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Summary:  23 

 Variation in canopy water content (CWC) that can be detected from microwave remote 24 

sensing of vegetation optical depth (VOD) has been proposed as an important measure of 25 

vegetation water stress. However, the contribution of leaf surface water (LWs), arising 26 

from dew formation and rainfall interception, to CWC is largely unknown, particularly in 27 

tropical forests and other high-humidity ecosystems. 28 

 We compared the AMSR-E VOD and CWC predicted by a plant hydro-dynamics model 29 

at four tropical sites in Brazil spanning a rainfall gradient. We assessed how LWs 30 

influenced the relationship between VOD and CWC.  31 

 The analysis indicates that while CWC is strongly correlated with VOD (R2=0.62 across 32 

all sites), LWs accounts for 61-76% of the diurnal variation in CWC despite being less 33 

than 10% of CWC. Ignoring LWs weakens the near-linear relationship between CWC and 34 

VOD and reduces the consistency in diurnal variation. The contribution of LWs to CWC 35 

variation, however, decreases at longer, seasonal to interannual, time scales. 36 

 Our results demonstrate that diurnal patterns of dew formation and rainfall interception 37 

can be an important driver of diurnal variation in CWC and VOD over tropical 38 

ecosystems and therefore should be accounted for when inferring plant diurnal water 39 

stress from VOD measurements. 40 

Key words: canopy water content, ED2, ecosystem modeling, leaf surface water, vegetation 41 

optical depth, X-band 42 
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Introduction  46 

Climate change and the accompanying intensification of hydrological cycles are imposing strong 47 

and chronic stress on terrestrial ecosystems with higher atmospheric water demand and more 48 

frequent drought events (Novick et al., 2016; McDowell et al., 2018). Enhancing our 49 

understanding of vegetation water dynamics is therefore critical to predictions of ecosystem 50 

sensitivity to global change (Fatichi et al., 2016; Schimel & Schneider, 2019). Recent work has 51 

shown that vegetation optical depth (VOD) estimated from microwave remote sensing 52 

observations is a reliable proxy for the canopy water content (CWC) and a promising source of 53 

data for monitoring and understanding vegetation water dynamics (Konings et al., 2019; 54 

Feldman et al., 2020). Changes in VOD can reflect vegetation diurnal water stress patterns 55 

(Konings & Gentine, 2017; Li et al., 2017; Anderegg et al., 2018; Zhang et al., 2019), 56 

seasonality in plant water potential and leaf area (Guan et al., 2014; Momen et al., 2017), and 57 

vegetation biomass changes at longer time scales (Liu et al., 2015; Fan et al., 2019). However, 58 

accurate and robust interpretation of VOD variability remains challenging because of the 59 

complex physiological and biophysical processes impacting vegetation water dynamics at a wide 60 

range of time scales (Grossiord et al., 2017). Variation in VOD can be driven by canopy water 61 

interception due to rainfall and dew formation, plant hydraulics, phenology, and structural 62 

changes from growth and mortality (Konings et al., 2019). These challenges have hindered direct 63 

use of VOD in understanding vegetation water dynamics together with the limited availability of 64 

relevant ground measurements of vegetation hydrodynamics. 65 

Spatio-temporal variation in VOD have mostly been linked to changes in leaf and wood internal 66 

water content (Jackson & Schmugge, 1991; Cosh et al., 2010; Tian et al., 2016), but theoretically 67 

they are also sensitive to surface water arising from dew formation and intercepted 68 

rainfall. While a previous study at a temperate agricultural site found relatively little effect of 69 

dew on airborne X-band (10.7 GHz) measurements (Du et al., 2012), diurnal changes in leaf 70 

surface water were found to modulate tower-based VOD measurements collected at a similar 71 

microwave frequency (11.4 GHz) in a tropical canopy in Panama (Schneebeli et al., 2011). This 72 

latter study was performed at the scale of a few meters, however, which may show sensitivities 73 

not detectable at the ecosystem-scales (Wigneron et al., 2017).  74 
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At the ecosystem-scale, the contribution of leaf surface water to VOD signals remains largely 75 

unknown despite leaf surface water being an important component of the moisture budget, 76 

particularly in rainforest ecosystems where significant diurnal and seasonal variation in CWC 77 

occurs because of frequent rainfall interception and dew formation (Junqueira Junior et al., 2019; 78 

Binks et al., 2020) and where measurements of leaf surface water beyond qualitative leaf 79 

wetness data (Binks et al. 2019) do not exist. Therefore, ignoring the contribution of leaf surface 80 

water to VOD can lead to overestimation of changes in leaf internal water, which potentially 81 

biases the interpretation of VOD data as a measure of vegetation water stress. On the other hand, 82 

the ability to separate leaf surface water from canopy water content in VOD data may provide 83 

additional information about plant water dynamics. Through its effects on stomatal conductance, 84 

leaf surface water influences key aspects of plant metabolism including carbon assimilation 85 

(Aparecido et al., 2017; Gerlein-Safdi et al., 2018a,b) and support several important, yet 86 

relatively unknown, eco-physiological processes such as leaf foliar water uptake (Eller et al., 87 

2013; Binks et al., 2019) and epiphyte water use and survival (Lakatos et al., 2012).  88 

Recent advances in mechanistic representation of plant hydrodynamics in terrestrial biosphere 89 

models (Mencuccini et al., 2019) provide a new avenue for to interpreting VOD data: these 90 

models are now capable of explicit simulation of CWC dynamics from a set of biophysical 91 

descriptions and field-based plant functional traits. In turn, VOD data can provide valuable 92 

ecosystem scale evaluation data to hydrodynamic models, which are usually benchmarked by 93 

individual-level plant hydraulic measurements within forest plots (Xu et al., 2016; Christoffersen 94 

et al., 2016; Kennedy et al., 2019; De Kauwe et al., 2020). However, no studies to date have 95 

compared simulated CWC from terrestrial biosphere models with satellite VOD data. 96 

In this study, we compare terrestrial biosphere model predictions of CWC and satellite VOD, and 97 

quantify the contribution of leaf surface water to VOD variation across diurnal to seasonal and 98 

inter-annual time scales. Specifically, we hypothesize: 99 

(H1) CWC, summed over the representative penetration depth of VOD observations, 100 

scales linearly with VOD. 101 

(H2) The contribution of leaf surface water to VOD is higher than leaf and wood internal 102 

water at diurnal time scale because leaf surface water usually accumulates at night and 103 
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evaporates during the day while VOD at longer time scales is more likely controlled by changes 104 

in plant water stress and canopy biomass. 105 

(H3)   The contribution of leaf surface water to VOD is higher at moist sites than at dry 106 

sites because there is more rainfall interception and dew formation under humid conditions. 107 

