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Simple Summary: Prognosis for patients with locally advanced esophageal squamous cell carci-
noma (ESCC) remains poor mainly due to late diagnosis and limited curative treatment options.
Neoadjuvant chemoradiotherapy (nCRT) plus surgery is considered the standard of care for patients
with locally advanced ESCC. Currently, predicting prognosis remains a challenging task. Quantita-
tive imaging radiomics analysis has shown promising results, but these methods are traditionally
data-intensive, requiring a large sample size, and are not necessarily based on the underlying biology.
Feature selection based on genomics is proposed in this work, leveraging differentially expressed
genes to reduce the number of radiomic features allowing for the creation of a CT-based radiomic
model using the genomics-based feature selection method. The established radiomic signature was
prognostic for patients’ long-term survival. The radiomic nomogram could provide a valuable
prediction for individualized long-term survival.

Abstract: Purpose: To evaluate the prognostic value of baseline and restaging CT-based radiomics
with features associated with gene expression in esophageal squamous cell carcinoma (ESCC) patients
receiving neoadjuvant chemoradiation (nCRT) plus surgery. Methods: We enrolled 106 ESCC patients
receiving nCRT from two institutions. Gene expression profiles of 28 patients in the training set
were used to detect differentially expressed (DE) genes between patients with and without relapse.
Radiomic features that were correlated to DE genes were selected, followed by additional machine
learning selection. A radiomic nomogram for disease-free survival (DFS) prediction incorporating
the radiomic signature and prognostic clinical characteristics was established for DFS estimation
and validated. Results: The radiomic signature with DE genes feature selection achieved better
performance for DFS prediction than without. The nomogram incorporating the radiomic signature
and lymph nodal status significantly stratified patients into high and low-risk groups for DFS
(p < 0.001). The areas under the curve (AUCs) for predicting 5-year DFS were 0.912 in the training
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set, 0.852 in the internal test set, 0.769 in the external test set. Conclusions: Genomics association was
useful for radiomic feature selection. The established radiomic signature was prognostic for DFS.
The radiomic nomogram could provide a valuable prediction for individualized long-term survival.

Keywords: esophageal squamous cell carcinoma; neoadjuvant chemoradiotherapy; prognosis;
radiogenomic

1. Introduction

Esophageal cancer (EC) accounted for 572,034 new cases and 508,585 deaths of cancer
overall worldwide in 2018, ranking seventh in incidence and sixth terms of mortality [1].
There is geographic variation in EC pathological subtype incidence. Approximately 90%
of EC cases at the time of diagnosis in China are esophageal squamous cell carcinoma
(ESCC) [2]. Because of late-stage cancer diagnosis and limited clinical curative modality,
the five-year overall survival (OS) rates for ESCC patients range from 15% to 25% [3].
Surgery has a central role in disease management, but a large proportion of patients
showed local or distant metastasis after surgery within 3 years [4,5]. The addition of
adjuvant chemotherapy or radiation therapy has proven to improve survival in patients
with involved lymph node disease [6,7]. However, a recent network meta-analysis showed
that adjuvant chemotherapy or radiation therapy could not significantly reduce death
risk compared with surgery alone [8]. As shown by well-powered prospective random-
ized clinical trials, neoadjuvant chemoradiotherapy (nCRT) could benefit patients by
improving tumor resection rate and long-term survival for patients with locally advanced
EC [9–12]. The CROSS study demonstrated that patients receiving nCRT followed by
surgery have a significantly increased median overall survival than those receiving surgery
alone (49.4 vs. 29.0 months, p = 0.003) [9]. The Chinese study NEOCRTEC5010 also showed
that compared with a simple surgery, patients’ median survival was improved from 66.5 to
100.1 months (p = 0.025) [10]. However, due to tumor heterogeneity, not all patients could
gain a survival benefit from nCRT treatment. Currently, predicting prognosis remains a
challenging task for ESCC patients. The ability to identify patients with poor prognoses is
required for more effective personalized disease management.

Computed tomography (CT) is a broadly used non-invasive tool for disease assess-
ment. For the evaluation of tumor malignancy and patient prognosis, the visualization of
tumor heterogeneity is of vital importance. Radiomics are now widely used in prognostic
prediction tasks for many tumor types [13–15]. Previous quantitative imaging research
has generally focused on the prediction of the nCRT treatment effect in EC [16–19]. Fur-
thermore, the majority of esophageal cancer studies were based on imaging data acquired
from a single time point [20,21]. Delta radiomics has been proposed recently that reflected
changes of radiomic features across certain therapies. Delta radiomic features were re-
ported to improve model performance for different tasks of a variety of cancer, including
diagnosis [22], therapy response evaluation [23–26], and prognosis prediction [27,28].

Methods to combat the “curse of high dimensionality” intrinsic to radiomics method-
ology are important for the construction of radiomics prediction models. Methods that can
adequately perform feature reduction will enable a more accurate predictive performance
and decreased computational costs. Widely used methods mainly focus on data-driven
feature selection. For the development of novel models, Wynants et al. [29] recommended
the application of prior knowledge and expert opinion for the selection of significant
features, rather than choosing a predictor using an entirely data-driven method [30]. This
could be more important for some specific clinical scenarios with a small sample size [31].

Previous studies have shown that image-derived radiomic features are the reflection
of the underlying molecular changes in the tumor cells with phenotypic consequences.
Segal et al. demonstrated that semantic image traits correlated with genetic profiles in
human hepatocellular carcinomas (HCC) patients [32]. Kuo and his colleagues showed that
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genomics analysis helps the identification of patterns of gene expression related to drug
response in HCC [33]. Grossmann et al. [34] identified and independently validated 13
radiomic-pathway modules with coherent expression patterns. Eleven of the modules were
significantly associated with overall survival, staging, or histology. Panth et al. [35] further
proved a causal relationship between gene expression and imaging traits. Traditionally,
researchers have concentrated efforts to reveal the association between radiomics and
genomic data (including transcriptomic data). To our knowledge, no prior studies have
investigated the feasibility of genomics-driven radiomics feature selection.

