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Topological phase transition and single/multi anyon dynamics
of Z2 spin liquid
Zheng Yan 1, Yan-Cheng Wang2, Nvsen Ma3, Yang Qi 4,5,6✉ and Zi Yang Meng 1✉

Among the quantum many-body models that host anyon excitation and topological orders, quantum dimer models (QDM) provide
a suitable playground for studying the relation between single-anyon and multi-anyon continuum spectra. However, as the
prototypical correlated system with local constraints, the generic solution of QDM at different lattice geometry and parameter
regimes is still missing due to the lack of controlled methodologies. Here we obtain, via sweeping cluster quantum Monte Carlo
algorithm, the excitation spectra in different phases of the triangular lattice QDM. Our results reveal the single vison excitations
inside the Z2 quantum spin liquid (QSL) and its condensation towards the

ffiffiffiffiffi
12

p
´

ffiffiffiffiffi
12

p
valence bond solid (VBS), and demonstrate

the translational symmetry fractionalization and emergent O(4) symmetry at the QSL-VBS transition. We find the single vison
excitations, whose convolution qualitatively reproduces the dimer spectra, are not free but subject to interaction effects throughout
the transition. The nature of the VBS with its O(4) order parameters are unearthed in full scope. Our approach opens the avenue for
generic solution of the static and dynamic properties of QDMs and has relevance towards the realization and detection of fractional
excitations in programmable quantum simulators.
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INTRODUCTION
Fractionalized anyon excitations are among the most important
features of topologically ordered phases, a class of phases beyond
the Landau paradiam of classifying phases with symmetry
breaking1. The fractionalized nature of these anyon excitations
renders that they cannot be created or annihilated individually by
physical probes. This phenomenon is both a blessing and a curse:
it reflects the topological nature of the excitations and the phase,
but also obscures any direct detection of single anyon excitations.
Instead, they can only be observed indirectly from a multi-particle
continuum of spectral functions. For example, a continuum in
inelastic neutron scattering spectrum is often used as a signature
to detect quantum spin liquids with fractionalized spin excitations,
which is considered as a two-spinon continuum2–6. Consequently,
understanding the relation between physical spectra and under-
lying single-anyon excitation is an essential question in the study
of topologically ordered phases.
In the theoretical study of topologically ordered phases

including the quantum spin liquid (QSL)7,8, one usually relies
on approximate tools to model the fractionalized excitations
because they cannot be directly accessed in experiments and
numerical simulations. In simple mean-field theories of QSL, as a
physical probe excites a pair of fractionalized excitations, the
corresponding spectrum is given by the convolution of spectra
of the underlying anyons. However, in realistic systems, this
simple relation is modified by interactions between anyons, it is
therefore important to know how much change has happened
due to the interaction effect.
Quantum dimer models (QDM)9,10 provide a suitable play-

ground for studying the relation between single-anyon and two-
anyon spectra in QSLs. Originally proposed to model the resonant
valence bond state in high-Tc superconductors11 and frustrated

magnets, it realizes a gapped Z2 QSL at the exactly-solvable
Rokhsar–Kivelson (RK) point10 if put on a nonbipartite lattice such
as the triangle and the kagome12–14. Comparing to other models
of QSLs, the QDMs are suitable as the spinful excitations are
absent in the Hilbert space due to the one-dimer-per-site
constraint. This means that the spinon excitations in the Z2 spin
liquid are absent, leaving the visons as the only low-energy anyon
excitations. As a result, the spectrum of vison excitations can be
directly measured in numerical simulations. This feature of QDM
allows one to compare the spectra of both the fractionalized
single-vison excitations and the physical dimer-dimer correlations,
which involves a pair of visons. Although the ground state of QDM
is exactly known at the RK point, the excited states are not exactly
solvable due to interactions among the visons.
Furthermore, away from the RK point, the QDM on the

