lines) and (d) 42µ
(32 lines).4 We chose Classless Java [40] since it is a novel approach allowing Java8
default interface methods to encode traits in Java. We then chose Java7, that lacks
the features needed to encode traits, to show the impact of this feature. Finally, the
comparison with Scala is interesting since it has good support for traits, and using
abstract types, it is possible to support the ‘This’ type. Rust is similar to Scala in this
regard; we believe we would get similar results by comparing against either Scala or
Rust.

Language Lines of code members classes/traits

Java7 115= 6+ 5 ∗ 4+ 7 ∗ 6+ 9 ∗ 4+ 11 50 16
Classless Java 82= 3+ 3 ∗ 4+ 5 ∗ 6+ 7 ∗ 4+ 9 34 16
Scala 81= 5+ 3 ∗ 4+ 4 ∗ 16 40 21= 16+ 4+ 1
42µ 32= 4+ 3 ∗ 4+ 1 ∗ 16 7 21= 16+ 4+ 1

We observed that in Java7 we had to duplicate5 28 method bodies across the 16
classes. Of these, 11 method bodies were duplicated because Java does not support
multiple inheritance and the remaining 17 bodies had to be duplicated to ensure that
the right type is returned by the method. Those could be avoided if Java supported
the ‘This’ type. On the other hand, the solution in 42µ was much more compact since
we could efficiently reuse traits (this is why the number of top-level concepts in 42µ
was larger i.e. 21 due to the presence of traits in this solution). In detail, Java required
6 lines for the initial Point class, 5 lines for each of the 4 arithmetic operations, 7 lines
for each of the 6 combinations of two different operations, 9 lines for each of the
4 combinations of three different operations and finally 11 lines for the class with
all four operations. The solution in Classless Java was slightly smaller than Java7,
but was still longer than the 42µ solution: it still had to redefine the sum, sub and
other operations in each of the classes. Here the limited support for the ‘This’ type is
to blame, thus Classless Java also has 28 duplicated method bodies.

Finally, we compare it with a Scala solution. There is no need for duplicate method
bodies in Scala. However, for ‘This’ instantiation we need to define abstract methods,
that will be implemented in the concrete classes. The Scala solution has the same
exact advantages of our proposed solution, and the declaration of the trait is about
the same size: 5 (point state) +3 ∗ 4 (point operations). However the glue code (the
code needed to compose the traits into usable classes) is quite costly: 4 lines for each
of the 16 cases. In 42µ a single line for each case is sufficient.

This example is the best-case scenario for 42µ: where a maximum level of reuse is
required since we considered the case where all the 16 permutations needed to be
materialized in the code. In all our case studies, to make a meaningful comparison, we

4 Since we want to focus on the actual code, while counting line numbers we omit empty
lines and lines containing only open/closed parenthesis/braces.

5 A duplicate body is repetition of identical code (may have different types in its scope/envi-
ronment). The first occurrence is not counted.
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formatted all code in a readable and consistent manner; on the other hand for space
limitations, the code snippets presented in the article are formatted for compactness.

4.3 State Extensibility

Programmers may want to extend points with more state. For example they may want
to add colors to the points. A first attempt at doing this would be:

1 colored= { method Color color() }
2 CPoint= Use pointSum,colored //Fails: class not coherent

This first attempt does not work: the abstract color method is not a getter for any of
the parameters of static method This of(int x,int y). A solution is to provide a richer factory:

1 CPoint= Use pointSum,colored,{
2 static method This of(int x,int y){return This.of(x,y,Color.of(/*red*/));}
3 static method This of(int x,int y,Color color) }

where we assume support for overloading based on different numbers of parameters.
This is a reasonable solution, however the method CPoint.sum resets the color to red:
we call the of(int, int) method, that now delegates to of(int, int, Color) by passing red as the
default field value. What should be the behaviour in this case? If our abstract state
supports withers, we can use this.withX(newX).withY(newY), instead of writing This.of(...), in
order to preserve the color from this. This solution is better but still not satisfactory
since the color from that is ignored.

A better design: We can design trait p for reuse and extensibility by adding an abstract
merge(This)method as an extensibility hook; colored can now define color merging. Using
withers we can merge colors, or any other kind of state following this pattern.

1 p= { method int x() method int y() //getters
2 method This withX(int that) method This withY(int that)//withers
3 static method This of(int x,int y)
4 method This merge(This that) //new method merge!
5 }
6 pointSum= Use p, {
7 method This sum(This that){
8 return this.merge(that).withX(this.x()+that.x()).withY(this.y()+that.y());
9 }}
10 colored= {method Color color()
11 method This withColor(Color that)
12 method This merge(This that){ //how to merge color handled here
13 return this.withColor(this.color().mix(that.color());
14 }}
15 CPoint= /*as before*/

Independent Extensibility: Of course, quite frequently there can be multiple indepen-
dent extensions [41] that need to be composed. Lets suppose that we could have a
notion of flavored as well. In order to compose colored with flavored we would need to
compose their respective merge operations. To this aim Use is not sufficient. To com-
bine the implementation of two different implementation of methods, we introduce an
operator called super, that makes a method abstract and moves the implementation to
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another name. This is very useful to implement super calls and to compose conflicting
implementations. Consider the simple flavored trait:

1 flavored= {
2 method Flavor flavor() //very similar to colored
3 method This withFlavor(Flavor that)
4 method This merge(This that){ //merging flavors handled here
5 return this.withFlavor(that.flavor());}}//inherits "that" flavor

To merge colored and flavored we use super to introduce method selectors _1merge and
_2merge to refer to the version of merge as defined in the first/second element of Use.

1 FCPoint= Use
2 colored[super merge as _1merge], //this leaves merge as an abstract method, and
3 flavored[super merge as _2merge],//copies the bodies into _1merge and _2merge
4 pointSum,{
5 static method This of(int x,int y){
6 return This.of(x,y,Color.of(/*red*/),Flavor.none());}
7 static method This of(int x, int y,Color color,Flavor flavor)
8 method This merge(This that){//merge conflict is solved
9 return this._1merge(that)._2merge(that);} }//by calling the two versions

We are relying on the fact that the code literal does not need to be complete, thus we
can just call _1merge and _2merge without declaring their abstract signature explicitly.