We hypothesize that genomics-driven feature selection of radiomic features will lead
to a more robust and generalizable predictive model. The objective of this study is to
perform a proof-of-concept study using genomics data as a method for feature selection of
radiomics applied to CT scans to demonstrate value when constructing a radiomics-based
prognostic prediction model for ESCC patients receiving nCRT followed by surgery.

2. Materials and Methods
2.1. Patients Cohorts

The experimental design of this research was depicted in Figure 1. Patient records
from April 2007 to December 2016 were retrieved from the Sun Yat-sen University Cancer
Center, Guangzhou, China (institution 1) and the University of Hong Kong, Hong Kong
(institution 2). The selection criteria included: (a) patients aged 18–80 years; (b) had
histologically confirmed ESCC; (c) had standardized baseline and post-nCRT enhanced CT
scans; and (d) received nCRT plus surgery. The exclusion criteria included: (a) patients
who underwent anticancer treatments before the baseline CT scans; (b) with a history of
other malignancies; and (c) with incomplete medical records. For institution 1, patients
received 75 mg/m2 cisplatin on day 1 and 25 mg/m2 vinorelbine on days 1 and 8 for
2 cycles, or 25 mg/m2 cisplatin and 25 mg/m2 docetaxel on days 1, 8, 15, and 21, with a
total dose of 40 or 44 Gy for concurrent radiotherapy. For institution 2, 50 mg/m2 paclitaxel
and carboplatin AUC 2 for 5 cycles or 100 mg/m2 cisplatin and 500 mg/m2 fluorouracil
were administrated intravenously for 4 days for weeks 1 and 5, with a total dose of 40 or
41.4 Gy for concurrent radiotherapy. Patients with biopsy samples with genetic profiles
from institution 1 were allocated to the training group. The rest from institution 1 was used
as the internal test group. Patients from institution 2 were allocated to the external test
group. This study has been approved by institutional review boards from both institutions
(refer to Supplementary Method for further detail). Patients from institution 1 were part
of a prior prospective study [10]. Due to the retrospective nature, informed consent from
patients was waived.

2.2. Data Extraction and Feature Selection
2.2.1. Radiomic Features Extraction and Preprocessing

Regions of interests (ROIs) were manually segmented using ITK-SNAP, and radiomic
features extraction was performed by the open-source Python package PyRadiomics [36].
Both original and wavelet-filtered features were extracted. There were three main groups
of radiomic features: (1) pre-nCRT features; (2) post-nCRT features; (3) delta features
(∆features). The ∆features were the relative changes (expressed in percentage) of the
radiomic features before and after nCRT treatment. To assess feature robustness, we con-
ducted a test-retest study. Two radiologists (V.V. 10 years and L.H. 9 years’ experience)
individually contoured the ROIs in the training set. Two groups of features were extracted,
and those with intra-class correlation coefficients (ICC) > 0.80 were selected. To minimize
the institutional difference, we used the ComBat method for feature harmonization [37].
The ComBat method has been commonly used in genomic studies and shown to success-
fully correct the multicenter differences in imaging features values resulting from different
image acquisition protocols [38].
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Figure 1. Study workflow. nCRT: neoadjuvant chemoradiotherapy; DE genes: differentially expressed genes.

2.2.2. Genomic Data

For twenty-eight ESCC patients from the training set, the pre-nCRT tissue samples
were extracted from the primary tumor sites around 2 weeks before nCRT. The genomic pro-
files were measured using a GeneChip® Human Genome U133 Plus 2.0 Array (Affymetrix,
Santa Clara, CA, USA).

2.2.3. Clinical Data and Follow-up

The primary endpoint was disease-free survival (DFS). DFS referred to the length of
time from surgery to recurrence of tumor or death. OS, as the secondary endpoint, was the
duration from recruitment to death or the last follow-up. The minimum follow-up period
was 36 months after surgery. For patients with no documented clinical endpoints, their
survival was censored on 31 December 2019.

The clinical records were reviewed by the surgeons and oncologists in charge. Clinical
staging was evaluated according to the American Joint Committee on Cancer (AJCC)
TNM staging system, 8th edition [38]. Patients’ clinical characteristics, including age, sex,
treatment response, tumor length, tumor location, histologic grade, ∆BMI, smoking status,
drinking status, and family history of tumor, were recorded.
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2.3. Data Resampling

Given the imbalanced distribution of DFS (7 out 21 having recurrence), the synthetic
minority oversampling technique has been adopted for data re-balancing in the training
set [39].

2.4. Feature Selection Using Genomic Data

We introduced a feature selection step according to the features’ correlation with
differentially expressed (DE) genes in the tumor biopsy sample. For twenty-eight ESCC
patients from the training set, the “limma” package was applied to detect DE genes
between patients with different survival outcomes. DE genes were ranked by the p-value
according to the limma test, and the ordered list of DE genes was further analyzed by
enrichment analysis of gene terms with the use of g: Profiler [40]. Data sources include
gene ontology biological process and pathway collections from Kyoto Encyclopedia of
Genes and Genomes, Reactome, and WikiPathways. The enrichment analysis found
significant terms consisting of sets of genes. The overlapped genes were defined as DE
genes that could be found in both significant gene sets and DE genes. The overlapped
genes were used as a filter for the selection of radiomic features. Radiomic features that
were significantly correlated with these overlapped genes using Pearson’s correlation test.
Correlated radiomic features were included for further analysis.

2.5. Feature Selection Using Data-Driven Approach

In the training set, radiomic features were selected in three steps. First, correlated
features (Pearson’s correlation coefficient larger than 0.80) were grouped, and each group
of features was fitted into a DFS prediction model using a decision tree classifier. Features
with the highest importance attributed by the model among features were considered
the most important and retained. Second, according to univariate analysis, the top 100
best features predictive of DFS calculated were selected. Finally, we used regularized
multivariate logistic regression with the least absolute shrinkage and selection operator
(LASSO) penalty to further reduce the feature number [41]. The optimal λ was used to find
predictors with non-zero coefficients.

2.6. Classification Model and Nomogram Construction

A linear regression model with selected features was built for the calculation of the
radiomic score (Rad-score) after feature selection. The features selected from genomics
feature selection and data-driven machine learning approaches were used to build classifi-
cation model 1. The features selected from only data-driven approaches were used to build
classification model 2.