triangular lattice can be tuned into a
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solid (VBS) phase12,13. The phase transition is conjectured to be
continuous and of the O(4) universality, driven by the condensa-
tion of visons15–18. Therefore, the QDM near this transition is an
ideal system to study the spectral properties of anyon condensa-
tion, if there exist controlled theoretical and numerical methods.
Recently, a quantum Monte Carlo (QMC) scheme, the sweeping

cluster method, is invented by the author19–21. The method is able
to keep track of the strict local constraint of dimer covering and at
the same time perform Markov chain Monte Carlo (MC) in the
space-time path integral such that both static and dynamic
properties of the QDM can be obtained, only subject to finite
system sizes. Therefore, it is different from the projection QMC
employed in the previous literatures15–18, where the interplay of
quantum and thermal fluctuations of the QDM models is not
present, and the computation complexity has been reduced such
that larger system sizes can now be accessed (as will show later,
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the largest system size is three times larger than that in previous
literature). The method has been applied to the square lattice
QDM and a mixed phase separating columnar phase at strong
dimer attraction and staggered phase at strong dimer repulsion
are found20. In this work, we further develop the method to study
the static and dynamic properties of triangular lattice QDM.
The problem has a long and interesting history. From the work

of Moessner and Sondhi12, one knows that from the mapping to
frustrated Ising model on honeycomb lattice, the problem is in
principle solvable via MC simulations on the frustrated Ising
model, and a
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VBS and a Z2 QSL are suggested. Then in

a series of works with zero temperature Green’s function MC15–18,
the transition from the QSL to VBS, with the notion that the gap of
topological vison excitations is closed at the transition is revealed,
although the numerical method therein only work close to the RK
point and zero temperature. Later, the dynamical dimer correla-
tions at the RK point is presented in ref. 22, taking the advantage
that at the RK point, the quantum mechanics in imaginary time
among the equally weighted dimer coverings is equivalent to a
classical stochastic process23. Despite of these important pro-
gresses, the complete spectra of both dimer and vison excitations,
not only the gap but also the spectral weight, and the complete
understanding of the transition from Z2 QSL to the
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in terms of symmetry fractionalization of topological order, and
the nature of the complex O(4) order parameter of the VBS, are
not revealed. Here we try to answer these questions with unbiased
QMC and symmetry analysis.

RESULTS
Model and measurements
We study the QDM on triangular lattice with the Hamiltonian,

ð1Þ
where the sum runs over all plaquettes including the three possible
orientations. The kinetic term, controlled by t, flips the two dimers
on every flippable plaquette, i.e., on every plaquette with two
parallel dimers, while the potential term V describes interactions
between nearest-neighbor dimers. Throughout the paper, we set
t= 1 as the energy unit and the inverse temperature β= 1/T with
temperature scale also measured according to t.
Before the sweeping cluster QMC19–21, one commonly employs

the projector approaches to study QDMs, which includes the
Green’s function15–18 and diffusion MC schemes24,25. These
projector methods obey the geometric constraints, but are not
effective away from RK point26 and only work at T= 0. Also, there
exists no cluster update for the projector methods to reduce the

computational complexity. On the contrary, the sweeping cluster
algorithm is based on path-integral in the world-line MC
configurational space of all finite temperatures and features
efficient cluster update for constrained systems. It is an general
extension of the directed-loop algorithm27,28 for the D dimension
classic dimer model29 to the quantum dimension of (D+ 1). Since
our QMC works at finite temperature, we can also access the
imaginary time correlation functions. And from here, we employ
the stochastic analytic continuation (SAC) method30–39 to obtain
the real frequency excitation spectra from their QMC imaginary
time correspondance. The reliability of such QMC-SAC scheme has
been extensively tested in quantum many-body systems, ranging
from 1D Heisenberg chain33 compared with Bethe ansatz, 2D
Heisenberg model36,38 compared with exact diagonalization, field
theoretical analysis and neutron scattering of square lattice
quantum magnet, Z2 quantum spin liquid model with fractiona-
lized spectra35,39 compared with anyon condensation theory to
quantum Ising model with direct comparison with neutron
scattering and NMR experiments40,41.
We compute three dynamical correlation functions. The first

one is dimer correlation. The dimer operator Di= 1 or 0 when
there is a/no dimer on the link i. The dimer correlation function is
defined as Cdðri;j; τÞ ¼