In this last example, when we tried to obtain state extensibility, we refactored the
code to introduce the merge(This) method. This suggests that we had to anticipate the
need for state extensibility in order to design our original code. As illustrated by the
following example, we can instead rely on the super operator to inject the merge(This)
method when needed.

1 p=/*as originally designed: no merge*/
2 pointSum=/*as originally designed: no merge*/
3 merge={method This merge(This that)}
4 pointSumMerge=Use merge, pointSum[super sum as _1sum], {
5 method This sum(This that){return this.merge(that)._1sum(that);}}
6 colored=/*as before, with merge implementation*/
7 CPoint= /*as before, but using pointSumMerge*/

Case Study 2: To understand how easy it is to extend the state in this way we compare
the former code with an equivalent version in Java. For this example, in Java we
encode Point with the fields but no operations, PointSum reuses Point adding a functional
sum operation, CPoint reuses PointSum with a Color field and FCPoint reuses CPoint with a
Flavour field. This second case study represents a worst case scenario for 42µ against
Java because we model just a single chain of reuse, easily supported in plain Java by
single inheritance. Like the previous experiment, we still found that the Java solution
was longer (47 lines) than that in 42µ (33 lines). This is caused by the absence of
support for the ‘This’ type, where the withers in each of the CPoint/FCpoint classes had
to be repeated to make sure that the returned type will be correct (the number of
members in Java were 27 while 24 (3 less) in 42µ).
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Complex patterns in Java6 allow supporting the ‘This’ type and ‘This’ type instantiation
but they require a lot of set-up code. We experimented with those patterns, but it
soon became very clear that the resulting code of this approach would have been even
larger; albeit without duplicated code. Note how the Java code is less modular than
the 42µ code, since Colored and Flavored do not exist as individual concepts.

We also compare with a solution in Scala, offering the same level of reuse and
code modularity of the 42µ solution, but again it is more verbose and requires more
members (31): an indication that it may be logically heavier too. We define the main
tPoint trait (8 lines), the tPointSum operation (3), the two tColored and tFlavored traits
(6 ∗ 2) and the CPoint and CFPoint classes (12 + 18). The major benefit of 42µ is the
reduction of the amount of glue-code needed to generate CPoint and CFPoint (4+9). The
results for the second experiment are presented below.

Language Lines of code members classes or traits

Java 47= 10+ 9 + 13+ 15 27 6
Scala 53= 8+ 3+ 6 ∗ 2+ 12+ 18 31 6
42µ 33= 7+ 3+ 5 ∗ 2+ 4+ 9 24 6

5 Family Polymorphism by Disconnecting Use and Reuse

A nested class is just another kind of member in a code literal. In Java and Scala if a
subclass declares a nested class with the same name of a nested class of a superclass,
the parent declaration is simply hidden. The main idea of family polymorphism
(FP) [11, 16, 21, 24, 25, 32, 36] is to instead consider such definition a form of overriding,
called further extension. That is, the following Java code is ill typed:

1 abstract class A{static class B{..} abstract B m();}
2 class AA extends A{static class B{..} B m(){..}}//Error: Invalid overriding
3 //method AA.m() return type is AA.B, that is unrelated to A.B

In the FP approach, class AA.B would further extend A.B, thus the overriding of method
A.m would be accepted. We extend 42µ with nested classes, so that by composing
code with Use, nested classes with the same name are recursively composed. The
corresponding code in 42µ would work, and behave like further extension in FP.

1 a={B={..} method B m()}
2 AA= Use a, {B={..} method B m(){..}}

For simplicity, we discuss nested classes but not nested traits: and all traits and code
composition expressions are still at top level. In this way all dependencies are about
top level names, allowing the type system to consider the class table as a simple map
from (nested) type names (such as A and A.B.C) to their definition.

There are a lots of different forms of rename in literature [1, 10, 16]. Here we
introduce a simple variant to rename nested types to other nested types. For example:

6 Combining the ones used in those works [34, 38], with abstract methods to allow self
instantiation as in [41].
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1 t={ method B m() B={ method B mb()} }
2 D= t[rename B into C]
3 //the code above flattens to the following:
4 t={ method B m() B={ method B mb()} }
5 D={ method C m() C={ method C mb()} }

The rename only influences its argument. Since traits do not induce nominal types,
we can consistently change their internally used names without breaking any code.
The full L42 offers many other kinds of renames, but we do not need them to show
our next example.

Application to the expression problem. Case Study 3:
The above extensions lets us challenge the expression problem [39], with the re-
quirements exposed in [41]. In the expression problem we have data-variants and
operations and we can extend our solution in both dimensions, by adding new data-
variants and operations. We aim to combine independently developed extensions so that
they can be used jointly. To be modular, extensions will preserve type safety and allow
separate compilation (no re-type-checking), while avoiding duplication of source code.

Following closely the example of Zenger and Odersky [41], we consider a language
where the expressions Exp can be Num (for number literal), Plus (for binary plus operator)
and Neg (for unary minus). We then proceed to define operations show to convert them
into strings, eval to compute their numeric values and double to double their containing
Nums. We thus have 3 classes, 1 interface, the definition of the state, and 3 operations.
We model this as a table of features, as in [16]: a (3 classes + 1 interface)*(1 state
+ 3 operations) table composed by 16 traits. The features are atomic: they exactly
declare the state of a class or define a single operation for a single class. 42µ avoids
the large amount of abstract declarations that clutters the solution in [16]. Intuitively,
we would like our traits to look like the following:

1 evalPlus= Use plus, {//eval operation for Plus data-variant
2 Exp= {interface
3 method int eval()}
4 Plus= {implements Exp
5 method int eval(){return this.left().eval()+this.right().eval();}}}

evalPlus uses the trait plus to import the state (the left() and right() methods) and defines
the eval() method from interface Exp. But, if we were to declare those explicitly, we
would repeat Exp, the abstract declaration of eval() and ‘implements Exp’ for all data-
variants. To avoid this duplication, we write the trait evalwith a placeholder T nested
class, that can then be renamed into the corresponding data-variant. Thus, our source
code is as follows; First we declare the 4 traits to represent the state:

1 exp= { Exp= {interface} T= {implements Exp}}

1 num= Use exp[rename T into Num],{//T is renamed to Num and summed with
2 Num= {method int value() static method Num of(int value)}} // this Num

1 plus= Use exp[rename T into Plus], {
2 Plus= {method Exp left() method Exp right()
3 static method Plus of(Exp left,Exp right)}}

1 neg= Use exp[rename T into Neg],{
2 Neg= {method Exp term() static method Neg of(Exp term)}}
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Here we define a trait for each data-variant. Each trait will contain its version of Exp
and a specific kind of expression, with its state. Next, we define the operation eval
for all the data-variants. The former solutions in [16] required repeating the state
declaration of the data-variant in each operation, while we can just import it.