To evaluate these hypotheses, we compare VOD data derived from X-band (10.7 GHz) 108 

measurements by the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) (Du et al., 109 

2017b) to predictions of CWC from a terrestrial biosphere model incorporating plant 110 

hydrodynamics, at four tropical forest and savannah sites in Brazil across a large rainfall 111 

gradient. AMSR-E VOD has relatively long temporal coverage (full annual cycles from 2003 to 112 

2010) and local bypassing times at 1:30AM and 1:30PM that can reasonably capture diurnal 113 

changes (Konings & Gentine, 2017; Li et al., 2017) in addition to seasonal and inter-annual 114 

variation in CWC. The terrestrial biosphere model used in the study is the Ecosystem 115 

Demography version 2 (ED2). It is an ideal model platform to evaluate the relationship between 116 

canopy water content and leaf surface water with VOD because the model explicitly incorporates 117 

plant hydraulics and leaf energy budget (Xu et al., 2016; Longo et al., 2019) enabling it to 118 

simulate the dynamics of all of leaf surface water, leaf internal water, and wood internal water, 119 

as well as their vertical and horizontal heterogeneity within canopy.  120 

Materials and Methods  121 

Model description 122 

ED2 (Medvigy et al., 2009) is an individual-based terrestrial biosphere model that represents the 123 

dynamics of structurally and functionally-diverse plant canopies. The recent version of the model 124 

(ED-2.2, Longo et al., 2019) has explicit representation of the leaf water and energy budget at 125 

sub-hourly resolution for each plant cohort, which allows for explicit simulation of leaf surface 126 

water following straightforward thermodynamic laws (Gerlein-Safdi et al., 2018b). The model 127 

calculates changes of leaf surface water for each plant cohort as the balance of dew formation, 128 

evaporation, rainfall interception, and water shedding if total leaf surface water exceeds 129 

maximum retention capacity. Detailed description of the water fluxes that contribute to dynamics 130 

of leaf surface water in the model can be found in SI Notes 1.  131 
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ED2 is also one of the first models to couple trait-based plant hydraulics with explicit 132 

demography-based vegetation dynamics (Xu et al., 2016). The hydraulics-enabled version (ED2-133 

hydro) separates plant internal water pools into leaf and stem water pools at the cohort-level, and 134 

estimates sub-hourly water exchanges between these two pools using water potential gradient 135 

and cohort-specific stem water conductance following Darcy’s law. The integration of plant 136 

hydraulics with stomatal conductance and rhizosphere water uptake enables cohort-level 137 

simulation of the dynamics of plant internal water content (see SI Notes 1 for details). ED2-138 

hydro has been calibrated and evaluated in several neotropical forests across a large precipitation 139 

gradient (Xu et al., 2016; Powell et al., 2017, 2018).  140 

In this study, we used the functionality of ED-2.2-hydro to conduct mechanistic simulations of 141 

all major components of vegetation CWC. We updated key plant hydraulic parameters for 142 

tropical plant functional types (PFTs) based on a meta-analysis over tropical species 143 

(Christoffersen et al., 2016) to incorporate the effects of plant functional diversity. Since vertical 144 

structure of vegetation biomass can influence interpretation of VOD data due to the limited 145 

penetration depth of microwave signals (Chaparro et al., 2019), we also made several model 146 

updates in allometry, trait phenoplasticity, and mortality to improve simulated vegetation 147 

structure in tropical forests (details in SI Notes S1). The model parameterization used in this 148 

study are archived at https://github.com/xiangtaoxu/ED2/tree/VOD. 149 

Model configuration and simulation setup   150 

We conducted simulations for two tropical moist forests (Manaus K34 and Reserva Jaru) that 151 

both receive more than 2000 mm yr-1 mean annual rainfall and two tropical savannah sites 152 

(Brasília and Pé-de-Gigante) that both receive less than 1500 mm yr-1 mean annual rainfall 153 

(Table 1). These sites were selected based on the quality of AMSR-E VOD data available for 154 

these locations (in particular, minimal contamination from nearby rivers or other large water 155 

bodies), and the availability of in-situ meteorological data (Brasília: SONDA-INPE (2020); other 156 

sites: de Gonçalves et al (2013)).   157 

The available site-level meteorological data necessary to drive the biosphere model simulations 158 

(incoming shortwave and longwave radiation, temperature, humidity, pressure, precipitation, and 159 

wind speed), however, the available does not encompass the full length of AMSR-E VOD time 160 
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series (2003-2010). We therefore integrated the in-situ meteorological data with climate 161 

reanalysis data from Modern-Era Retrospective analysis for Research and Applications, Version 162 

2 (MERRA2) (Gelaro et al., 2017). To avoid the known biases in MERRA2 precipitation over 163 

tropical regions (Beck et al., 2019), we used precipitation data from Climate Hazards Group 164 

InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015). To minimize the 165 

systematic biases in the reanalysis meteorology relative to local climate, and preserve monthly 166 

values, we calculated the difference between the monthly average of the reanalysis data and in-167 

situ data for each variable over the years when in-situ data is available. The dates of the in-situ 168 

data range from 1999 to 2012 depending on the site (see Table 1 for details). We then applied 169 

the difference to modify the whole reanalysis time series to get the meteorological forcing (Fig. 170 

S1). The difference for precipitation is in logarithm space so that no rainfall was added to dry 171 

days when we applied the difference.  172 

Simulations at each site consisted of a 400-year model spin-up to attain steady state vegetation 173 

structure and composition followed by a 30-year contemporary simulation (1981 to 2010) 174 

encompassing the AMSR-E measurements. For the spin-up simulation, we initialized the model 175 

with a small number of seedlings (0.1 individuals per m2) of all four PFTs and ran the model 176 

with a cycling meteorological forcing from 1981 to 2000. Following up the spin-up simulations, 177 

we ran the model forced by meteorology from 1981 to 2010. For both sets of simulations, we 178 

used a constant rate of 1% of forest area experiencing windthrow disturbance (i.e 0.01 ha ha-1 yr-179 

1) and a constant atmospheric CO2 at 380 ppm. 180 

VOD retrievals 181 

We used X-band (10.7 GHz) VOD retrieved from observations of the Japanese Aerospace 182 

Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 183 

instrument. Specifically, the VOD data were those retrieved by the Land Parameter Data Record 184 