We further built clinical nomograms integrating the radiological score and valuable
clinical risk factors for prognosis prediction. Based on Cox proportional hazards model,
hazard ratios (HRs) for Rad-score and other clinical variables were calculated. The corre-
lations of the factors with DFS were further investigated in multivariable analyses. The
final model was decided by the Akaike information criterion (AIC) in a backward selection
manner. The selected risk factors were included to build clinical nomograms. Nomogram 1
and nomogram 2 were based on classification model 1 and classification model 2, respec-
tively. The cut-off points for the nomograms were determined by Youden Index, to divide
patients into different risk groups.

2.7. Statistical Analysis

Statistical analyses and graphic production were conducted using Python 3.7. and R
3.3.1. The “limma” method was used with a false discovery rate < 0.05 and a two-fold
difference as cut-off criteria. The enrichment analysis of gene terms of DE genes was
conducted by g: Profiler with 0.05 as the cut-off for the false discovery rate. The correlation
between radiomic features and overlapped genes were analyzed by Pearson correlation
test and deemed significant if p < 0.05. We determined the prediction performance by area
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under the curve (AUC) of the receiver operating characteristic curve. Time-dependent
AUCs for the multivariate Cox model performance were evaluated every 6 months. The
calibration performance of the nomograms was measured graphically by calibration plots.
Discrimination ability was tested by Harrell’s concordance index (C-index). We further em-
ployed decision curve analysis (DCA) to detect the net benefit brought by the nomograms
for clinical settings [42]. The DFS and OS for patients stratified by nomogram predictions
were shown by Kaplan–Meier curves and the statistical difference was measured using
log-rank significance tests. Details could be found in the Supplementary Method.

3. Results
3.1. Patient Characteristics

Basic patient characteristics were listed in Table 1. A total of 106 ESCC patients
receiving nCRT plus surgery treatment with follow-up information (mean age [standard
deviation (SD)]: 59.01 [9.38]; male: 81.1%) were collected, including 65 from institution
1 and 41 from institution 2. Twenty-eight patients having biopsy samples with genetic
profiles from institution 1 were used as the training set, the rest 37 were used as an internal
test set, and 41 from institution 2 were allocated to the external test set (Supplementary
Figure S1). Apart from drinking status, the baseline characteristics were balanced between
the training and the internal test set. There were differences in age, tumor location, clinical
stage, and drinking status across the two institutions.

Table 1. Patients’ clinical characteristics.

Characteristic Institution 1 Institution 2 p-Value

65 41
pCR (%) 1.00

No 34 (52.3) 22 (53.7)
Yes 31 (47.7) 19 (46.3)

Sex (%) 1.00
Male 53 (81.5) 33 (80.5)

Female 12 (18.5) 8 (19.5)
Age <0.01

Mean (SD) 55.77 (6.79) 64.15 (10.64)
cT staging 8th edition (%) <0.01

1 1 (1.5) 0 (0.0)
2 20 (30.8) 1 (2.4)
3 44 (67.7) 39 (95.1)
4 0 (0.0) 1 (2.4)

cN staging 8th edition (%) <0.01
0 7 (10.8) 1 (2.4)
1 41 (63.1) 13 (31.7)
2 17 (26.2) 23 (56.1)
3 0 (0.0) 4 (9.8)

Tumor location (%) 0.03
Proximal third 5 (7.7) 2 (4.9)
Middle third 39 (60.0) 15 (36.6)
Distal third 21 (32.3) 24 (58.5)

Tumor Length (cm) 0.34
Mean (SD) 5.29 (1.99) 5.66 (1.87)

Histologic grade (%) 0.85
1 5 (7.7) 3 (7.3)
2 41 (63.1) 28 (68.3)
3 19 (29.2) 10 (24.4)

∆BMI 0.81
Mean (SD) 0.01 (0.06) 0.02 (0.06)

Tobacco use (%) 0.36
No 26 (40.0) 12 (29.3)
Yes 39 (60.0) 29 (70.7)

Drinking (%) <0.01
No 49 (75.4) 18 (43.9)
Yes 16 (24.6) 23 (56.1)
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Table 1. Cont.

Characteristic Institution 1 Institution 2 p-Value

Family tumor history (%) 0.55
No 55 (84.6) 32 (78.0)
Yes 10 (15.4) 9 (22.0)

DFS follow-up time (months), median [IQR] 77.82 [57.50, 93.63] 37.71 [11.97, 67.86] <0.01
OS follow-up time (months), median [IQR] 79.36 [59.34, 96.30] 42.08 [19.17, 72.53] <0.01

pCR: pathologic complete response; ∆BMI: change of body mass index from pretreatment to post-chemoradiation;
DFS: disease-free survival; OS: overall survival; SD: standard deviation; IQR: interquartile range.

All patients had a minimum follow-up time of three years. The median follow-up
period was 65.7 months (interquartile range (IQR), 20.4–88.6) for DFS and 70.1 (IQR,
31.3 –89.6) months for OS. The median follow-up period of DFS was 90.0 months (IQR,
60.8–98.6) for the training set, 74.4 months (IQR, 58.7–86.5) for the internal test set, and
37.7 months (IQR, 12.0–67.9) for the external test set.

3.2. Extracted Radiomic Features

We extracted 2553 radiomic features, including 851 features from each of the pre-nCRT
CT, post-nCRT CT, and delta categories (107 original and 744 with wavelet filtration). For
the feature robustness test, 2336 features with ICC > 0.80 were included for feature selection.

3.3. Feature Selection Using Genomic Data and Using Data-Driven Machine Learning Approaches

The statistical analysis in the training set found that 37 genes were differentially
expressed between patients with and without relapse groups (p < 0.05) based on the limma
test. The pathway enrichment analysis was conducted by using the ordered gene list
generated from DE genes. Using these 37 DE genes, we identified 181 pathways that
were enriched. Sixteen of the genes encompassed in enriched pathways overlap with
37 DE genes. The 16 overlapping genes were used for further correlation analysis (see
Supplementary Tables S1 and S2). After genomics feature selection, 35.4% (829 out of
2336) of radiomic features were found to be significantly correlated with at least one of the
overlapped genes.