1 eval= {Exp= {interface method int eval()} T= {implements Exp}}

1 evalNum= Use num, eval[rename T into Num],{ //just the implementation
2 Num= { method int eval(){return this.value();} }}//of the specific method

1 evalPlus= Use plus, eval[rename T into Plus], {
2 Plus= { method int eval(){ return this.left().eval()+this.right().eval();} }}

1 evalNeg= Use neg, eval[rename T into Neg], {Neg={ method int eval(){..}}}

The show operation can be trivially defined following exactly the same pattern (omit-
ted here for space reasons). The operation double is a challenge for some proposed
solutions to the expression problem, as explained by Zhang and Oliveira [42]. The
double operation is called a transformation: an operation from Exp to Exp. Thanks to
42µ’s separation between use and reuse, together with support for self-instantiation
of nested classes double does not need any special attention and can be written just
like eval and show.

1 double= { Exp= {interface method Exp double()} T= {implements Exp} }

1 doubleNum= Use num, double[rename T in Num],{
2 Num= { method Exp double(){return Num.of(this.value()*2);} }}

1 doublePlus= Use plus,double[rename T in Plus],{
2 Plus= { method Exp double(){
3 return Plus.of(this.left().double(),this.right().double());} }}

1 doubleNeg=....

Here we define a trait for each data-variant implementing the operation double(). Again,
each trait will contain its version of Exp with double() and a specific kind of expression,
with the implementation for double() for that specific kind.

Our third case study compares with the results presented in Scala [41]. The proposed
solution is not fully modularized as a table, so in order to make a more close compari-
son, we provide an alternative version where we isolate all the units of behaviour as
is done in 42µ.

lines methods

Original Scala 52 15= 12+ 3
Scala isolated units 78 15= 12+ 3
Scala glue-code 27 3
42 traits 48 19= 4× 3+ 7
42 classes 3 0

Scala uses 12= 4×3 methods plus 3
extra factory methods (for double). We
use 12 = 4 × 3 methods plus our ab-
stract state: 4 getters and 3 factories.
As we can see, encoding atomic units
in Scala is more verbose, but more im-
portantly, in 42µ we can just define a
class supporting any subset of opera-
tions and data-variants by listing the

desired traits: for example, a solution for Num and Plus (but not Neg) with eval and double

would look like this: Example= Use evalNum,evalPlus,doubleNum,doublePlus. The composition
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of all our traits would just requiring listing all of the relevant behaviour; reasonably
formatted, it could take up to 3 lines. On the other hand, the presented solution in
Scala requires 27 lines of glue code to put the traits together. This means that a full
Scala solution requiring a single instantiation with all the traits would be 78+27= 105
lines. If we were to require more instantiations with a different subset of traits, the
glue code would dominate the line count, and the Scala solution would end up being
up to 9 times heavier than the 42µ one (if all 64 permutations were required).

The line count for 42µ is very predictable: after defining exp (3) and the state traits
(4+ 6+ 5) for each of the three operations (eval,show,double) we just needed 4 lines to
declare the operation in the interface, and 2 lines for each of the 3 data-variants.

Following [41], after double we present an implementation of equals. Their solution
involved double dispatch to avoid casting. To show understandable code, we show a
simpler solution with a guarded cast (sometime called a typecase).7 The idea is that
since every data-variant contains the same ”cast” logic, we can modularize it into an
equals trait; equals in [41] is complex and and requires glue code.

1 equals= {
2 Exp= {interface method Bool equals(Exp that)}
3 T= {implements Exp
4 method Bool exactEquals(T that)
5 method equals(that){
6 if(T instanceof This){return this.exactEquals(that);}else{ return false;}}}

1 equalsNum= Use num, equals[rename T into Num],{
2 Num= {method Bool exactEquals(Num that){
3 return this.value().equals(that.value());} }}

1 equalsPlus= Use plus, equals[rename T into Plus],{
2 Plus= {method Bool exactEquals(Plus that){
3 return this.left().equals(that.left()) && this.right().equals(that.right());
4 } }}

1 equalsNeg= Use neg, equals[rename T into Neg],{
2 Neg= {method Bool exactEquals(Neg that){
3 return this.term().equals(that.term());} }}

lines methods

Original Scala equals 40 10
Isolated Scala equals 31 10
Scala equals instance 29 3
42 trait eq d-dispatch 21 6
42 class dd instance 22 11
42 traits eq Cast 13 6
42 class cast instance 3 0

The Scala code here can be made fully
isolated with little extra syntactic cost. The
original Scala eq is 40 lines and contains
a part of the glue code mixed inside. The
isolated version is 31 lines and to merge all
the operations together in Scala, it takes 29
lines of glue code. Note that this is mostly
the same glue code from before (27 lines),
that needs to be manually adapted.

In 42µ we are more compact than Scala
both when using the double dispatch (21+22

7 The interested reader can find a 42µ implementation of equals with double dispatch in the
appendix.
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vs. 31+29) or the guarded cast (13+3 vs. 31+29). To instantiate the double dispatch
version in 42µ we need 22 lines of glue code. We could remove such glue code using
features from the full 42 language, but here we stick to only the features presented
in this paper. The interesting point is that the nature of our needed glue code is
different with respect to the Scala glue code: Scala requires lots of trait multiple
inheritance declarations to explicitly merge nested traits with the same name, while
in 42µ we mostly need to add the negative cases for the double dispatch (such as
Sum={method Bool equalToNum(Num that){return false;}}).