(LPDR) version 2 (Du et al., 2017a,b). The LPDR uses a multi-step procedure to disentangle the 185 

contributions of VOD, vegetation scattering, soil moisture, temperature, atmospheric humidity, 186 

and open water bodies to the observed radiometric brightness temperatures (Jones et al., 2010). 187 

Although the Amazon rainforest remains among the most challenging ecosystems for accurate 188 

VOD retrieval due to the large heterogeneity in canopy structure and the associated biophysical 189 
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properties, interpretation of microwave radiometry has proven feasible even in highly complex 190 

canopies: for example, Calvet et al (1994) used a site-specific model to determine the 191 

relationship between Ka-band radiometry and stomatal resistance at Manaus. Nevertheless, the 192 

VOD retrievals are expected to be more accurate at the savannah sites than at the densely 193 

forested sites.  194 

Model evaluation and comparison with VOD 195 

We first evaluated the terrestrial biosphere model’s predictions of vegetation structure and plant 196 

hydraulics because both of these characteristics directly affect CWC. We compared the 197 

simulated vertical profiles of leaf area index (LAI) with LAI profiles derived from the 198 

Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud, and the Elevation Satellite 199 

(ICESat). GLAS data has previously been shown to capture variation in tropical forest structure 200 

(Tang & Dubayah, 2017; Yang et al., 2018). Site-specific average LAI profiles were calculated 201 

from GLAS measurements collected between 2003 to 2008 (Zwally et al., 2014) within a 50 km 202 

grid box centered around each study site. The LAI profiles were derived from GLAS waveforms 203 

using a light-extinction model based on the MacArthur and Horn (1969) approach (Ni-Meister et 204 

al., 2001; Tang et al., 2014). We extracted simulated average LAI profiles using model outputs 205 

from the same period of time for comparison. Both the GLAS and simulated LAI profiles are 206 

aggregated to a vertical resolution of 5 meters. LAI can show large seasonal changes especially 207 

in the two savannah sites. Therefore, we also compared the average seasonality of total LAI with 208 

Moderate Resolution Imaging Spectroradiometer (MODIS) LAI (Didan, 2015).  209 

Unlike vegetation structure, there are no high-resolution and long-term measurements of plant 210 

hydraulic properties (e.g. leaf water potential) over tropical forests. Limited field measurements 211 

suggest leaf water potential for tropical canopy trees normally varies between 0 and -1 MPa 212 

within a day at moist sites (Fontes et al., 2018) and can drop below -2 MPa at seasonally dry 213 

forest (Wu et al., 2020) and cerrado sites (Bucci et al., 2005). We therefore tested whether the 214 

simulated diurnal variation showed a similar range of variation.  215 

For leaf surface water, there are no direct measurements on its diurnal and seasonal cycles in the 216 

tropics to the best of our knowledge. Limited measurements report predawn values for top 217 

canopy leaves ranging from 0.02 to 0.11 kg H2O m-2 leaf in a tropical moist forest at Caxiuanã 218 
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(personal communication with O. Binks) and from 0.02 to 0.08 kg H2O m2 leaf for five species 219 

in a tropical moist forest in Costa Rica (Aparecido et al., 2017). Our simulated leaf surface water 220 

at predawn (6:00AM) in top canopy leaves showed a consistent range at a similarly wet forest 221 

site and predicted top canopy leaves are frequently (>70% of days with leaf surface water 222 

exceeding half of the saturated surface water retention) wet at predawn (Fig. S2), which is close 223 

to a recent report of top canopy leaves being wet for 50-70% of the time at Caxiuanã using leaf 224 

wetness sensors (Binks et al., 2020). Altogether, these consistencies suggest the model 225 

predictions on leaf surface water dynamics are realistic. 226 

Following the model evaluation, we used daily AMSR-E VOD data at both 1:30AM and 227 

1:30PM, and extracted the hourly average values of simulated leaf surface water (LWs), leaf 228 

internal water (LWi), and wood internal water (WWi), the three components of CWC in ED-2.2-229 

hydro, at the same time of VOD observations. Although the AMSR-E record partially extends to 230 

2002 and 2011, we only included 2003-2010 to ensure an equal number of datapoints across 231 

seasons. We averaged both VOD and simulated CWC values into bi-weekly values to reduce 232 

high-frequency variation and noise in VOD (Konings et al., 2016). In forests, X-band VOD is 233 

mostly sensitive to top canopy layers due to its high electromagnetic frequency (Macelloni et al., 234 

2001; Guglielmetti et al., 2007). The depth at which significant canopy attenuation occurs, 235 

commonly referred to as the penetration depth, depends on both canopy structure and water 236 

status, and thus is variable in both space and in time. Spatial and temporal variation in 237 

penetration depth is generally not accounted for in retrieval algorithms (Konings et al., 2016; Du 238 

et al., 2017b). Recently, Chaparro et al (2019) showed that X-band VOD values saturate when 239 

aboveground biomass (AGB) is higher than 1 kgC m-2. Therefore, we chose a conservative 240 

average penetration depth by only including LWs, LWi, and WWi for the top 1 kgC m-2 of 241 

biomass (leaf and wood, which corresponds to 2-10 meters depending on forest biomass vertical 242 

profiles) for each forest patch within site-level simulation results (Fig. S3) when comparing 243 

simulated CWC and AMSR-E VOD. Additionally, we also evaluated how VOD and CWC 244 

relationships vary with different assumptions of penetration depth. 245 

We conducted analyses using the corresponding VOD data and CWC simulations across diurnal 246 

and bi-weekly time scales. First, we extracted the predicted diurnal cycle of LWs, LWi, and WWi 247 

to investigate the roles of each water pool in determining CWC dynamics that emerge from ED-248 
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2.2-hydro. Specifically, we derived the contribution of LWs, LWi, and WWi to the variations in 249 

total CWC from the model at both diurnal and biweekly time scales by calculating the fractional 250 

contributions of each sub-component variance to the total CWC variance. For the diurnal-scale 251 

analysis, we calculated the long-term average LWs, LWi, and WWi at both 1:30AM and 1:30PM. 252 

Since there are only two observations within each diurnal cycle, we quantified the variance as the 253 

value difference between 1:30AM and 1:30PM. For the biweekly-scale analysis, we calculated 254 

the variance of the mean of 1:30AM and 1:30PM for each biweekly (14 day) period.  255 

Second, we compared the VOD measurements and CWC and assessed the role of leaf surface 256 

water in their relationships. To test our first hypothesis on the scaling between VOD and CWC 257 