Radiomic features with and without genomics selection were both analyzed by the
following machine learning process. After correlated feature elimination, univariate anal-
ysis, and LASSO selection, the feature number was finally reduced to eight. Radiomic
features derived with and without genomics feature selection were listed in Supplementary
Tables S3 and S4. The correlation between selected features and DE genes was shown
in Supplementary Figure S2. Classification nomogram 1 consisted of eight features, all
correlating with gene information. For classification nomogram 2, half features were not
correlated with any discovered DE genes. Two features were selected for both nomograms.

3.4. Radiomic Classification Model

The radiomic classification model 1 consisted of radiomic features with genomics
feature selection, which resulted in better performance and generalisability (AUC: 0.912
in the training set, 0.825 in the internal test set, 0.749 in the external test set), as shown in
classification receiver operating characteristic curves (Figure 2a). The classification model 2
was constructed using radiomic features without genomics feature selection (AUC: 0.925
in the training set, 0.782 in the internal test set, and 0.679 in the external test set), as shown
in Figure 2b. Prediction probabilities were used as Rad-score for further analysis.

3.5. Radiomics-Based Nomogram Construction

We proceeded to develop radiomic nomograms combining the Rad-score and clinico-
pathological factors. Clinical N staging was significantly correlated with DFS according
to the univariate analysis. In the multivariate analysis with AIC stepwise selection for
the construction of nomogram 1, Rad-score 1 (HR: 2.55; 95% CI: 1.85,3.52; p < 0.001), and
clinical N staging (HR: 3.23; 95% CI: 1.66, 6.29; p < 0.001) were identified as independent
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prognostic factors in the Cox proportional hazards model and were incorporated into the
nomogram 1 (Figure 3). Rad-score 2 (HR: 3.25; 95% CI: 1.98, 5.33; p < 0.001), and clinical N
staging (HR: 2.76; 95% CI: 1.41, 5.38; p = 0.003) were also selected for nomogram 2.
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Figure 3. Prognostic nomograms. Probability of 3-year and 5-year disease-free survival of the nomograms developed by
Rad-score and nodal staging information. (a) Nomogram 1 (with genomics feature selection). (b) Nomogram 2 (without
genomics feature selection).

The C-indexes of nomogram 1 and nomogram 2 were 0.869 and 0.875 in the training
group, 0.812 and 0.757 in the internal test group, and 0.719 and 0.668 in the external test
group, respectively. Time-dependent AUCs for the multivariate Cox model were evaluated
(Figure 4). The performance of nomogram 1 and nomogram 2 for predicting 5-year DFS
was assessed with respective AUCs of 0.912 and 0.918 in the training group, 0.852 and 0.810
in the internal test group, 0.769 and 0.724 in the external test group. The Cox model of the
continuous radiomic signature also demonstrated good calibration for both nomograms
(Supplementary Figure S3). DCA confirmed the clinical benefits (Supplementary Figure S4).

According to the optimal cut-off value (Youden index) for the diagnostic possibility of
the clinical nomogram, the patients were classified as the low-risk group with diagnostic
possibilities ≤ 0.51 and as the high-risk group with diagnostic possibilities > 0.51. Kaplan–
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Meier curves demonstrated that the risk stratification of nomogram 1 was associated with
the DFS in the training group (p = 0.002) and internal test group (p < 0.001), and this
finding was confirmed in the external test group (p < 0.001) (Figure 5). For nomogram 2,
Kaplan–Meier curves showed good predictive value in the training group (p < 0.001) but
less predictive in the internal test group (p = 0.032) and were not statistically different in the
external test group (p = 0.220). Kaplan–Meier curves also showed better risk stratification
of patients’ OS in nomogram 1 than that in nomogram 2 (Supplementary Figure S5).
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3.6. Prediction of Survival Status Using Delta Features

We further compared the changes of tumor volume in pre- and post-nCRT scans, and
its correlation to patients’ survival was low (p = 0.571 for DFS, p = 0.215 for OS in KM curve
analysis, Supplementary Figure S6). The delta radiomic feature selected for both nomo-
grams (Wavelet LLL filtered correlation from GLCM families) was significantly predictive
of patients’ survival (p = 0.010 for DFS, p = 0.036 for OS in KM curve analysis). This GLCM
radiomic feature was not associated with tumor volume (p = 0.482, Kruskal–Wallis test).
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4. Discussion

Clinical risk stratification of patients is important for decision-making for exploring
personalized treatment and for the prediction of prognostic outcome. The use of CT modal-
ity is widely available. Image assessment using radiomics is an emerging approach to
predict response in cancer treatment and long-term survival. This is the first pilot study
to include a two-time-point delta radiomics analysis in a prognostic prediction model in
conjunction with a biological underpinning feature selection method. The constructed
radiomics-based survival prediction in this study achieved good prognostic value with
generalizability to the external test set, which could improve personalized management of
ESCC patients, potentially improving clinical outcomes. For patients with ESCC treated
by nCRT, Laruea et al. [43] developed a CT-based radiomic model with an AUC of 0.61
and borderline significant Kaplan–Meier curve result in the validation dataset (p = 0.053).
Foley et al. [20] validated a PET-based prognostic model combined with clinical features in
an international cohort, but this model did not enable significant discrimination between
patient risk groups. Chen et al. [18] reported that a PET image feature model was indepen-
dently associated with DFS and OS but with a small sample size (n = 32). Qiu et al. [44]
constructed a nomogram using radiomic and clinical features based on one center data at
one single time point. Our study established a radiomics-based clinical nomogram with
a relatively larger sample size and validated on an external dataset. This was similar to
previous findings that nomogram incorporating clinical factors and imaging features were
of predictive value for EC patients [45–47]. Zhang et al. [45] reported that a nomogram
based on clinical variables and imaging radiomic features was predictive of lymph node
metastases. We proposed a potentially novel way of screening prognostic imaging texture
features by gene-driven method.

With the advance of next-generation sequencing techniques and machine learning
algorithms, there are increasing high-throughput omics data. While genomics and ra-
diomics have been studied individually, the integration of genomic and radiomic data
into multi-omics-based machine learning models could provide new scope for precision
oncology, which would aid a more comprehensive understanding and management of
cancer diseases.