6 Summary of formalisation

In Appendix A we formalise 42µ; in addition to conventional soundness, we discuss
detailed behaviour and soundness of the compilation process itself; a similar property
was called meta-level-soundness in [37]. This property ensures that flattening strictly
reduces the number of type errors. In turn, this ensure that reusing a trait cannot
induce new type errors. This property was already proved in [37]; here the proof
is smoother thanks to our simpler formalisation. Our process requires traits to be
well-typed before being reused, however code literals are not required to be well
typed before flattening. This design supports mutually recursive types without having
to predict the structure of the flattened code, as was needed in [16].

7 Related Work

Literature on code reuse is too vast to let us do justice to it in a few pages. In particular,
we were unable to discuss all the variations on family polymorphism. Our work is
inspired by traits [18], which in turn are inspired by module composition languages [1].

7.1 Separating Inheritance and Subtyping

In languages like Cecil [14] and PolyToil [12], classes are not types: it is a more radical
solution to ‘inheritance implies subtyping’, and equivalent to a restricted version of
42µ where only interface names can be used as types. This complicates typing of this,
and may prevent any useful application of the This type (PolyToil uses polymorphism
to support it). Those approaches would ban the following code, since A is not a type:

1 class A{ int ma(){return Utils.m(this);} } class Utils{static int m(A a){..}}

Cecil syntactic sugar counters this issue.
42µ is directly inspired by the 3 independently designed research languages as

already mentioned: TraitRecordJ (TR)[6], Package Templates (PT)[26] and Deep-
FJig(DJ) [16]. We synthesize the best ideas of those very different designs, while at
the same time coming up with a simpler and improved design for separating subclass-
ing from subtyping, which also addresses various limitations of those 3 particular
language designs. TR, DJ, and PT are research projects, aiming to be platforms to
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experiment concepts, not to expose a compact syntax to programmers; instead of
using case studies to compare 42µ against TR, DJ, and PT, in the following we compare
various aspects of the language designs on a more theoretical level. We identified 3
properties where one approach shines the most, and 3 properties where one approach
is more lacking.
A simple uniform syntax for code literals. Between those tree approaches, DJ is best in

this sense: TR has separate syntax for class literals, trait literals and record literals.
PT is built on top of Java, thus, it must support many different syntactic forms. 42µ
relies on DJ’s approach but, thanks to our novel representation of state, 42µ offers
a much simpler and uniform syntax than DJ, TR, and PT.

Reusable code cannot be “used” (that is be instantiated or used as a type). This happens
in TR and in PT, but not in DJ. In DJ, to allow reusable code to be directly us-
able, classes introduce nominal types in an unnatural way: the type of this is
only This (sometimes called <>) and not the nominal type of its class. That is in
DJ ‘A={method A m(){return this;}}’ is not well typed. This is because ‘B= Use A’ flattens to
‘B={method A m(){return this;}}’, which is clearly not well typed. Looking at this examples
makes it clear why we need reusable code to be agnostic of its name as in TR, PT,
and 42µ: either reusable code does not correspond to a type name (as in TR, PT,
and 42µ) or all code is reusable and usable, and all code needs to be awkwardly
agnostic of its name, as in DJ.

Requiring abstract signatures is a left over of module composition mindset. TR and DJ
comes from a tradition of functional module composition, where modules are
typed in isolation under an environment, and then the composition is performed.
As we show in this work, this ends up requiring verbose repetition of abstract
signatures which (for highly modularized code) may end up constituting most
of the program. Java (and thus PT, as a Java extension) show us a better way:
names are understood from their reuse context. The typing of PT offers the same
advantages of the 42µ typing model, but is more indirect. This may be caused by
the heavy task of integrating with full Java. Recent work based on TR is trying to
address this issue too [17].

Composition algebra. The idea of using composition operators over atomic values as
in an arithmetic expression is very powerful, and makes it easy to extend languages
with more operators. 42µ, DJ, and TR embrace this idea, while PT takes the
traditional Java/C++ approach of using an enhanced class/package declaration
syntax. The typing strategy of PT also seems to be connected with this decision, so
it would be hard to move their approach to a composition algebra setting.

Complete ontological separation between use and reuse. While 42µ, TR, DJ, and PT all
allow separating inheritance and subtyping only 42µ and TR properly enforce
separation between use (classes and interfaces) and reuse (traits). In DJ all classes
are both units of use and reuse (however, subtyping is not induced). PT imports
all the complexity of Java: it is possible to separate use and reuse, the model has
powerful but non-obvious implications where Java extends and PT are used together.

Naming the self type, even if there is none yet. TR is lacking here, while 42µ, DJ and
PT both allow a class to refer to its name; albeit this is less obvious in PT since both
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a package and a class have to be introduced to express it. This allows encoding
binary methods, expressing patterns like withers or fluent setters and to instantiate
instances of (future) classes using the reused code.

7.2 Implications for Family Polymorphism

Our Use operator is similar to deep mixin composition [19, 22, 41] and family polymor-
phism [21, 24, 25, 36], but is symmetric while the operator super offers flexible explicit
conflict resolution. Our presented solution to the expression problem improves over
existing solutions in the literature, where one close contender is DJ [16]: our gain over
their model is based on our relaxation over abstract signatures. A similar syntax can be
achieved with the Scandinavian style [20], or with the work of Nystrom (Jx [31] and
J& [32]), where the composition behaves similarly to our sum operator. Both Jx, J&,
and the virtual classes of Ernst [21] make use of dependent types. As in .FJ and ^FJ [24,
25, 34, 36], we do not need sophisticated types. The work on DJ [16] contains an
in-depth comparison between various FP approaches, including an example written
in .FJ syntax synthesizing the difficulty of supporting FP while keeping Use and Reuse
connected:

1 class A{static class B{int f1;} int k(.B x){ return x.f1;}}
2 class AA extends A{static class B{int f2;} int k(.B x){return x.f2+new .B().f2;}}

The syntax .B denotes a relative path, that is, the class B in scope. In FP AA.B further
extends A.B: it is implicitly considered a subclass of A.B, adding the field f2. Consider
now the following code:

1 new AA().k(new AA.B())//well-typed
2 new A().k(new A.B())//well-typed
3 A a=new AA(); //well-typed assuming AA is a subtype of A
4 a.k(new A.B())//runtime error: A.B.f2 does not exist

In the sound .FJ type system the last method invocation illtyped even though AA.B is a
subtype of A.B. With minor changes, others [11, 21, 25, 32] support this example in the
same way. Inheritance implying subtyping is broken only in a controlled way, and it
is allowed whenever it does not lead to unsoundness. Recent work on ThisType [33,
35] also continues in this line. In those works, “subtyping by subclassing” is preserved:
those designs aim to retain the programming model of mainstream OOP languages
and backwards compatibility. 42 is instead a radical departure from mainstream OOP,
hoping to improve the mechanisms for use and reuse in OOP and unlock new ways to
design software.