(H1), we quantified the linear relationship between VOD and CWC using ordinary least squares 258 

(OLS) regression for each site and all sites combined. To test our second and third hypothesis on 259 

the contribution of leaf surface water to CWC and VOD dynamics and its variation across sites 260 

(H2 and H3), we compared VOD and two metrics of CWC: (1) CWCint that only includes the 261 

internal water content of leaf and wood; and (2) CWCall that includes both leaf and wood internal 262 

water and leaf surface water.  263 

Specifically, we assessed the cross-site variation in isohydricity index, a widely-used metric to 264 

describe the diurnal behavior of plant water use (Martínez-Vilalta et al., 2014; Konings & 265 

Gentine, 2017). This metric (σ) is calculated from the following regression equation: 266 

𝑋1:30𝑃𝑀 = 𝜎 × 𝑋1:30𝐴𝑀 + 𝛬,      (eq 1) 267 

where σ is the isohydricity index, Λ is the regression intercept, and X is a state variable 268 

describing canopy water status. Low σ implies vegetation is more isohydric because daytime 269 

water status is relatively insensitively to nighttime water status due to stomatal control while 270 

higher σ implies vegetation is more anisohydric. We calculated σ values for observed VOD, 271 

simulated CWC, and leaf water potential to investigate whether and how VOD-based 272 

isohydricity (generally assumed to reflect leaf internal water stress) is affected by leaf surface 273 

water dynamics.  274 

We then contrasted the average seasonality and deseasonalized multi-year variation of VOD and 275 

simulated CWC for each study site in terms of (1) absolute values at 1:30AM and (2) relative 276 
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diurnal range (100% – X1:30PM / X1:30AM × 100%). Together with variance decomposition of the 277 

simulated CWC, the evaluation of these two metrics enables quantification of the impacts of leaf 278 

and wood water content and leaf surface water on VOD. 279 

Results  280 

Predictions of vegetation structure and plant water potentials 281 

The long-term equilibrium simulations of the terrestrial biosphere model at the four evaluation 282 

sites yielded LAI profiles that were generally consistent with GLAS estimates for each site (Fig. 283 

1a-d). Individual-level competition in the model led to a general demographic size structure of a 284 

few big trees and many small trees, yielding decreasing leaf area density (LAD) from forest 285 

understory to canopy top that largely fall into the uncertainty of lidar-based estimates. At the two 286 

forest sites (M34 and RJA), top canopy height reached 35-40 meters while LAD became very 287 

small (<0.01 m2/m3) above 20 meters at the two savannah sites (PDG and BSB). However, the 288 

model tended to overestimate the total LAI at the sites by 0.3-0.5 m2 m-2 (Fig. 1a-d), with the 289 

excess LAI arising mainly from overestimates of LAD in upper canopy layers. The model 290 

simulations also tended to underestimate LAD in the lowest (<5m) canopy layer at the two forest 291 

sites.  292 

Seasonal changes of predawn leaf water potential govern the seasonal dynamics of canopy leaf 293 

phenology the model. As a result, seasonality of total leaf area was minimal at M34 where total 294 

rainfall is high and rainfall seasonality is mild. There were slight decreases of LAI at RJA (~0.2 295 

m2 m-2), and larger (0.5-1 m2 m-2) decreases at PDG and BSB toward the end of the dry season 296 

(Fig. 1e-f). MODIS LAI exhibited qualitatively similar patterns of LAI seasonality between the 297 

wet and dry sites. However, at M34, the MODIS LAI estimates exhibit increases in LAI during 298 

the wet season, and earlier onset of leaf shedding around the start of dry season at PDG and BSB, 299 

compared to the model simulations. Overall, ED-2.2-hydro generated canopy vertical structure 300 

and increasing seasonal magnitude in canopy phenology from wet sites to dry sites, which are 301 

largely consistent with remote sensing observations.  302 

The biosphere model simulations imply significant spatio-temporal variation in leaf water 303 

potential (Ψleaf) across all four sites (Fig. 2). For upper canopy leaves, the average maximum 304 
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Ψleaf was close to zero for wet sites and for the wet season at dry sites (Fig. 2e-f), implying a full 305 

recharge of daytime water loss in the model. In the dry season at PDG and BSB, maximum 306 

Ψleaf dropped below -1 MPa, triggering leaf shedding. The daily minimum Ψleaf of canopy leaves 307 

were generally 1-1.5 MPa lower than maximum values depending on moisture supply. These 308 

average patterns in leaf hydrodynamics are consistent with observed variation in leaf water 309 

potentials over tropical forests (Bucci et al., 2005; Fontes et al., 2018; Wu et al., 2020). Wood 310 

water potential at the base of stems (Ψstem) had similar diurnal cycles and seasonality as Ψleaf 311 

(Fig. S4). However, the simulated Ψstem was always close to zero at M34, the wettest site in our 312 

study (Fig. S4a), whereas at the two drier sites ψstem showed reduced diurnal variation during the 313 

wet season (Fig. S4c-d), but similar seasonal variation as Ψleaf.  314 

While observations of diurnal and seasonal variation in plant water potential were not available, 315 

the model’s predictions of evapotranspiration (ET) matched observed patterns of ET seasonality 316 

that were available from flux tower measurements at M34, RJA, and PDG (Fig. S5), providing 317 

additional support for the model’s ability to capture key characteristics of vegetation 318 

hydrodynamics in our study sites. 319 

Spatio-temporal variation in simulated CWC and VOD observations 320 

The model simulations indicate that LWs dominates the diurnal cycles of CWC, despite being 321 

less than 10% of total CWC of upper canopy layers on average (Fig. 3). Generally, LWs 322 

accumulated from late afternoon, reached peak values in early morning, then declined to near 323 

zero by midday. In contrast, LWi varied by only 10-15% within a day and WWi had even smaller 324 

diurnal variation (Fig. 3a-d). As a result, LWs showed substantial contribution to CWC diurnal 325 

variability (Fig. 3e-h), accounting for 76% of CWC differences between 1:30AM and 1:30PM at 326 

M34 (wettest site) and 61% at BSB (driest site). LWi generally accounted for more of the 327 

remaining CWC diurnal variances than WWi. At the biweekly timescale, the contribution of LWs 328 

was considerably lower (18%-36% for RJA, PDG, and BSB), except for M34 where LWs still 329 

drove seasonal and inter-annual variations in the simulated CWC. In addition, at this time scale, 330 

