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A 40-year-old puzzle in transition metal pentatellurides ZrTe5 and HfTe5 is the anomalous peak in the
temperature dependence of the longitudinal resistivity, which is accompanied by sign reverses of the Hall
and Seebeck coefficients. We give a plausible explanation for these phenomena without assuming any
phase transition or strong interaction effect. We show that, due to intrinsic thermodynamics and diluteness
of the conducting electrons in these materials, the chemical potential displays a strong dependence on the
temperature and magnetic field. With that, we compute resistivity, Hall and Seebeck coefficients in zero
field, and magnetoresistivity and Hall resistivity in finite magnetic fields, in all of which we reproduce the
main features that are observed in experiments.
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Introduction.—A 40-year-old puzzle in transition metal
pentatellurides ZrTe5 and HfTe5 is the anomalous peak in
the temperature dependence of resistivity and the accom-
panying sign reverses of Hall and Seebeck coefficients
[1–5]. The peak temperature Tp varies in the range 0–200 K
in different samples. Early attempts to explain these
transport anomalies through a structural transition or charge
and spin density waves failed [6,7]. A recent theoretical
proposal [8] that they are good candidates of topological
insulators or Weyl semimetals has motivated a great effort
to reinvestigate the two materials, leading to many inter-
esting discoveries, such as the chiral magnetic effect [9] and
3D quantum Hall effects [10]. Regarding the puzzle,
important progress was made by angle-resolved photo-
emission spectroscopy (ARPES) experiments [11,12] (see
also Refs. [13–15]): it was observed that, as temperature
increases, the chemical potential shifted from the electron-
like conduction band to the holelike valence band, con-
sistent with the change of charge carrier type. This
observation was attributed to the temperature-induced
Lifshitz transition, but the underlying reason remains
unclear. Other explanations to the puzzle are also proposed,
such as polaronic models with strong electron-phonon
coupling [16,17], bipolar conduction [18], semimetal-semi-
conductor transition [19], or topological phase transition
[20,21]. So far, the problem is still under debate.
In this Letter, we show that the above puzzle can be well

resolved by intrinsic thermodynamics of noninteracting
electrons, without the need of a phase transition or
strong interaction. One of our key observations is that
there are two small energies in ZrTe5 and HfTe5: the Fermi
energy EF and a particle-hole (PH) symmetry breaking
energyΔ. The latter implies that the density of states (DOS)
becomes very asymmetric between the conduction and
valence bands for energy bigger than Δ. Estimates from

experiments are EF ¼ 15–40 and Δ ¼ 30–40 meV. We
show that the smallness of EF and Δ makes the chemical
potential highly sensitive to the temperature T and external
magnetic field B, leading to the experimentally observed
chemical potential shift [11,12]. With this thermodynamic
property and the Kubo formula, we are able to reproduce
the main transport features observed in experiments,
including the resistivity peak and sign reverses of the
Hall and Seebeck coefficients.
Model.—Our discussions will focus on ZrTe5 but they

can be easily adapted to HfTe5. ZrTe5 is a highly
anisotropic layered material. According to Ref. [11], the
low-energy band structure contains a Dirac-like electron
pocket at Γ point and four other electron pockets near the
Brillouin zone boundary. We model them by an anisotropic
Dirac fermion and four identical anisotropic quadratic
fermions [Fig. 1(a)]. The Dirac fermion has the well-known

relativistic dispersion E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ v2xp2

x þ v2yp2
y þ v2zp2

z

q
,

where m is the Dirac mass and vα is the velocity in α
direction, α ¼ x, y, z. The energy bottom of the quadratic
fermions is Δ, measured from the midpoint of the Dirac
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FIG. 1. (a) Schematics of the low-energy band structure in
ZrTe5. (b) Landau level bottoms of 3D Dirac and quadratic
fermions with B ¼ 4 T (energy in units of meV; see Fig. 2 for
numerics). (c) Densities of states at B ¼ 0 and (d) at B ¼ 4 T
(smoothed by a small disorder).
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dispersion. For the Dirac and quadratic fermions, densities
of states per volume are given, respectively, by

D1ðϵÞ ¼ 2α1jϵj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

p
Θðjϵj −mÞ;