From a different perspective, we can say that traditional implementations of family
polymorphism are still heavily influenced by the “inheritance implies subtyping”
model. We believe that this is a major source of complexity in the type systems of
those approaches: they need to track calls, and enforce that the family of the receiver
and the argument is the same. Because we separate inheritance from subtyping we
liberate ourselves from tricky issues that arise in such type systems, and can provide
a simpler model of family polymorphism, soundly supported by a straightforward
nominal type system: by disconnecting use and reuse we outlaw A a=new AA(). In 42µ
this also reduces the expressive power a little, but in the full 42 language, as well as
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in DJ, the operator redirect allows us to write code that is parametric on families of
data types. To the same aim, .FJ relies on generics.

Support for FP strictly includes support for the ‘This’ type and self instantiation.
Scala allows encoding further extension/deep mixin composition, but it requires doing
it explicitly, growing the amount of required glue-code.

7.3 State and traits

The original trait model [18] has no self instantiation and avoids any connection
between state and traits. Since it was applied to a dynamic language, the relation
with the ‘This’ type is unclear.

The idea of abstract state operations emerged from Classless Java [40]. This ap-
proach offers a clean solution to handle state in a trait composition setting. Note how
abstract state operations are different from just hiding fields under getters and setters:
in our model the programmer simply never has to declare what information is stored
in fields. The state is computed by the system as an overall result of the whole code
composition process.

In the literature there have been many attempts to add state in traits and in module
composition languages:
No initialisation: The simplest solutions have no constructors, and fields start with

null (or zero/false). In this setting fields are another kind of (abstract) member,
and two fields with identical types can be merged by sum/use; new C() can be used
for all classes, and init methods may be called later, as in Point p=new Point(); p.init(10,30).
This approach is commutative and associative. However, objects are created ”bro-
ken” and the user is trusted with fixing them. While it is easy to add fields, the
load of initializing them is on the user; moreover all the objects are intrinsically
mutable, preventing a functional programming style.

Constructors compose fields: Here a canonical constructor (as in FJ) taking a parame-
ter for each field and just initializing the fields is assumed to be present. It is easy
to add fields, however this model (used by [27]) is associative but not commutative:
composition order influences field order, and thus the constructor signature. Self
instantiation is also not possible since the signature of the constructors change
during composition.

Constructors can be composed if they offer the same exact parameters: In this model,
traits declare fields and constructors initialize their fields using any kind of compu-
tation. Traits whose constructors have the same signature can be composed. The
composed constructor will execute both constructor bodies in order. This approach
is designed in DJ to allow self instantiation. It is associative and mostly commu-
tative: composition order only influences execution order of side effects during
construction. However trait composition requires identical constructor signatures:
this hampers reuse, and if a field is added, its initial value needs to be synthesized
from the other parameters.
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7.4 Tabular comparison of many approaches

In this table we show if some constructs support certain features: direct instantiation
(as in new C()), self instantiation (as in new This()), is this construct a ‘unit of use’?,
a ‘unit of reuse’?, does using this construct introduce a type? and is the induced
type the type of this?, support for binary methods, does inheritance of this construct
induce subtyping?, is the code of this construct required to be well-typed before being
inherited /imported to a new context? is it required to be well-typed before being
composed with other code? Y and N means yes and no; we use “-” where the question
is not applicable to the current approach. For example the original trait model was
untyped, so typing questions make no sense there.
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Java/Scala classes Y N Y Y Y Y N Y Y N
Java8 interfaces N N N Y Y Y N Y Y N

Scala traits N N N Y Y Y - Y Y N
Original traits N N N Y - - - N - -

TR N N N Y N - N N Y Y
42µ traits X Y X Y N - Y N Y N
42µ classes Y Y Y N Y Y Y - Y -

Module composition - - Y Y - - - - Y Y
DJ classes Y Y Y Y Y X Y N Y Y

PT N Y N Y N - - N Y N

8 Conclusions, extensions and practical applications

In this paper we explained a simple model to radically decouple inheritance/code
reuse and subtyping. Our decoupling does not make the language more complex:
we replace the concept of abstract classes with the concept of traits, while keeping
the concepts of interfaces and final classes. Concrete non final classes are simply
not needed in our model. Thus, we believe that 42µ is beneficial for code reuse
in important cases without having negative impacts on the general programming
experience.

The model presented here is easy to extend. More composition operators can be
added in addition to Use. Variants of the sophisticated operators of DJ are included in
the full 42 language. Indeed we can add any operator respecting the following:
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When the operator fails it needs to provide an error that will be reported to the
programmer.
When only well typed code is taken in input, if a result is produced, such result is
also well typed.
When the result is not well typed, the type error must be traced back to a fault in
the input.

Our simplified model represents the conceptual core of 42: a novel full blown
programming language. In full 42 code literals are first class values, thus we do not
need explicit names for traits: they are encoded as methods returning a code literal.
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A Formalisation

Here we show a simple formalization for the language we presented so far. We also
model nested classes, but in order to avoid uninteresting complexities, we assume that
all type names are fully qualified from top level, so the examples shown before should
be written like: This.Exp, This.Sum, etcetera. In a real language, a simple pre-processor
may take care of this step.