WWi became the dominant driver of CWC variation except for the wettest site (M34). Increasing 331 

the penetration depth to 10 kgC m−2 of AGB did not qualitatively change these general cross-site 332 
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and cross-time-scale patterns; it did however, increase the contribution of wood internal water 333 

pools to patterns of diurnal and seasonal patterns of CWC variability (Fig. S6). 334 

We found a strong linear relationship between VOD and simulated CWCall (top 1 kgC m−2 of 335 

AGB) with an R2 of 0.62 (Fig. 4a). The relationship remained significant at site-level, but the 336 

regression R2 and slopes varied: simulated CWCall explained less than 20% of variance in VOD 337 

at the two moist forest sites M34 and RJA, but accounted for about 50% of variance at the two 338 

savannah sites PDG and BSB (Fig, 4c,d). At the same time, the sensitivity of VOD to CWCall 339 

(indicated by the slope of the VOD regressed against CWCall) increased by approximately 300% 340 

from the wettest site (M34; slope = 0.55) to the driest site (BSB; slope = 2.15), whereas the 341 

regression slope of data from all sites combined fell in-between these values (slope = 0.86). The 342 

relationship between CWCint (CWC excluding leaf surface water) and VOD was weaker (R2 = 343 

0.60 for all data combined) and the site-specific R2 values declined by 5-10% for M34, BSB, and 344 

PDG while RJA showed little change (Fig. 4b,c). The site-specific regression slopes of the 345 

VOD-CWCint relationship all steepened due to increasing nonlinearity of the relationship while 346 

the cross-site variations did not change much (Fig. 4b). As a result, the VOD-CWCint regression 347 

slope using data from all sites combined (0.96, black line in Fig. 4) became lower than site-348 

specific regression slopes (1.2 – 2.8, colored lines in Fig. 4). Using a much deeper penetration 349 

depth that included the top 10 kgC m−2 of AGB yielded similarly high R2 values (0.61 for both 350 

CWCall and CWCint), but the R2 values were far lower (<10%) for the two moist forest sites, and 351 

the cross-site regression slope was much lower than all site-level regression slopes regardless of 352 

whether or not LWs was included (Fig. S7). Overall, the model predictions of CWC that includes 353 

all forms of canopy water showed robust linear relationships with VOD, but the relationships 354 

were stronger at drier sites and across sites along a rainfall gradient. 355 

We calculated isohydricity (σ) values from the variability in biweekly VOD estimates and 356 

calculated a similar metric from model simulations of bi-weekly variability in CWCall, CWCint, 357 

and canopy leaf water potential (Ψ). The VOD estimates of isohydricity were comparable to the 358 

values estimated by Konings & Gentine, (2017) and Li et al., (2017) from daily VOD 359 

observations. As seen in Fig. 5a-d, the VOD-based σ was low at the two wet sites (0.44 for M34 360 

and 0.59 for RJA respectively) and higher at two dry sites (0.71 for PDG and 0.72 for BSB 361 

respectively). The largest difference between VOD-based and model-based isohydricity occurred 362 



14 
 

at M34, where the simulated isohydricity was considerably lower than the VOD-derived estimate 363 

(σ =0.18 and 0.44 respectively; see Fig. 5a,e). However, the isohydricity values from the model 364 

predictions of CWCall and VOD observations were very close at the other three sites (Fig. 5b-365 

d,f-h) implying that upper canopy CWCall reliably captures the cross-site variations in σ. In 366 

contrast, dynamics of CWCint and Ψ implied almost perfect to extreme anisohydric behavior 367 

across all sites with σ values very close to or larger than one (Fig. 5i-p), highlighting the 368 

significant contribution of LWs to the diurnal variation in simulated CWC, and, by inference, to 369 

VOD measures of isohydricity.  370 

We also compared the average seasonality of simulated CWC and observed VOD with respect to 371 

both their values at 1:30AM and their diurnal ranges (Fig. 6). At the two moist forest sites, 372 

1:30AM VOD showed seasonal patterns that peaked in the middle of the dry season with a 373 

seasonal amplitude of ~10% at M34 and 20% at RJA (black lines in Fig. 6, panels a and b, 374 

respectively). Simulated CWCall did not reproduce these patterns, however, showing minimal 375 

seasonality at M34 and a small and short decline in late dry season at RJA (green lines in Fig. 6, 376 

panels a and b, respectively). At the two savannah sites, 1:30AM VOD showed 20-25% seasonal 377 

variations, peaking in the late wet season, and reaching its lowest values in the late dry season 378 

(black lines in Fig. 6, panels c and d respectively). The simulated 1:30AM CWCall showed 379 

similar seasonal patterns and amplitude (green lines in Fig. 6c and d respectively). As a result, 380 

the correlation between VOD and simulated CWCall increased from around zero at wet sites to 381 

~0.8 at the dry sites. Interestingly, CWCint, which excludes the highly seasonal (vary by 30%-382 

100%) LWs that follows the seasonality of rainfall (Fig. S8a-d), exhibited a stronger correlation 383 

with VOD seasonality particularly at the two wet sites (Pearson’s r increased from ~0 to 0.4-0.5), 384 

but with a reduction of seasonal amplitude by 5-10% at all sites.  385 

The comparison of the seasonality in the diurnal range showed similar patterns with the model-386 

data correlation increasing from wetter sites to drier sites (Fig. 6e-h). However, the contribution 387 

of LWs was more prominent at the two drier (savannah sites) despite that diurnal range in LWs 388 

increased from 70-80% in wet season to ~100% at all sites (Fig. S8e-h): The simulated diurnal 389 

range of CWCint peaks in mid to late dry season when daytime atmospheric water demand was 390 

high and soil water supply was low but inclusion of LWs resulted in shifts of the peak to late wet 391 

season for CWCall, which is consistent with VOD seasonality and resulted in comparable average 392 
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diurnal range values (5-10%) as VOD data. At the two forest sites, the inclusion of LWs reduced 393 

the temporal correlation of the diurnal range between VOD and CWCall at M34 and reversed the 394 

correlation at RJA; however, it increased the average diurnal range to be closer with the VOD 395 

observations. Because the model-based estimate of wood internal water content is calculated 396 

from its value at the base of the stem, which might have smaller diurnal range than branch water 397 

pool in nature, we calculated another estimate of WWi by assuming wood water potential is the 398 

same as leaf water potential. This post-hoc correction increased the average diurnal range in 399 

CWC for 2-3% but did not change the seasonal patterns and the impact of LWs (Fig. S9). 400 