A model incorporating delta imaging features may potentially capture characteristics
of tumors’ response to treatment and therefore improve differentiation of tumor hetero-
geneity. Shrinkage of tumor volume was an important independent prognostic factor in
EC patients, as it could improve the R0 resection rate [48,49]. Size-based measurement
was commonly used in previous studies [16,50]. However, some cases may involve tumor
necrosis, liquefaction, and fibrosis during the treatment process, without a significant
decrease in tumor size. More recently, delta radiomic features from pre- and post-treatment
were reported to improve cancer treatment response prediction, including chemoradiation
therapy [24–26] and, more recently, immune therapy [51]. One delta radiomic feature
(correlation from GLCM families) was significantly predictive of patients’ survival than
the changes in tumor volume in our study. This is in accordance with previous studies
that changes in radiomic features could outperform the volume measures for disease eval-
uation [23,24,46,52]. Tumor size-based evaluation could not account for some important
factors such as spatial heterogeneity of primary tumor lesions that correlated with tumor
biology. We demonstrated that radiomic features could have the potential to offer special
insight to the tumor characterization as they could capture the advanced tumor hetero-
geneity that was not visible to the naked eyes. CT-based disease assessment could serve as
effective tools for patients’ risk stratification.

Our results showed that genomics information was useful for radiomic feature selec-
tion. The nomogram constructed from radiomic features with genomics feature selection
improved prediction value compared with the nomogram without genomics feature se-
lection. Many genes have been proposed as prognostic predictors of ESCC [53]. Instead
of analyzing the underlying biological process by gene enrichment analysis [54–56], we
used these genomics data as a new feature selection filter to assure biological robustness.
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Radiomic features were correlated with overlapped genes, with the introduction of path-
way information from enrichment analysis. Such lists of genes provided an additional
biological correlation that is more than a simple correlation with the DFS outcome.

Machine learning feature selection methods are known to be prone to data-driven
biases related to missing data, sample size and measurement errors. Machine learning
selected features were recommended to make clinical sense from practitioners, as algo-
rithms may underestimate clinically meaningful information [57]. The decreased predictive
performance from internal to external test set could be largely correlated with overfitting
in the training process and dissimilarities among data. The nomogram constructed from
radiomic features with genomics feature selection showed better generalizable prediction.
We provided a novel feature selection approach based on biological knowledge using
genomics data to filter significant radiomic features. This method could achieve clinically
important improvements and decrease indirect prejudices associated with data-driven
algorithm estimation.

Pathological complete response (pCR) was reported to be a significant predictor for
improved survival in EC patients [58]. In our analysis, the reason why pCR does not
correlate with survival was not clear. One possible reason was the small sample size and
sampling bias. The other reason may be binary division nCRT response to pCR and non-
pCR may not fully reflect the tumor’s response to nCRT treatment, which may be of more
graded response. More detailed evaluation criteria such as four categories of complete
responses, partial responses, stable diseases, and progressive diseases [59] may provide a
more comprehensive and reliable measure of response with increased predictive value.

As a pilot investigation, our study was limited by several aspects. The main limitation
was the small sample size as data were retrospectively collected from prospective clinical
studies to ensure the complete acquisition of images across nCRT, the accuracy of follow-
up information, and accessibility of genetic profiles. This could lead to selection bias,
and the presented clinical characteristics become decreasingly representative of the entire
population. Secondly, due to the retrospective nature, part of the clinical variables was
not balanced for different institutions, which is a common problem for cross-regional
research [20]. Further prospective studies with larger sample sizes are required for further
validation of the biological correlation between imaging features and genetic markers.
Lastly, we used the correlation between radiological features and genetic data for patients
with different disease recurrence outcome for feature selection. The gene-based correlation-
filtered selection was chosen to avoid ambiguity in this pilot study. Future investigations on
the pathway-guided selection process and the underlying driving biology are suggested.

5. Conclusions

Genomics association was useful as a method for radiomic feature selection. The es-
tablished radiomic signature was prognostic for patients’ long-term survival. The radiomic
nomogram could provide a valuable prediction for individualized long-term survival.
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low-risk groups stratified by nomogram predictions, Figure S6: Survival for patients from high-risk
and low-risk groups stratified by delta radiological features. Table S1: The top 10 enriched gene set
expression patterns by G: profiler, Table S2: The differentially expressed genes analyzed by limma
and overlapped genes for genomics feature selection for correlation analysis with radiomics features,
Table S3: Numbers of selected features for model constructions, Table S4: Description of selected
radiomic features in the radiomics models for the construction of nomogram.

Author Contributions: Literature search and study design: C.-Y.X., Y.-H.H., J.W.-K.H., J.-H.F., and
V.V.; Data analysis: C.-Y.X., Y.-H.H., J.W.-K.H., J.-H.F., and V.V.; Data collection: C.-Y.X., Y.-H.H.,
H.Y., J.W., L.-J.H., K.-O.L., I.Y.-H.W., S.Y.-K.L., K.W.-H.C., J.-H.F., and V.V.; Manuscript writing:

https://www.mdpi.com/article/10.3390/cancers13092145/s1
https://www.mdpi.com/article/10.3390/cancers13092145/s1


Cancers 2021, 13, 2145 13 of 15

C.-Y.X., Y.-H.H., J.W.-K.H., J.-H.F., and V.V.; Suggestion: J.W., L.-J.H., K.-O.L., I.Y.-H.W., S.Y.-K.L., and
K.W.-H.C.; All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Health and Medical Collaborative Innovation Project of
Guangzhou City, China (grant number 201803040018); the National Natural Science Foundation
of China (grant numbers 81972614 and 81871975); and the Fundamental Research Funds for the
Central Universities (grant number 19ykyjs79). C.-Y.X. is supported by the Hui Pun Hing Memorial
Postgraduate Fellowship.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki [60] and approved by the Institutional Review Board of Sun Yat-sen
University Cancer Center (NCT01216527) and the University of Hong Kong (UW 17-204).

Informed Consent Statement: Due to the retrospective nature, informed consent from patients
was waived.