In most languages, when implementing an interface, the programmer may avoid
repeating abstract methods they do not wish to implement, however to simplify our
formalization, we consider source code always containing all the methods imported
from interfaces. In a real language, a normalisation process may hide this abstraction8.
We also consider a binary operator sum (+) instead of the nary operator Use. Figure 1
contains the complete formalization for 42µ: syntax, compilation process, typing, and
finally reduction.

A.1 Syntax

We use t and C to represent trait and class identifiers respectively. A trait (TD) or a
class (CD) declaration can use either a code literal L, or a trait expression E. Note
how in E you can refer to a trait by name. In full 42, we support various operators
including the ones presented before and much more, but here we only show the single
sum operator: +. This operation is a generalization to the case of nested classes of
the simplest and most elegant trait composition operator [18]. Code literals L can be
marked as interfaces. We use ‘?’ to represent optional terms. Note that the interface
keyword is inside curly brackets, so an uppercase name associated with an interface
literal is a interface class, while a lowercase one is a interface trait. Then we have a set
of implemented interfaces and a set of member declarations, which can be methods or
nested classes. The members of a code literal are a set, thus their order is immaterial.
If a code literal implements no interfaces, the concrete syntax omits the implements

keyword.
Method declarations MD can be instance methods or staticmethods. A static method

in 42µ is similar to a static method in Java, but can be abstract. This is very useful
in the context of code composition. To denote a method as abstract, instead of an
explicit keyword we just omit the implementation e.

Finally, expressions e are just variables, instance method calls or static method
calls. Having two different kinds of method calls is an artefact of our simplifications.
In the full 42 language, type names are a kind of expression whose type helps to
model metaclasses. Our values vD are are just calls to abstract static methods: thanks
to abstract state, we have no new expressions, but just factory calls. Thus values are
parametric on the shape of the specific programs D. We then show the evaluation
context, the compilation context and full context.

8 In the full 42 language scoping is indeed supported by an initial de-sugaring, and a normal-
isation phase takes care of importing methods from interfaces.
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ID ::= t | C class or trait name
DE ::= ID = E Meta-declaration
D ::= ID = L Declaration
E ::= L | t | E +E | . . . Code Expression
L ::= { interface? implements T M } Code Literal
T ::= C | C.T Type
M ::= static? method T m(T x) e? | C = L Member
e ::= x | e.m(e) | T.m(e) Expression
vD ::= T.m(vD), where m is abstract in D(T) value
ED ::= [] | ED.m(e) | vD.m(vD,ED, e) | T.m(vD,ED, e) evaluation context
Ec ::= [] | Ec +E | L +Ec | . . . compilation context
E ::= [] | E +E | E +E | . . . ctx
Γ ::= x1:T1, . . . , xn:Tn variable environment

(top)
E0 −→

D
E1 ∀D ∈ D, D ` D : OK

D D′ ID=E0 DE→ D D′ ID=E1 DE

(look-up)

t −→
D

D(t)

(ctx-c)
E0 −→

D
E1

Ec[E0] −→
D
Ec[E1]

(sum)

L1 +L2 −→
D

L
L= L1 + L2

(CD-OK)
C; D, C=L1 ` L1 : OK

D ` C=L0 : OK
L1 = L0[This = C]
coherent(C, L1)

(TD-OK)
This; D,This=L ` L : OK

D ` t=L : OK

(s-refl)

D ` T ≤ T

(L-OK)
∀M ∈M, T; D `M : OK

T; D ` {_ implements T M} : OK

(Nested-OK)
T.C; D ` L : OK

T; D ` C=L : OK

(subtype)
D ` T2 ≤ T3

D ` T1 ≤ T3

D(T1) = {_ implements T _}
T2 ∈ T

(Method-OK)
if e?= e then D; Γ ` e : T0

T; D ` static? method T0 m(T1 x1 . . . Tn xn) e? : OK

if static?= static

then Γ = x1 : T1 .. xn : Tn

else Γ = this : T, x1 : T1 .. xn : Tn

(subsumption)
D; Γ ` e : T1

D ` T1 ≤ T2

D; Γ ` e : T2

(static-method-call)
D; Γ ` e1 : T1 . . . D; Γ ` en : Tn

D; Γ ` T0.m(e1 . . . en) : T
static method T m(T1 x1 . . . Tn xn)_ ∈ D(T0)

(x)

D; Γ ` x : Γ (x)

(method-call)
D; Γ ` e0 : T0 . . . D; Γ ` en : Tn

D; Γ ` e0.m(e1 . . . en) : T
method T m(T1 x1 . . . Tn xn)_ ∈ D(T0)

(ctxv)
e0 −→

D
e1

ED[e0] −→
D
ED[e1]

(s-m)

T.m(vD) −→
D

meth(D(T, m), vD)

(m)

vD.m(vD) −→
D

meth(D(T, m), vD vD)
vD = T.m′(_)

Figure 1 Formalization
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A.2 Well-formedness

The whole program (DE) is well formed if all the traits and classes at top level have
unique names. The special class name This is not one of those, and the subtype relations
are consistent: this means that the implementation of interfaces is not circular, and
that ∀ ID=E[L] ∈ DE, consistentSubtype(DE,This=L; L). That is, every literal declares
all the methods declared in its super interfaces. The full 42 language allows covariant
return types as in Java. Here for simplicity we require them to have the same type
declared in the super interface.
Define consistentSubtype(DE; L)
• consistentSubtype(DE,{ interface?implementsT M}) where

∀T ∈ T, DE(T) = { interface_},9

∀ _=L ∈M, consistentSubtype(DE; L) and
∀m, T ∈ T, if method T0 m(T x) ∈ DE(T) thenmethod T0m(T x) e? ∈M

A code literal L is well formed iff:
for all methods: parameters have unique names and no parameter is named this,
all methods in a code literal have unique names,
all nested classes in a code literal have unique names, and no nested class is called
This,
all used variables are in scope, and
all methods in an interface are abstract, and they contain no static methods.

A.3 Compilation process

The compilation process is particularly interesting, it includes the flattening process
and how and when compilation errors may arise. It is composed by rules top, look-up,
ctx-c and sum. To model more composition operators, they would each need their
own rule.