Overall, these results suggest the ED-2.2-hydro did not capture the seasonality in canopy 401 

hydrodynamics and phenology at the forest sites, but performed well at the two savannah sites, 402 

where consideration of LWs improved the agreement between simulated CWC and VOD 403 

observations. 404 

At the inter-annual timescale, VOD showed substantial variability relative to its average 405 

seasonality in both 1:30AM values and diurnal ranges (Fig. 7) due to changes in hydroclimatic 406 

conditions. Simulated anomalies of both CWCall and CWCint at 1:30AM were more correlated 407 

with anomalies of 1:30AM VOD at the drier sites (significant positive correlation with Pearson’s 408 

r ranging from 0.36 to 0.53 for PDG and BSB) than at the wet sites (no significant correlations). 409 

While including LWs increased the correlation coefficients by 0.05 to 0.2, it did not change the 410 

general cross-site pattern. The simulated diurnal range anomalies in CWC were not correlated 411 

with the diurnal range anomalies in VOD at inter-annual time scales no matter whether LWs was 412 

included or not (Fig. 7e-h). The simulated diurnal range in CWC generally showed less inter-413 

annual variability with standard deviation of 1.0-1.7% (CWCall) and 0.19-0.37% (CWCint) than 414 

the diurnal range in VOD, which had standard deviations ranging from 1.9% to 2.2%. Similar to 415 

the seasonal scale analysis, correcting for wood internal water did not change the simulated 416 

patterns of inter-annual variations in CWC (Fig. S10). 417 

Discussion  418 

Predicted Canopy Water Content (CWC) and its relationship with Vegetation Optical Depth 419 

(VOD) 420 



16 
 

The increasing use of Vegetation Optical Depth (VOD) to infer large-scale patterns of vegetation 421 

water stress builds on the theoretical mechanistic proportionality between VOD and Canopy 422 

Water Content (CWC) (Konings et al., 2019). However, quantitative assessments of this 423 

relationship have been lacking at the ecosystem scale – the scale at which remote sensing VOD 424 

measurements are made (tens of kilometers) – particularly in humid, high-biomass ecosystems 425 

such as tropical forests. This is mostly because ground-based measurements of CWC are 426 

generally made at the level of leaves or tree branches (Powers & Tiffin, 2010; Chavana-Bryant et 427 

al., 2016; Martin et al., 2018). Consequently, previous VOD field evaluation studies (Liu et al., 428 

2015; Fan et al., 2019; Chaparro et al., 2019) only examined the statistical associations between 429 

spatial variation in VOD and above-ground biomass, a quantity that is easier to measure at larger 430 

spatial scales via forest inventory and LiDAR measurements.   431 

Our study evaluates, for the first time, the VOD-CWC relationship in both the spatial and 432 

temporal domains through novel application of a terrestrial biosphere model. Our analyses 433 

support the first hypothesis (H1) that VOD scales approximately linearly with CWC across space 434 

and time; however, it also reveals important sources of complexity in this relationship: the 435 

sensitivity of VOD-CWC relationship (inferred from the slopes of the relationship between 436 

terrestrial biosphere model’s predictions of CWC and the VOD measurements) varied across 437 

sites with different moisture conditions and vegetation structures (Fig. 4). While some variation 438 

in the slope of VOD-CWC relationship with vegetation type is expected, a three-fold increase in 439 

the slope from savannah to forest sites (Fig. 4d) is far greater than previously estimated from 440 

radiometric experiments in non-forested ecosystems (Van De Griend & Wigneron, 2004) and 441 

leads to a relatively sigmoidal or saturating VOD-CWC relationship for cross-site variations.   442 

VOD saturation at high aboveground biomass density (Chaparro et al., 2019) should not be the 443 

primary factor driving variation in the VOD-CWC slopes because cross-site variation in 444 

penetration depth is explicitly considered in our analysis (Fig. S3) although our approach might 445 

not fully capture small seasonal changes of penetration depth within each site. The larger-than-446 

expected variation in the VOD-CWC slope may reflect deficiencies in the model formulation: 447 

most notably, the model’s drought-driven phenology scheme generated smaller-than-observed 448 

seasonal amplitudes in CWC at the two wet sites, compared to the seasonality in VOD (Fig. 6), 449 

which may explain the low regression R2 and slope at M34 and RJA. The cross-site variation in 450 
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the slopes of the VOD-CWC relationships could also be due to uncertainty in the VOD 451 

retrievals, particularly the uncertainty associated with surface temperature and single-scattering 452 

albedo in the densely forested M34 and RJA sites (Du et al., 2017b) or due to multiple scattering 453 

(Schwank et al., 2018). Both explanations call for additional calibration of VOD with in-situ 454 

measurements of CWC, especially in moist, high-humidity ecosystems such as tropical forests. 455 

The role of leaf surface water (LWs) in CWC and VOD variation across different time scales 456 

Our simulations explicitly consider dew formation, rainfall interception, and the resulting 457 

dynamics of LWs. While no direct measurements of canopy LWs temporal dynamics are 458 

available to evaluate the model’s predictions, the simulated range of LWs is consistent with 459 

sparse sampling from an Amazon moist forest (Fig. S2). In addition, a rare ground-based 460 

radiometer study in a Panamanian tropical moist forest (Schneebeli et al., 2011) estimated that 461 

whole canopy LWs could regularly reach 0.17 kgH2O m−2 (ground) at pre-dawn from dew 462 

formation and intensive rainfall events occasionally increased LWs to 0.4-1 kgH2O m−2. The 463 

model generated comparable average predawn LWs values of 0.21-0.23 kgH2O m−2 at the two 464 

tropical forest sites (Fig. S6). The simulated average predawn LWs is close to the observed dew-465 

driven value, but lower than the observed rainfall-driven values likely because reanalysis rainfall 466 

underestimates the diurnal cycle (Fig. S11). 467 

In our model simulations, LWs accounts for more than 50% of diurnal variation in CWC at all 468 

four of the study sites (Fig. 3). The large diurnal contribution from the relatively small LWs pool 469 

(< 10% of total CWC) stems from its fast turn-over rate: by midday almost all LWs accumulated 470 

during the night evaporates away (Fig. 3). In contrast, simulated LWi varied by only 10-15% 471 

within a day and WWi by even less. In nature and in the model, this occurs because plant 472 

stomatal control constrains daily minimum leaf water potential to be above, or not far below, the 473 

leaf turgor loss point (Brodribb & Holbrook, 2003; Fontes et al., 2018), whose corresponding 474 

relative water content is approximately 90% for tropical wet forests (Bartlett et al., 2012).  475 