Data Availability Statement: The data that support the findings of this study are openly accessible
in the NCBI Gene Expression Omnibus at www.ncbi.nlm.nih.gov/geo/ (GSE45670).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
2. Smyth, E.C.; Lagergren, J.; Fitzgerald, R.C.; Lordick, F.; Shah, M.A.; Lagergren, P.; Cunningham, D. Oesophageal cancer. Nat. Rev.

Dis. Primers 2017, 3, 17048. [CrossRef]
3. Pennathur, A.; Gibson, M.K.; Jobe, B.A.; Luketich, J.D. Oesophageal carcinoma. Lancet 2013, 381, 400–412. [CrossRef]
4. Daly, J.M.; Karnell, L.H.; Menck, H.R. National Cancer Data Base report on esophageal carcinoma. Cancer 1996, 78, 1820–1828.

[CrossRef]
5. Ng, T.; Vezeridis, M.P. Advances in the surgical treatment of esophageal cancer. J. Surg. Oncol. 2010, 101, 725–729. [CrossRef]
6. Mariette, C.; Piessen, G.; Triboulet, J.P. Therapeutic strategies in oesophageal carcinoma: Role of surgery and other modalities.

Lancet Oncol. 2007, 8, 545–553. [CrossRef]
7. Cohen, D.J.; Leichman, L. Controversies in the treatment of local and locally advanced gastric and esophageal cancers. J. Clin.

Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 1754–1759. [CrossRef] [PubMed]
8. Pasquali, S.; Yim, G.; Vohra, R.S.; Mocellin, S.; Nyanhongo, D.; Marriott, P.; Geh, J.I.; Griffiths, E.A. Survival After Neoadjuvant

and Adjuvant Treatments Compared to Surgery Alone for Resectable Esophageal Carcinoma: A Network Meta-analysis. Ann.
Surg. 2017, 265, 481–491. [CrossRef]

9. Van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.; Richel, D.J.;
Nieuwenhuijzen, G.A.; Hospers, G.A.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional
cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [CrossRef]

10. Yang, H.; Liu, H.; Chen, Y.; Zhu, C.; Fang, W.; Yu, Z.; Mao, W.; Xiang, J.; Han, Y.; Chen, Z.; et al. Neoadjuvant Chemoradiotherapy
Followed by Surgery Versus Surgery Alone for Locally Advanced Squamous Cell Carcinoma of the Esophagus (NEOCRTEC5010):
A Phase III Multicenter, Randomized, Open-Label Clinical Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2796–2803.
[CrossRef]

11. Tepper, J.; Krasna, M.J.; Niedzwiecki, D.; Hollis, D.; Reed, C.E.; Goldberg, R.; Kiel, K.; Willett, C.; Sugarbaker, D.; Mayer, R. Phase
III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal
cancer: CALGB 9781. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 1086–1092. [CrossRef]

12. Shapiro, J.; van Lanschot, J.J.B.; Hulshof, M.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van
Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Neoadjuvant chemoradiotherapy
plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled
trial. Lancet Oncol. 2015, 16, 1090–1098. [CrossRef]

13. Jiang, Y.; Wang, H.; Wu, J.; Chen, C.; Yuan, Q.; Huang, W.; Li, T.; Xi, S.; Hu, Y.; Zhou, Z.; et al. Noninvasive imaging evaluation
of tumor immune microenvironment to predict outcomes in gastric cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31,
760–768. [CrossRef] [PubMed]

14. Conti, A.; Duggento, A.; Indovina, I.; Guerrisi, M.; Toschi, N. Radiomics in breast cancer classification and prediction. Semin.
Cancer Biol. 2020. [CrossRef]

15. Sun, R.; Limkin, E.J.; Vakalopoulou, M.; Dercle, L.; Champiat, S.; Han, S.R.; Verlingue, L.; Brandao, D.; Lancia, A.; Ammari, S.;
et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An
imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018, 19, 1180–1191. [CrossRef]

www.ncbi.nlm.nih.gov/geo/
http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.1038/nrdp.2017.48
http://doi.org/10.1016/S0140-6736(12)60643-6
http://doi.org/10.1002/(SICI)1097-0142(19961015)78:8&lt;1820::AID-CNCR25&gt;3.0.CO;2-Z
http://doi.org/10.1002/jso.21566
http://doi.org/10.1016/S1470-2045(07)70172-9
http://doi.org/10.1200/JCO.2014.59.7765
http://www.ncbi.nlm.nih.gov/pubmed/25918302
http://doi.org/10.1097/SLA.0000000000001905
http://doi.org/10.1056/NEJMoa1112088
http://doi.org/10.1200/JCO.2018.79.1483
http://doi.org/10.1200/JCO.2007.12.9593
http://doi.org/10.1016/S1470-2045(15)00040-6
http://doi.org/10.1016/j.annonc.2020.03.295
http://www.ncbi.nlm.nih.gov/pubmed/32240794
http://doi.org/10.1016/j.semcancer.2020.04.002
http://doi.org/10.1016/S1470-2045(18)30413-3


Cancers 2021, 13, 2145 14 of 15

16. Yuan, H.; Tong, D.K.; Vardhanabhuti, V.; Law, S.Y.; Chiu, K.W.; Khong, P.L. PET/CT in the evaluation of treatment response to
neoadjuvant chemoradiotherapy and prognostication in patients with locally advanced esophageal squamous cell carcinoma.
Nucl. Med. Commun. 2016, 37, 947–955. [CrossRef] [PubMed]

17. Beukinga, R.J.; Hulshoff, J.B.; Mul, V.E.M.; Noordzij, W.; Kats-Ugurlu, G.; Slart, R.; Plukker, J.T.M. Prediction of Response to
Neoadjuvant Chemotherapy and Radiation Therapy with Baseline and Restaging (18)F-FDG PET Imaging Biomarkers in Patients
with Esophageal Cancer. Radiology 2018, 287, 983–992. [CrossRef]