Rule top compiles the leftmost top level (trait or class) declaration that needs to
be compiled. First it identifies the subset of the program D that can already be typed
(second premise). Then the expression is executed under the control of such compiled
program (first premise). All the traits inside the expression need to be compiled
(rule look-up): ∀t, ifE = E[t] then t ∈ dom(D). If the required D cannot be typed, this
would cause a compilation error at this stage. Rule look-up replaces a trait name t
with the corresponding literal L. Since D is all well typed, L is well typed too. Rule
ctx-c uses the compilation context to apply a deterministic left to right call by value10

reduction; thus the leftmost invalid sum that is performed will be the one providing
the compilation error.

9 That is, in this simplified version in order to implement an interface nested in a different top
level name, such interface can not be generated using a trait expression. This limitation is
lifted in the full language.

10 In the flattening process, values are code literals L.
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Keeping in mind the order of members in a literal is immaterial, rule sum applies
the operator:
Define L1 + L2, M+M, M+M
• L1 + L2 = L3 where

L1 = { interface? implements T1 M1 M0}

L2 = { interface? implements T2 M2 M
′
0}

L3 = { interface? implements T1, T2 M1, M2 (M0 +M
′
0)}

dom(M1) disjoint dom(M2) and dom(M0) = dom(M′0)
• (M1 . . . Mn) + (M′1 . . . M′n) = (M1 +M′1) . . . (Mn +M′n)
• M1 +M2 =M2 +M1

• C=L1 + C=L2 = C=L3 if L1 + L2 = L3

• static? method T0 m(T x) + static? method T0 m(T x)e?= static? method T0 m(T x)e?
Sum composes the content of the arguments by taking the union of their mem-

bers and the union of their implements. Members with the same name are recursively
composed. There are three cases where the composition is impossible.

Method-clash: two methods with the same name are composed, but either their
headers have different types or they are both implemented.
Class-clash: a class is composed with an interface.11

Implements-clash: the resulting code would not be well formed. For example, in
the following t1+t2 would result in a class B implementing A with method a(), but B
does not have such method.12

1 t1={ A= {interface method Void a()} }
2 t2={ A= {interface} B= {implements A} }

Implements-clash can happen only when composing nested interfaces. Note that
while the first two kind of errors are obtained directly by the definition of L1 + L2,
Implements-clash is obtained from well-formedness, since injecting the resulting L
in to the program would make it ill-formed by consistentSubtype(DE, L).

A.4 Typing

Typing is composed by rules cd-ok, td-ok, l-ok, nested-ok and method-ok, followed
by expression typing rules subsumption, method-call, x and static-method-call.

Rules cd-ok and td-ok are interesting: a top level class is typed by replacing all
occurrences of the name ‘This’ with the class name C , and is required to be coherent.
On the other hand, a top level trait is typed by temporarily adding a mapping for This
to the typed program.

11 The full language relaxes this condition, for example an empty class can be seen as an
empty interface during composition.

12 In 42µ it could be possible to try to patch class B, for example by adding an abstract method
a(); we choose to instead give an error since in the full 42 language such patch would be
able to turn coherent private nested classes into abstract (private) ones.
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Define coherent(T, L)
• coherent(T,{ interface? implementsT M}) holds where

∀C=L′ ∈Mcoherent(T.C, L′)
and either interface?= interface

or ∀ method T′ m(T x) ∈M, state(factory(T, M), method T′ m(T x))
A Literal is coherent if all the nested classes are coherent, and either the Literal is
an interface, there are no static methods, or all the static methods are a valid state
method of the candidate factory. Note, by asking for method T′ m(T x) ∈ M we select
only abstract methods.
Define factory(T, M)
• factory(T, M1 . . . Mn) =Mi = static method T m(_) where

∀ j 6= i. M jis not of the form static method __(_)
The factory is the only static abstract method, and its return type is the nominal type
of our class.
Define state(M, M′)
• state(static method T m(T1 x1 . . . Tn xn), method Ti xi())
• state(static method T m(T1 x1 . . . Tn xn), method T withxi(Ti that))

A non static method is part of the abstract state if it is a valid getter or wither. In this
simple formalism without imperative features we do not offer setters.

Rule Nested-OK helps to accumulate the type of this so that rule Method-OK can
use it. Rule L-OK is so simple since all the checks related to correctly implementing
interfaces are delegated to the well formedness criteria. The expression typing rules
are straightforward and standard.

A.5 Formal properties

As can be expected, 42µ ensures conventional soundness of expression reduction. This
property is expressed on a completely flattened program (a program where all E are
of form L):

Theorem A.1 (Main Soundness). if ` D : OK, e not of form vD and D ` e : T then
e←D _

The proof is standard since the flattened language is just a minor variation over FJ.
In addition to conventional soundness of expression reduction, 42µ ensures sound-

ness of the compilation process itself. A similar property was called meta-level-
soundness in [37]; here we can obtain the same result in a much simpler setting. We
denote wrong(D, E) to be the number of Ls such that E = E[L] and not D ` L : OK.

Theorem A.2 (Compilation Soundness). if E0 −→
D

E1 then wrong(D, E0)≥ wrong(D, E1).

This can be proved by cases on the applied reduction rule:
look-up preserves the number of wrong literals: t ∈ D and D is well typed by top
preconditions.
sum either preserves or reduces the number of wrong literals: the core of the proof
is to show that the sum of two well typed literals produces a well typed one. A
code literal is well typed (l-ok) if all its method bodies are correct. This holds
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since those same method bodies are well typed in a strictly weaker environment
with respect to the one used to type the result. This is because every member in
the result of the sum is structurally a subtype of the corresponding members in the
operands. Note that by well formedness, if sum is applied the result still respect
consistentSubtype.

Compilation Soundness has two important corollaries:
A class declared without literals is well-typed after flattening; no need of further
checking.
If a class is declared by using literals L1 . . . Ln, and after successful flattening C = L
can not be type-checked, then the issue was originally present in one of L1 . . . Ln.
This also means that as an optimization strategy we may remember what method
bodies come from traits and what method bodies come from code literals, and only
type-check the latter. If the result can not be type-checked, either it is intrinsically
illtyped or a referred type is declared after the current class. As we see in the next
section, we leverage on this to allow recursive types.