Consequently, our results call into question the ability to correctly infer spatial and temporal 476 

patterns of plant water stress from diurnal measurements of VOD in humid forest ecosystems 477 

such as tropical rainforests, as illustrated in our isohydricity analysis (Fig. 5).  First, leaf surface 478 

water dynamics might contribute most to the VOD-based isohydricity. Second, isohydricity 479 
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index based on water content is influenced by both leaf internal water stress and the seasonal 480 

variation in vegetation structure, and thus can deviate from the isohydricity index based on leaf 481 

water potential and converge to one (Fig. 5i-p). In addition, if VOD diurnal range reflects diurnal 482 

water stress, it should peak in the dry season in tropical forests when plant diurnal water stress is 483 

generally the highest -- as shown in both observations (Brodribb & Holbrook, 2004; Fisher et al., 484 

2006) and the biosphere model simulations conducted in this study (Fig. 2). However, at the two 485 

savannah sites, VOD diurnal range peaked in late wet season, which can only be explained by 486 

including LWs (Fig. 6). Excluding rainy days (Konings & Gentine, 2017; Li et al., 2017) is 487 

likely not enough to eliminate the effects because dew formation can also significantly contribute 488 

to LWs and the simulated importance of LWs only drops to a low level in months with both low 489 

rainfall and humidity (Fig. S12). Hence, the influence of LWs on VOD retrievals may also be 490 

important in other humid ecosystems such as those found along the North American Pacific coast 491 

(Burgess & Dawson, 2004) and montane forests (Berry et al., 2014).  492 

The importance of LWs decreases, however, at the seasonal and inter-annual time scales (Fig. 493 

6&7), implying that failing to consider LWs will have less effect in VOD-based inference of 494 

canopy phenology (Guan et al., 2014; Wang et al., 2020) and vegetation mortality (Rao et al., 495 

2019; Wigneron et al., 2020). Therefore, our results support our second hypothesis (H2) that the 496 

contribution of leaf surface water is highest at the diurnal time scale.  497 

In contrast, there is only partial support for our third hypothesis (H3) that the contribution of leaf 498 

surface water to diurnal VOD dynamics increases as precipitation increases: variance 499 

decomposition implies an increasing contribution from LWs along the gradient from dry to wet 500 

sites (Fig. 3) and from wet to dry months (Fig. S12) is consistent with H3. However, it is 501 

difficult to draw strong conclusions regarding H3 given the large uncertainties in VOD retrievals 502 

and low level of seasonality in the model simulations compared to the observed seasonality of 503 

VOD values and diurnal ranges at the two moist forest sites (Fig. 6). In addition, the simulated 504 

cross-site variations in LWs contribution might be biased because ED-2.2-hydro does not 505 

represent possible leaf trait adaptation across moisture gradients such as changes in leaf texture 506 

and trichome abundance that could regulate leaf surface water retention (Aparecido et al., 2017) 507 

and thus influence LWs dynamics. Further in situ data collection and model improvement and 508 
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benchmark are necessary to accurately evaluate how LWs contribution vary across moisture 509 

gradients. 510 

Implications for tropical phenology in vegetation models 511 

Our model-data analysis also provides a useful evaluation of the plant hydrodynamics and leaf 512 

phenology formulations in the ED-2.2-hydro terrestrial biosphere model. As anticipated, there 513 

was better agreement between the model predictions and the VOD measurements at the two drier 514 

sites where abiotic moisture conditions exhibit large variability that significantly affects canopy 515 

water content. However, the predicted seasonal decline of LAI is later than in MODIS LAI 516 

estimates (Fig. 1), and the relative magnitude of the seasonal decline in CWC was smaller than 517 

VOD observations (Fig. 6), suggesting that the model’s drought-deciduous leaf phenology 518 

scheme may not be sufficiently responsive to seasonal water stress. In the current model 519 

formulation, leaf-drop is triggered when pre-dawn water potential falls below turgor loss point, 520 

whereas drought experiments on tropical seedlings suggest the average of pre-dawn and midday 521 

water potential can best predict leaf shedding (Wolfe et al., 2016). Incorporating midday water 522 

potential into the drought-deciduous phenology scheme might therefore improve the seasonality 523 

at drier savannah sites. 524 

Similarly, at the two wet sites, the predicted seasonality in canopy water content was lower than 525 

the seasonality in VOD (Fig. 6). This may be because the VOD seasonality is partially 526 

attributable to unknown retrieval errors caused by seasonally varying properties (e.g. changes in 527 

canopy structure) in densely vegetated areas (Konings et al., 2016; Du et al., 2017b). Another 528 

possible explanation is that biotic factors, such as leaf ontogeny and phenology can be an 529 

important factor influencing seasonal variation in canopy water content under moist conditions. 530 

For instance, leaf relative water content can change substantially with leaf age in tropical wet 531 

forests (Chavana-Bryant et al., 2016) therefore seasonal changes in leaf demography at tropical 532 

moist forests (Wu et al., 2016) may contribute to seasonal variation in CWC and resulting VOD 533 

measurements. A simple calculation of CWC changes based on published leaf demography and 534 

leaf ontogeny data at Manaus (Chavana-Bryant et al., 2016; Wu et al., 2016) suggests 535 

that seasonal variation in leaf age could explain the seasonal amplitude of VOD at M34, albeit 536 

with a 1-2 month lag in timing (Fig. S13).   537 
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Conclusions 538 

Our analyses indicate a large contribution of leaf surface water to diurnal variation in landscape-539 

scale canopy water content (CWC) and AMSR-E Vegetation Optical Depth (VOD) signals over 540 

tropical forests. This is important because diurnal variation in VOD has been proposed as a 541 

measure of canopy isohydricity, a metric widely used to diagnose the water status of plant 542 

canopies. Our analysis shows that leaf surface water also influences seasonal variation in VOD, 543 

but to a far lesser extent. In this analysis, we examined VOD measurements from X-band 544 

microwave instruments that have relatively low penetration into the dense canopies of tropical 545 

forests; however, our findings also apply to VOD measurements from lower (L-band) 546 

electromagnetic frequencies (e.g. SMAP and SMOS) because the simulated LWs contributions 547 

remain high even when we evaluated deeper canopy penetration depth (Fig. S6). Therefore, 548 

future applications of microwave band measurements, as well as and other imaging 549 

spectroscopy-based estimates of canopy water content (Asner et al., 2016) should carefully 550 

consider the effects of variation in leaf surface water, particularly during moist and humid 551 

periods when dew formation and rainfall interception are high. In turn, the sensitivity of VOD to 552 

leaf surface water newly identified in this study provides new opportunities to understand leaf 553 

surface water dynamics and its impact on plant water use. 554 

Our analyses also highlight the value of explicitly representing plant hydrodynamics in terrestrial 555 

biosphere model formulations. The consistency between VOD and model predicted CWC across 556 

diurnal, seasonal, and inter-annual timescales at the two tropical savannah sites suggests that the 557 

current model structure is able to capture important processes governing plant hydrodynamics; 558 

however, capturing diurnal and seasonal patterns of VOD in wet tropical forests is likely to 559 

require consideration of phenological processes affecting canopy water content, such as seasonal 560 

leaf demography and ontogeny.  561 
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Tables and Figure Legends 816 