18. Chen, Y.H.; Lue, K.H.; Chu, S.C.; Chang, B.S.; Wang, L.Y.; Liu, D.W.; Liu, S.H.; Chao, Y.K.; Chan, S.C. Combining the radiomic
features and traditional parameters of (18)F-FDG PET with clinical profiles to improve prognostic stratification in patients with
esophageal squamous cell carcinoma treated with neoadjuvant chemoradiotherapy and surgery. Ann. Nucl. Med. 2019, 33,
657–670. [CrossRef] [PubMed]

19. Yang, Z.; He, B.; Zhuang, X.; Gao, X.; Wang, D.; Li, M.; Lin, Z.; Luo, R. CT-based radiomic signatures for prediction of pathologic
complete response in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. J. Radiat. Res. 2019, 60, 538–545.
[CrossRef]

20. Foley, K.G.; Shi, Z.; Whybra, P.; Kalendralis, P.; Larue, R.; Berbee, M.; Sosef, M.N.; Parkinson, C.; Staffurth, J.; Crosby, T.D.L.; et al.
External validation of a prognostic model incorporating quantitative PET image features in oesophageal cancer. Radiother. Oncol.
J. Eur. Soc. Ther. Radiol. Oncol. 2019, 133, 205–212. [CrossRef]

21. Cao, Q.; Li, Y.; Li, Z.; An, D.; Li, B.; Lin, Q. Development and validation of a radiomics signature on differentially expressed
features of (18)F-FDG PET to predict treatment response of concurrent chemoradiotherapy in thoracic esophagus squamous cell
carcinoma. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 146, 9–15. [CrossRef]

22. Mokrane, F.Z.; Lu, L.; Vavasseur, A.; Otal, P.; Peron, J.M.; Luk, L.; Yang, H.; Ammari, S.; Saenger, Y.; Rousseau, H.; et al. Radiomics
machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules. Eur.
Radiol. 2020, 30, 558–570. [CrossRef]

23. Goh, V.; Ganeshan, B.; Nathan, P.; Juttla, J.K.; Vinayan, A.; Miles, K.A. Assessment of response to tyrosine kinase inhibitors in
metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 2011, 261, 165–171. [CrossRef]

24. Rao, S.X.; Lambregts, D.M.; Schnerr, R.S.; Beckers, R.C.; Maas, M.; Albarello, F.; Riedl, R.G.; Dejong, C.H.; Martens, M.H.;
Heijnen, L.A.; et al. CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess
response to chemotherapy? United Eur. Gastroenterol. J. 2016, 4, 257–263. [CrossRef] [PubMed]

25. Lin, P.; Yang, P.F.; Chen, S.; Shao, Y.Y.; Xu, L.; Wu, Y.; Teng, W.; Zhou, X.Z.; Li, B.H.; Luo, C.; et al. A Delta-radiomics model
for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma. Cancer Imaging Off. Publ. Int.
Cancer Imaging Soc. 2020, 20, 7. [CrossRef]

26. Nasief, H.; Hall, W.; Zheng, C.; Tsai, S.; Wang, L.; Erickson, B.; Li, X.A. Improving Treatment Response Prediction for Chemoradi-
ation Therapy of Pancreatic Cancer Using a Combination of Delta-Radiomics and the Clinical Biomarker CA19-9. Front. Oncol.
2019, 9, 1464. [CrossRef] [PubMed]

27. Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.K.; Stingo, F.; Liao, Z.; et al. Delta-radiomics
features for the prediction of patient outcomes in non-small cell lung cancer. Sci. Rep. 2017, 7, 588. [CrossRef] [PubMed]

28. Carvalho, S.; Leijenaar, R.; Troost, E.; van Elmpt, W.; Muratet, J.-P.; Denis, F.; De Ruysscher, D.; Aerts, H.; Lambin, P. Early
variation of FDG-PET radiomics features in NSCLC is related to overall survival-the “delta radiomics” concept. Radiother. Oncol.
2016, 118, S20–S21. [CrossRef]

29. Wynants, L.; Van Calster, B.; Bonten, M.M.J.; Collins, G.S.; Debray, T.P.A.; De Vos, M.; Haller, M.C.; Heinze, G.; Moons, K.G.M.;
Riley, R.D.; et al. Prediction models for diagnosis and prognosis of covid-19 infection: Systematic review and critical appraisal.
BMJ 2020, 369, m1328. [CrossRef] [PubMed]

30. Steyerberg, E.W. Clinical Prediction Modelsl: A Practical Approach to Development, Validation, and Updating; Springer:
Berlin/Heidelberg, Germany, 2019. [CrossRef]

31. Van Smeden, M.; Moons, K.G.; de Groot, J.A.; Collins, G.S.; Altman, D.G.; Eijkemans, M.J.; Reitsma, J.B. Sample size for binary
logistic prediction models: Beyond events per variable criteria. Stat. Methods Med. Res. 2019, 28, 2455–2474. [CrossRef] [PubMed]

32. Segal, E.; Sirlin, C.B.; Ooi, C.; Adler, A.S.; Gollub, J.; Chen, X.; Chan, B.K.; Matcuk, G.R.; Barry, C.T.; Chang, H.Y.; et al. Decoding
global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 2007, 25, 675–680. [CrossRef] [PubMed]

33. Kuo, M.D.; Gollub, J.; Sirlin, C.B.; Ooi, C.; Chen, X. Radiogenomic analysis to identify imaging phenotypes associated with drug
response gene expression programs in hepatocellular carcinoma. J. Vasc. Interv. Radiol. JVIR 2007, 18, 821–831. [CrossRef]

34. Grossmann, P.; Stringfield, O.; El-Hachem, N.; Bui, M.M.; Rios Velazquez, E.; Parmar, C.; Leijenaar, R.T.; Haibe-Kains, B.;
Lambin, P.; Gillies, R.J.; et al. Defining the biological basis of radiomic phenotypes in lung cancer. eLife 2017, 6, e23421. [CrossRef]

35. Panth, K.M.; Leijenaar, R.T.; Carvalho, S.; Lieuwes, N.G.; Yaromina, A.; Dubois, L.; Lambin, P. Is there a causal relationship
between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible
GADD34 tumor cells. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2015, 116, 462–466. [CrossRef] [PubMed]

36. Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.-C.; Pieper, S.;
Aerts, H.J. Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017, 77, e104–e107. [CrossRef]