P
i;jhDiðτÞDjð0Þi � hDii2, and Cd(q, τ)

through the Fourier transformation, then the excitation spectrum
Cd(q, ω) via SAC.
The second one is vison correlation. Visons (Vi) live in the

centre of triangle plaquettes and they must arise in pairs, as
shown in the right inset of Fig. 1c. The correlation function is
defined as ViVj ¼ ð�1ÞN

0
Pij where N0

Pij is the number of dimers
along the path Pij we chose between plaquettes i and j as shown
in Fig. 1c. It is clear that the value of ViVj is path dependent.
In order to eliminate this dependence, one can choose a
reference configuration, and follow the same path Pij again to
obtain another N

00
Pij and then the observable NPij ¼ N0

Pij � N
00
Pij is

path independent. Then we redefine Cvðri;j; τÞ ¼ hViðτÞVjð0Þi ¼
hViðτÞVið0ÞVið0ÞVjð0Þi ¼ hð�1ÞNHtþNPij i where NHt means the
number of the t-term in Eq. (1) between Vi(τ) and Vi(0). We
choose the reference configuration as the columnar VBS shown
in Fig. 1a, which doubles the unit cell and the corresponding BZ
under this reference (gauge choice) is the dashed rectangle
with high symmetry points A, B and C in Fig. 1b.
The last one is another “dimer”, i.e., the vison-convolution

correlation function. We denote this “dimer” - the vison-
convolution (VC) operator - as Dvc

i ¼ Vi1Vi2di . The idea is that if
two visons are closest to each other, sharing the same link, then
the Dvc

i on link i can be represented as the product of these two
vison operators, with i1 and i2 the triangle plaquettes closest to the
link i. di= ±1 when there is no/one dimer on link i of the reference
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Fig. 1 Schematic diagram of quantum dimer model on triangular lattice. a The triangular lattice QDM. The two terms in the Hamiltonian
Eq. (1) are depicted. The primitive vectors a1 and a2 are shown. The columnar reference dimer configuration for the measurement of vison
correlations is also shown. b The solid hexagon and dashed rectangle are the Brilliouin zone (BZ) for the dimer and vison correlations,
respectively, with Γ−M− K− Γ the high symmetry path for the former and A− B− C− X− A for the latter. c Phase diagram of the triangular
lattice QDM. The V= 1 is the RK point and the Vc= 0.85(5) separates the Z2 QSL and
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VBS phases18. Approaching the Vc from the Z2

QSL, the dimer and vison-convolution spectral functions close gap at the X (M) points and correspondingly the vison spectra close gap at
B point. (Insets) The enlarged unit cell of the
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VBS is shown, with its BZ the dashed hexagon in b. A pair of visons in the QSL phase,

with a string presenting an arbitrary path chosen to evalue the vison correlation function Cv(ri,j).
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configuration. Assuming the interaction of visons is weak,
this correlation function Cvc

d ðri;j ; τÞ ¼ hDvc
i ð0ÞDvc

j ðτÞi � hDvc
i ð0Þi2 ¼hVi1ð0ÞVi2ð0ÞdiVj1ðτÞVj2ðτÞdji � hVi1ð0ÞVi2ð0Þi2 can be computed

using Wick’s theorem as the convolution of two vison operators,

Cvc
d ðri;j; τÞ ¼ hVi1ð0ÞVj1ðτÞihVi2ð0ÞVj2 ðτÞididj þ hVi1ð0ÞVj2ðτÞihVi2ð0ÞVj1ðτÞididj:

(2)

Here, di is constant for link i under the gauge choice, and can be
taken outside the brackets. The spectrum Cvc

d ðq;ωÞ, which we refer
to as the vison-convolution spectrum, gives rise to the convolution
of two vison excitations. It is therefore of great importance to
compare it with the dimer spectrum Cd(q, ω), where the difference
will reveal the interaction effects among the visons in different
regions of the phase diagram. And we emphasize that although
the bottom of the dimer dispersion has been discussed in the
refs. 17,18, the full numerical calculation of the Cd(q, ω), Cv(q, ω) and
Cvc
d ðq;ωÞ dynamical correlation functions, both in the frequency

and momentum axes, are being presented here and they provide
the well-characterised example of the dynamics of a Z2 spin liquid
and a phase transition driven by condensation of fractional
excitations.

Spectra of dimer, vison and vison-convolution
In the Z2 QSL phase, the visons are the emergent and
fractionalized elementary excitation with no spin and charge
quantum numbers42. As discussed in the introduction, this is a
suitable advantage of the QDM that single vison spectrum can be
measured unambiguously, as usually the vison excitations have to
be constructed in mean-field as built-in without knowing the
unbiased physics43, or measured indirectly in lattice models of
frustrated magnets35,39,44–47.
We therefore measure the correlation functions of Cd(q, τ),

Cv(q, τ) and Cvc
d ðq; τÞ in QMC and then using SAC33–35 to generate

the real frequency spectra Cd(q, ω), Cv(q, ω) and Cvc
d ðq;ωÞ. These

results are presented in Fig. 2. Inside the Z2 QSL phase with V= 1,
all the spectra are gapped. The vison spectra acquire the smallest
gap at the order of ω ~ 0.1 at B point of BZ. And the dimer and VC
correlations are also gapped with their minimal at M point. It is

interesting to notice that the VC spectral gap at M point is higher
than the dimer gap at the same point, suggesting that actually
visons have a binding energy in forming the dimer correlation and
consequently their interaction effect is attractive and gives rise to
a bound state with lower energy than the naive convolution. In
addition to SAC, we also fit the excitation gaps directly from the
imaginary time correlation functions, as shown in Supplemental
Notes.
As V is reduced from 1 to 0.9 and 0.8, a QSL-VBS transition is

expected at Vc ~ 0.8515–18, and previous works from the gap
measurements and field analytical analysis12 have proposed
emergent O(4) symmetry at the transition. But how the entire
spectra change across the transition has not been shown due to
the lack of access to finite temperature fluctuation effects. With
our QMC+ SAC scheme, we observe that the vison gap closes at
the B point and the dimer and VC spectrum gap close at X and M
points of the BZ (subject to finite size effect of the QMC
simulation), as shown in Fig. 2 for V= 0.8 and 0.9. The minimal at Γ
and K of the VC spectra come from the allowed momentum
convolution of single vison spectra which has minimal at B. Such
gap closing process is a manifestation of the symmetry
fractionalization mechanism of anyon condensation in Z2 topolo-
gical order35,48–50. That is, since here the Z2 gauge field is odd in
nature (see the discussion in Supplemental Notes), the visons carry
π-flux throughout the lattice. As the QSL-VBS critical point is
approached, the vison gap will close and the entire vison spectral
weight will condensed at a finite momentum point. In a similar
manner, the dimer spectra, generated from the vison bound
states, will also close at a finite momentum point. This is different
from the usual Bose condensation from disorder symmetric state
to ordered symmetry-breaking state, where the condensation of
the low-lying bosons usually close gap at the Γ point. Since in our
case the disordered state has intrinsic topological order with
elementary excitations (visons) carrying finite momentum (π-flux),
the condensation gap manifests finite momentum closing. Similar
translation symmetry fractionalization process, has also been
observed in π-flux Z2 spin liquid realized in the Kagome lattice
model35,48–50, which is proposed to be used as an experimental