A.6 Advantages of our compilation process

Our typing discipline is very simple from a formal perspective, and is what distin-
guishes our approach from a simple minded code composition macros [4] or rigid
module composition [1]. It is built on two core ideas:

1: Traits are well-typed before being reused. For example:
1 t={method int m(){return 2;}
2 method int n(){return this.m()+1;}}

t is well typed since m() is declared inside of t, while the following would be illtyped:
1 t1={method int n(){return this.m()+1;}} //illtyped

2: Code literals are not required to be well-typed before flattening. A literal L in a
declaration D must be well formed and respect consistentSubtype, but it is not type-
checked until flattening is complete: only the result is required to be well-typed. For
example the following is correct since the result of the flattening is well-typed:

1 C= Use t, {method int k(){return this.n()+this.m();}}//correct code

The code literal {method int k(){ return this.n()+this.m();}} is not well typed: n, m are not locally
defined. This code would fail in many similar works in literature [5, 7, 16] where the
literals have to be self contained. In this case we would have been forced to declare
abstract methods n and m, even if t already provides such methods.

This relaxation allows multiple declarations to be flattened one at the time, without
typing them individually, and only typing them all together. In this way, we support
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recursive types13 between multiple class declarations without the need of predicting
the resulting shape14.

As seen in top, our compilation process proceeds in a top-down fashion, flattening
one declaration at a time, a declaration needs to be type-checked where their type is
first needed, that is, when they are required to type a trait used in a code expression.
That is, in 42µ typing and flattening are interleaved. We assume our compilation
process stops as soon as an error arises. For example:

1 ta={method int ma(){return 2;}}
2 tc={method int mc(A a, B b){return b.mb(a);}}
3 A= Use ta
4 B= {method int mb(A a){return a.ma()+1;}}
5 C= Use tc, {method int hello(){return 1;}}

In this scenario, since we compile top down, we first need to generate A. To generate
A, we need to use ta (but we do not need tc, in rule top, D = ta and D

′
= tc). At this

moment, tc cannot be compiled/checked alone: information about A and B is needed.
To modularly ensure well-typedness, we only require ta to be well typed at this stage;
if it is not a type-error will be raised immediately. Now, we need to generate C, and
hence type-check tc. A is guaranteed to be already type-checked (since it is generated
by an expression that does not contain any L), and B can be typed. Finally tc can be
typed and reused. If the sum rule could not be performed (for example if tc had a
method hello too) a composition error would be generated at this stage. On the other
hand, if B and C were swapped, as in:

1 C= Use tc, {method int hello(){return 1;}}
2 B= {method int mb(A a){return a.ma()+1;}}

we would be unable to type tc, since we need to know the structure of A and B. A type
error would be generated.

The cost: what expressive power we lose We require declarations to be provided in
the right dependency order, but sometimes no such order exists. An example of a
“morally correct” program where no right order exists is the following:

1 t= { int mt(A a){return a.ma();}}
2 A= Use t, {int ma(){return 1;}}

Here the correctness of t depends on A, that is in turn generated using t. We believe
any typing allowing such programs would be fragile with respect to code evolution,
and could make human understanding of the code-reuse process much harder. In
sharp contrast with others (TR, PT, DJ, but also Java, C#, and Scala) we chose to not
support this kind of involved programs.

TR, PT, DJ, Java, C#, and Scala accept a great deal of complexity in order to predict
the structural shape of the resulting code before doing the actual code reuse/adapta-

13 OO languages leverage on recursive types most of the times: for example String may offer a
Int size() method, and Int may offer a String toString() method. This means that typing classes
String and Int in isolation one at a time is not possible.

14 This is needed in full 42: it is impossible to predict the resulting shape since arbitrary code
can run at compile time.
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tion. Those approaches logically divide the program in groups of mutually dependent
classes, where each group may depend on a number of other groups. This forms a
direct acyclic graph of groups. To type a group, all depended groups are typed, then
the signature/structural shape of all the classes of the group are extracted. Finally,
with the information of the dependent groups and the current group, it is possible to
type-check the implementation of each class in the group.

In the world of strongly typed languages we are tempted to first check that all will
go well, and then perform the flattening. Such methodology would be redundant in
our setting: we can only reuse code through trait names; but our point of relaxation
is only the code literal: in no way can an error “move around” and be duplicated
during the compilation process. That is, our approach allows safe libraries of traits
and classes to be typechecked once, and then deployed and reused by multiple clients:
as Theorem A.2 states, in 42µ no type error will emerge from library code.

A.7 Expression reduction

Our reduction rules are incredibly simple and standard. A great advantage of our
compilation model is that expressions are executed on a simple fully flattened program,
where all the composition operators have been removed. From the point of view of
expression reduction, 42µ is a simple language of interfaces and final classes, where
nested classes give structure to code but have no special semantics. The reduction of
expressions is defined by rules ctx-v, s-m, and m. The only interesting point is the
auxiliary function meth:
Define meth(M, vD)
•meth(static method T m(T1 x1 . . . Tn xn) e, vD1 . . . vDn) = e[x1 = vD1, . . . , en = vDn]
•meth(method T m(T1 x1 . . . Tn xn) e, vD0, . . . , vDn) = e[this= vD0, x1 = vD1, . . . , en = vDn]
•meth(method Ti xi(), T.m(vD1 . . . vDn)) = vD i

where D(T, m) = static method T m(T1 x1 . . . Tn xn)

•meth(method T withxi(Ti that), T.m(vD1 . . . vDn) vD) = T.m(vD1 . . . vD i−1, vD, vD i+1 . . . vDn)

where D(T, m) = static method T m(T1 x1 . . . Tn xn)
Here we take care of reading method bodies and preparing for execution. The first
case is for static methods and the second is for instance methods. The third and
fourth cases are more interesting, since they take care of the abstract state: the third
case reduce getters and the fourth reduces withers. In our formalisation we are not
modelling state mutation, so there is no case for setters.

We omit the proof of conventional soundness for the reduction. It is unsurprising,
since the flattened calculus is like a simplified version of Featherweight Java [23].
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