37. Lazar, C.; Meganck, S.; Taminau, J.; Steenhoff, D.; Coletta, A.; Molter, C.; Weiss-Solis, D.Y.; Duque, R.; Bersini, H.; Nowe, A. Batch
effect removal methods for microarray gene expression data integration: A survey. Brief. Bioinform. 2013, 14, 469–490. [CrossRef]
[PubMed]

http://doi.org/10.1097/MNM.0000000000000527
http://www.ncbi.nlm.nih.gov/pubmed/27145438
http://doi.org/10.1148/radiol.2018172229
http://doi.org/10.1007/s12149-019-01380-7
http://www.ncbi.nlm.nih.gov/pubmed/31218571
http://doi.org/10.1093/jrr/rrz027
http://doi.org/10.1016/j.radonc.2018.10.033
http://doi.org/10.1016/j.radonc.2020.01.027
http://doi.org/10.1007/s00330-019-06347-w
http://doi.org/10.1148/radiol.11110264
http://doi.org/10.1177/2050640615601603
http://www.ncbi.nlm.nih.gov/pubmed/27087955
http://doi.org/10.1186/s40644-019-0283-8
http://doi.org/10.3389/fonc.2019.01464
http://www.ncbi.nlm.nih.gov/pubmed/31970088
http://doi.org/10.1038/s41598-017-00665-z
http://www.ncbi.nlm.nih.gov/pubmed/28373718
http://doi.org/10.1016/S0167-8140(16)30042-1
http://doi.org/10.1136/bmj.m1328
http://www.ncbi.nlm.nih.gov/pubmed/32265220
http://doi.org/10.1007/978-3-030-16399-0
http://doi.org/10.1177/0962280218784726
http://www.ncbi.nlm.nih.gov/pubmed/29966490
http://doi.org/10.1038/nbt1306
http://www.ncbi.nlm.nih.gov/pubmed/17515910
http://doi.org/10.1016/j.jvir.2007.04.031
http://doi.org/10.7554/eLife.23421
http://doi.org/10.1016/j.radonc.2015.06.013
http://www.ncbi.nlm.nih.gov/pubmed/26163091
http://doi.org/10.1158/0008-5472.CAN-17-0339
http://doi.org/10.1093/bib/bbs037
http://www.ncbi.nlm.nih.gov/pubmed/22851511


Cancers 2021, 13, 2145 15 of 15

38. Amin, M.B.; Edge, S.B.; Greene, F.L.; Schilsky, R.L.; Gaspar, L.E.; Washington, M.K.; Sullivan, D.C. (Eds.) AJCC Cancer Staging
Manual, 8th ed.; Springer: New York, NY, USA, 2017.

39. Xie, C.; Du, R.; Ho, J.W.; Pang, H.H.; Chiu, K.W.; Lee, E.Y.; Vardhanabhuti, V. Effect of machine learning re-sampling techniques
for imbalanced datasets in (18)F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck
cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2826–2835. [CrossRef] [PubMed]

40. Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment
analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [CrossRef]

41. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [CrossRef]
42. Vickers, A.J.; Cronin, A.M.; Elkin, E.B.; Gonen, M. Extensions to decision curve analysis, a novel method for evaluating diagnostic

tests, prediction models and molecular markers. BMC Med. Inf. Decis. Mak. 2008, 8, 53. [CrossRef] [PubMed]
43. Larue, R.; Klaassen, R.; Jochems, A.; Leijenaar, R.T.H.; Hulshof, M.; van Berge Henegouwen, M.I.; Schreurs, W.M.J.; Sosef, M.N.;

van Elmpt, W.; van Laarhoven, H.W.M.; et al. Pre-treatment CT radiomics to predict 3-year overall survival following chemora-
diotherapy of esophageal cancer. Acta Oncol. 2018, 57, 1475–1481. [CrossRef]

44. Qiu, Q.; Duan, J.; Deng, H.; Han, Z.; Gu, J.; Yue, N.J.; Yin, Y. Development and Validation of a Radiomics Nomogram Model for
Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved pCR After Neoadjuvant
Chemoradiotherapy Followed by Surgery. Front. Oncol. 2020, 10, 1398. [CrossRef]

45. Zhang, C.; Shi, Z.; Kalendralis, P.; Whybra, P.; Parkinson, C.; Berbee, M.; Spezi, E.; Roberts, A.; Christian, A.; Lewis, W.; et al.
Prediction of lymph node metastases using pre-treatment PET radiomics of the primary tumour in esophageal adenocarcinoma:
An external validation study. Br. J. Radiol. 2021, 94, 20201042. [CrossRef] [PubMed]

46. Tan, X.; Ma, Z.; Yan, L.; Ye, W.; Liu, Z.; Liang, C. Radiomics nomogram outperforms size criteria in discriminating lymph node
metastasis in resectable esophageal squamous cell carcinoma. Eur. Radiol. 2019, 29, 392–400. [CrossRef]

47. Du, F.; Tang, N.; Cui, Y.; Wang, W.; Zhang, Y.; Li, Z.; Li, J. A Novel Nomogram Model Based on Cone-Beam CT Radiomics
Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy. Front.
Oncol. 2020, 10, 596013. [CrossRef]

48. Mulligan, E.D.; Dunne, B.; Griffin, M.; Keeling, N.; Reynolds, J.V. Margin involvement and outcome in oesophageal carcinoma:
A 10-year experience in a specialist unit. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2004, 30, 313–317.
[CrossRef] [PubMed]

49. Hofstetter, W.; Swisher, S.G.; Correa, A.M.; Hess, K.; Putnam, J.B., Jr.; Ajani, J.A.; Dolormente, M.; Francisco, R.; Komaki, R.R.;
Lara, A.; et al. Treatment outcomes of resected esophageal cancer. Ann. Surg. 2002, 236, 376–384. [CrossRef]

50. Tan, S.; Kligerman, S.; Chen, W.; Lu, M.; Kim, G.; Feigenberg, S.; D’Souza, W.D.; Suntharalingam, M.; Lu, W. Spatial-temporal
[18F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int. J.
Radiat. Oncol. Biol. Phys. 2013, 85, 1375–1382. [CrossRef] [PubMed]
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