Dimer                                  Vison-convolution                                Vison

Fig. 2 Spectra of dimer, vison-convolution and vison. Spectra of dimer (a–c), vison-convolution (d–f) and vison (g–i) correlation functions
across the VBS-QSL transition. For (a, d, g), (b, e, h), and (c, f, i), V= 0.8, 0.9, and 1, respectively. The results are obtained from L= 12 and β=
200(T= 1/200) systems.
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signature of quantum spin liquid in neutron scattering for Kagome
antiferromagnet51–53. Also, one sees that at V= 0.9 and 0.8, there
are more higher energy spectral weights in dimer, VC and vison
spectra, coming from the enhanced quantum critical fluctuations
of the QSL-VBS transition.

Emergent O(4) symmetry and order parameter of VBS
Next we discuss the nature of the QSL-VBS transition and the
symmetry breaking pattern of the
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phase. As explained

in the Supplemental Notes, it is expected theoretically13,54 that
this transition is driven by the condensation of visons, which is
described by a four-component order parameter {ϕi}, i= 0, 1, 2, 3
constructed from the Fourier transformation vison configuration
at momenta B, i.e. ±ðπ6 ; π6Þ and ±ð� π

6 ;
5π
6 Þ in Fig. 1b. The order

parameter transforms as a 4D representation under the lattice
wallpaper-group symmetries, and the matrix form of group
actions are summarized in the Supplemental Notes.
In order to numerically confirm that the order parameter ϕi

indeed captures the QSL-VBS transition, we perform a principal
component analysis (PCA) on the vison correlation function Cv to
extract the condensing mode near the transition. PCA diagona-
lizes the 4 × 4 matrix of the momentum-space vison correlation
function at the B point, and identifies the eigenvectors with the
largest eigenvalues corresponds to the modes represented by the
order parameter ϕi. We list the ratio of the first largest eigenvalue
over the second at V= 0.5–1 in Table 1. Since the largest
eigenvalue always dominate, it shows that the principal compo-
nent of the VBS structure is indeed the expected
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order.

The theoretical analysis further predicts that, at the QSL-VBS
critical point, the transition point acquires an emergent O(4)
symmetry, as O(4)-symmetry-breaking terms become irrelevant.

In other words, the order parameter lives homogeneously on a
four-dimensional sphere12.
To reveal such emergent O(4) symmetry at the QSL-VBS critical

point and its breaking inside the
ffiffiffiffiffi
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VBS phase. We

prepare the order parameter histogram in Fig. 3. By reorganizing
the order parameters into ϕ0 ¼ ϕ�

2 ¼ w þ ix and ϕ1 ¼ ϕ�
3 ¼ y þ iz.

Since the order parameter is four dimensional and hard to
visualize, we draw two-dimensional projected histogram (w, x) and
(y, z) of the 4D order parameter near the phase transition point at
V= 0.85 and deep inside the VBS phase at V= 0. Figure 3a and b
are the two independent projections of the 4D (w, x, y, z) space
and clearly an emergent O(4) symmetry is present. The Inset
shows the modulus distribution of the 4D sphere (with arbitrary
unit) which means the order indeed lives homogeneously on a
four-dimensional sphere55. Figure 3c and d are the same analysis
inside the VBS phase, and here clearly distinctive points in the two
projected phase are present, which are in full consistency with the
symmetry analysis in Supplemental Notes, i.e. the
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breaks the O(4) symmetry.

Table 1. Principal component analysis.

V 0.5 0.6 0.7 0.8 0.9 1

L1/L2 85.03 82.05 76.18 68.48 51.36 29.71

L1/L2 means the first largest eigenvalue over the second of the
momentum-space vison correlation function matrix at B point. All data
are obtained at a 12 × 12 lattice with β= 200(T= 1/200).
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Fig. 3 The four-dimensional order parameter. a and b are the projection of the four-dimensional order parameter (w, x, y, z) at the QSL-VBS
critical point with V= 0.85 on the two-dimensional (w, x) plane (a) and on the (y, z) plane (b). (Inset) The density distribution per unit sphere
area of the O(4) order parameter modulus at V= 0.85, such radial dependence reveals that the order parameter indeed form a O(4) sphere.
The red line joins the points. c and d are the projection of the four-dimensional order parameter deep in the
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VBS phase at V= 0.