Table 1 Description of climate and soil conditions used for ED-2.2-hydro simulations at the four 817 

study sites. 818 

 819 

Site name 

 

Location  

(lon, lat) 

MAT (oC) MAP 

(mm) 

Soil Texture 

(% of sand 

and clay)* 

Temporal 

coverage of in 

situ meteorology 

Manaus K34 

(M34) 

-60.21,-2.61 25.7 2673 0.2,0.68 1999-2006 

Reserva Jaru 

(RJA) 

-61.93,-10.08 25.0 2069 0.8,0.1 1999-2002 

Pé-de-Gigante 

(PDG) 

-47.65,-21.62 22.8 1453 0.85,0.03 2001-2003 

Brasília 

(BSB) 

-47.71,-15.60 21.7 1344 0.13,0.53 2010-2012 

*We used the best estimates of soil texture following previous ED2 simulations (Longo, 2014; 820 

Restrepo-Coupe et al., 2017) and we used the same soil depth of 10 meters. 821 

 822 

 823 

 824 
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Figure 1 Evaluation of vegetation structure in ED-2.2-hydro across four study sites along a 826 

rainfall gradient. (a-d) The average profile of leaf area index (LAI) within forest canopy from 827 

GLAS lidar inversion (red) and model simulations (black). The x-axis represents leaf area 828 

density (LAD) for each 5 meter band from 0m to 50m above ground while the y-axis represents 829 

height of each band. Inset plots within each panel compare the total LAI from model and GLAS 830 

data. (e-h) Seasonality of monthly average canopy total LAI from model simulation (black) and 831 

MODIS observations (blue). Grey bars denote the average monthly rainfall in millimeters. Each 832 

column displays results for a study site with site acronym and mean annual rainfall at the top of 833 

each column.  834 

Figure 2 Simulated leaf hydrodynamics in ED-2.2-hydro. (a-d) vertical distribution of daily 835 

maximum (blue) and minimum (red) leaf water potential. We averaged cohort-level leaf water 836 

potential for every 5 meter height bands, using cohort leaf area index as weighting factors. (e-h) 837 

seasonality of average daily maximum and minimum leaf water potential for upper canopy 838 

leaves. We define upper canopy as the top 1kgC m-2 biomass.  839 

Figure 3 Contribution of leaf surface water to canopy water content in model simulations. (a-d) 840 

Average diurnal cycles of CWC partitioned into wood internal water (WWi, brown), leaf internal 841 

water (LWi, green), and leaf surface water (LWs, blue) for our four study sites. The vertical 842 

dashed lines represent the local bypassing time of AMSR-E VOD measurements (1:30AM and 843 

1:30PM). (e-h) Variance decomposition of CWC temporal variations into the three sub-844 

components at both the diurnal scale (black bars) and biweekly scale (red bars). We only used 845 

the simulated CWC at the same time as AMSR-E VOD measurements (dashed lines in panels a-846 

d) for this analysis. 847 

Figure 4 Relationship between VOD and (a) simulated CWCall (including LWs) and (b) CWCint 848 

(excluding LWs). Each dot represents bi-weekly average of 1:30AM or 1:30PM values, with the 849 

colors indicating the different study sites, M34 (brown), RJA (red), PDG (purple), and BSB 850 

(blue). Solid black lines represent ordinary least square linear regression between VOD and 851 

CWC using all data combined while solid color lines represent regressions for each site. 852 

Regression R2 (c) and slopes (d) are also shown for each site and all sites combined. We only 853 

include CWC dynamics from the top 1kgC m-2 biomass in the simulations. 854 
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 855 

Figure 5 Isohydricity index (σ) from VOD (a-d), CWCall (e-h,including LWs), CWCint (i-l, 856 

excluding LWs), and Ψ (m-p, leaf water potential in MPa). Each column represents results from 857 

one study site. Each dot represents a biweekly average of VOD, CWCall, CWCint or Ψ. CWC and 858 

Ψ values represent water contents and average leaf water potential of the upper canopy layers 859 

(top 1 kgC m-2). Red lines represent linear regression results with σ values shown on top of each 860 

panel. All regressions are significant. 861 

Figure 6 Comparison of average seasonality between VOD and simulated CWC across four 862 

study sites. (a-d) seasonality of 1:30AM VOD (black), CWCall (green), and CWCint (purple). To 863 

facilitate comparison, we normalized the seasonality by dividing the maximum seasonal values 864 

for each variable. (e-h) similar to a-d but for diurnal ranges calculated as (1 – X1:30PM / X1:30AM) × 865 

100%. We calculated Pearson’s r between the average seasonality in VOD and the simulated 866 

CWC (with and without LWs) and showed the correlation coefficients using the same color as 867 

the different CWC lines. Significant correlation (p < 0.05) was marked with *. In all panels, we 868 

only included water from the top 1 kgC m-2 biomass within the canopy and gray bars represent 869 

average monthly rainfall. 870 

Figure 7 Comparison of interannual -year variability between VOD and simulated CWC after 871 

removing average seasonality across four study sites. (a-d) variability of 1:30AM VOD (black), 872 

CWCall (green), and CWCint (purple). We normalized the time series by dividing the maximum 873 

as in Figure 6. (e-h) similar to a-d but for diurnal ranges calculated as (1 – X1:30PM / X1:30AM)  × 874 

100%. We calculated Pearson’s r between the average seasonality in VOD and the simulated 875 

CWC (with and without LWs) and showed the correlation coefficients using the same color as 876 

the different CWC lines. Significant correlation (p < 0.05) was marked with *. In all panels, we 877 

only included water from the top 1 kgC m-2 biomass. Due to high-frequency variation in the 878 

simulated CWC, we averaged the biweekly data into bimonthly values to facilitate comparison. 879 