The histogram is on the (w, x) plane (c) and the (y, z) plane (d). The data in a, b, c and d are obtained from system size L= β= 36(T= 1/36).
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DISCUSSION
Via the sweeping cluster QMC algorithm, supplemented with SAC
scheme to obtain the real-frequency data and symmetry analysis of
the VBS order parameter, we reveal the excitation spectra in
different phases of the triangular lattice QDM, in particular, the
single vison excitations inside the Z2 QSL and its condensation
towards the
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VBS with the translational symmetry

fractionalization. We found the vison-convolution spectrum is
different from the dimer spectrum due to the vison interaction
effect, and we also unearth the emergent O(4) symmetry at the QSL-
VBS transition and the nature of the
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order parameter and symmetry breaking. We note that our results
not only confirm expectations on triangular lattice QDM by previous
works12,13,15–18, but more importantly, move forward by directly and
reliably characterising the single particle dynamics of fractional
excitations using controlled numerics, and demonstrating their
condensation towards symmetry-breaking phase. We believe our
work provide the well-characterised example of the dynamics of a Z2
spin liquid and opens an avenue for generic solution of the static
and dynamic properties of QDMs and other strict constrained
systems, such as those in programmable quantum simulators based
on Rydberg atom arrays56–58 and superconducting qubits59,60 where
geometry frustration and dynamics of quantum Ising models have
been proposed and partially realized.

METHODS
Sweeping cluster algorithm
This is a quantum Monte Carlo method developed by author which can
work well in constrained spin models19–21. The key idea of sweeping
cluster algorithm is to sweep and update layer by layer along the
imaginary time direction, so that the local constraints (gauge field) are
recorded by update-lines. Via this way, all the samplings are done in
the restricted Hilbert space, i.e. the low-energy space. In this article, we
can measure the information of single vison because in a strictly
constrained space, the energy gap of other quasi-particles such as spinon,
becomes infinite large and thus these quasi-particles does not exist in the
restricted Hilbert space. We also note that due to the reduced
computational complexity with global updates, the system sizes
simulated here is three times larger than those simulated with the
projection methods in previous works16–18.

Stochastic analytic continuation
The main idea of this method30–32 is to obtain the optimal solution of the
inverse Laplace transform via sampling depend on importance of good-
ness. From sweeping cluster method, we can obtain a set of imaginary time
correlation functions G(τ). The real-frequency spectral function and the
imaginary time correlation function have the following transformation
relationship as GðτÞ ¼ 1

π

R1
0 dωðe�τω þ e�ðβ�τÞωÞSðωÞ. In order to inversely

solve this equation, we must fit a better spectral function. Let the spectral
function has a general form as S(ω)= ∑iaiδ(ω−ωi). By sampling according
to the importance of goodness of fit, we can finally get the spectral
function numerically. The reliability of such QMC-SAC scheme has been
extensively tested in quantum many-body systems, ranging from 1D
Heisenberg chain33 compared with Bethe ansatz, 2D Heisenberg
model36,38 compared with exact diagonalization, field theoretical analysis
and neutron scattering spectra in real square lattice quantum magnets,
deconfined quantum critical point36,37 and deconfined U(1) spin liquid
phase with emergent photon excitations61, Z2 quantum spin liquid model
with fractionalized spectra35,39 compared with anyon condensation theory,
to quantum Ising model with direct comparison with neutron scattering
and NMR experiments40,41.

DATA AVAILABILITY
The data that support the findings of this study are available from the authors upon
reasonable request.
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