D2ðϵÞ ¼ 2κα2
ffiffiffiffiffiffiffiffiffiffiffi
ϵ − Δ

p
Θðϵ − ΔÞ; ð1Þ

where α1 ¼ 1=ð2π2ℏ3vxvyvzÞ, ΘðxÞ is the Heaviside step
function, κ ¼ 4 denotes the four copies of quadratic
fermions, α2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�

xm�
ym�

z
p

=ð2π2ℏ3Þ, m�
α is the aniso-

tropic effective mass of quadratic fermions, and the factor
2 comes from spin degeneracy. The total DOS is
DðϵÞ ¼ D1ðϵÞ þD2ðϵÞ. We emphasize that the Dirac
dispersion is PH symmetric, i.e., D1ðϵÞ ¼ D1ð−ϵÞ. The
presence of the quadratic fermions breaks the PH
symmetry.
We also consider the effect of an external magnetic field

B ¼ Bẑ, under which electron eigenstates form Landau
levels. Details on Landau levels of the Dirac fermion can be
found, e.g., in Refs. [22,23] or the Supplemental Material
[24]. The Landau level energy is given by
Ea ¼ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ℏ2ω2

c1N þ v2zp2
z

p
, where N ≥ 0 is the

Landau level index, pz is the momentum along z
direction, λ ¼ �1 represents the electron or hole branch,
respectively, ωc1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2vxvyeB=ℏc

p
is relativistic

cyclotron frequency, and Zeeman splitting is neglected.
Landau levels of quadratic fermions are textbook
results, with the energy E¼ℏωc2ðNþ1=2Þþp2

z=2m�
zþΔ,

where ωc2 ¼ eB=ðc ffiffiffiffiffiffiffiffiffiffiffiffi
m�

xm�
y

p Þ. The densities of states are
now given by

D1ðϵ; BÞ ¼ α1
X
N≥0

dNℏ2ω2
c1jϵj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 − E2

N1

p Θðjϵj − EN1Þ;

D2ðϵ; BÞ ¼ κα2
X
N≥0

ℏωc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − EN2

p Θðϵ − EN2Þ; ð2Þ

where dN ¼ 2 − δN;0, EN1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ℏ2ω2

c1N
p

, and
EN2 ¼ ℏωc2ðN þ 1=2Þ þ Δ. The latter two are the bottom
energies of 3D Landau levels of the Dirac and quadratic
fermions, respectively. In the limit B → 0, expressions
in (2) reduce to those in (1).
Figure 1(b) plots the Landau level bottoms at B ¼ 4 T to

give readers a sense of level spacings, with numerics given
in the caption of Fig. 2. We note that the Dirac fermion is
“lighter” than the quadratic fermions and thereby has
bigger level spacings. Figures 1(c) and 1(d) show densities
of states in zero field and in a finite B field, respectively.
Effect of disorder is neglected in our thermodynamic
calculations. It will be included in our calculations of
transport properties below.
Chemical potential μðT; BÞ.—With the above densities

of states, we now study the T and B dependence of the
chemical potential μ. The particle number density
nðT; B; μÞ can be expressed as

nðT; B; μÞ ¼
Z

∞

0

dϵDðϵ; BÞfTðϵ − μÞ

þ
Z

0

−∞
dϵDðϵ; BÞ½fTðϵ − μÞ − 1�; ð3Þ

where fTðϵÞ ¼ 1=½expðϵ=TÞ þ 1� is the Fermi-Dirac dis-
tribution (Boltzmann constant kB is absorbed into T
throughout the Letter). Charge neutrality is taken to be
at ϵ ¼ 0. The density n is fixed in a given 3D sample, so
Eq. (3) should be understood as an integral equation that
defines a function μðT; BÞ.
We solve Eq. (3) numerically by setting all the para-

meters in (1) and (2) to be comparable to experimentally
measured values [10]. The results are shown in Fig. 2.
When T varies in the range 0–25 meV and B varies in the
range 0–25 T, our calculation shows a significant variation
in μ, of the order of EF, in agreement with the ARPES
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FIG. 2. Plots of the chemical potential μ versus temperature T and magnetic field B, obtained from Eq. (3) with parameters set
approximately to the experimental values in Refs. [10,11]: EF ¼ 25 meV, m ¼ 15 meV, Δ ¼ 30 meV, ℏvx ¼ 6.0 eVÅ,
ℏvy ¼ 1.3 eVÅ, ℏvz ¼ 0.2 eVÅ, m�

x ¼ m�
y ¼ 0.2me, m�

z ¼ 2me, with me being the electron mass. The effective masses
m�

x; m�
y; m�

z of the quadratic fermions have not been measured experimentally to our knowledge, so they are set to typical values
with anisotropy taken into account. The associated number density is n ¼ 1.73 × 1017 cm−3, and cyclotron energies are ℏωc1 ¼
15.3

ffiffiffiffi
B

p
and ℏωc2 ¼ 2.4B meV. (a) Color plot of μðT; BÞ. (b) T dependence of μ for several fixed B’s. (c) B dependence of μ for several

fixed T’s. Numerical data in other figures are the same as here if not otherwise specified.
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observation [11]. In particular, for B ¼ 0, the chemical
potential μ decreases monotonically from a positive EF into
a negative value around T0 ≈ 10 meV. One can show that
this monotonic decreasing behavior occurs for a fairly
general class of densities of states—see Supplemental
Material [24]. A monotonic behavior is also observed
when T ≳ ℏωc1 for a finite B. When T ≲ ℏωc1, quantum
oscillations in μ can also be seen in Fig. 2(c), which,
however, is not our focus.
The fact that μ changes so dramatically compared to

conventional metals in the temperature regime T ≲ 25 meV
and in experimentally accessible magnetic fields B≲ 25 T
follows from two properties of ZrTe5: (i) EF is small,
approximately 25 meV, i.e., conducting electrons are dilute,
and (ii) the PH symmetry is broken at the energy scale ofΔ,
and Δ ≈ EF. Generally speaking, variation of μ is set by
T=EF and ℏωc1=EF. Accordingly, a small EF makes it
easier to achieve a significant change in μ by tuning T and
B. Nevertheless, without property (ii), one can show that
the PH symmetry guarantees μ > 0, if EF > 0. Or equiv-
alently, PH symmetry pushes the sign-reversing temper-
ature T0, defined by μðT0; BÞ ¼ 0, to infinity. To have a
finite T0, the PH symmetry must be broken. We will show
below that T0 is closely related to the sign-reversing
temperature of the Hall and Seebeck coefficients. While
the scale of T0 is set by Δ, its precise value depends on EF,
the effective massesm�

α, magnetic field B, etc. We note that,
in Fig. 2(b), T0 barely displays a dependence on B.
However, there is actually a very weak quadratic correction,
δT0 ∝ B2, which we discuss in the Supplemental Material
[24]. We remark that a nonzero Dirac mass m is not
important. Very similar behaviors of μ and transport
properties are obtained for m ¼ 0 (see Supplemental
Material [24] for more discussions).
Resistivity, Hall and Seebeck coefficients.—We now

proceed to calculate transport coefficients and see if
the above thermodynamic behaviors can result in the
experimentally observed resistivity peak and other trans-
port phenomena. We begin with the longitudinal resis-
tivity ρxxðTÞ, Hall coefficient RHðTÞ, and Seebeck
coefficient SxxðTÞ in zero magnetic field. Below, we
only discuss transport properties in electron-doped
systems (i.e., EF > 0). Zero-field transport in hole-
doped systems is discussed in the Supplemental
Material [24].
To calculate transport coefficients, we use the Kubo

formula (see, e.g., Refs. [27,28]). Our calculations are
standard and details are included in the Supplemental
Material [24]. The Hall coefficient, defined by ρyx ¼ RHB,
is obtained by taking the B → 0 limit of our finite-
magnetic-field results. The Seebeck coefficient is computed
by a generalized Mott formula that was obtained in
Ref. [29]. Here, we discuss how disorder is treated.
Disorder is the only source of resistivity in our calculations,
as electron-phonon and electron-electron scattering are

absent. It is included by an energy level broadening Γa
in the single-particle Green’s function

GaðωÞ ¼
1

ω − Ea þ iΓaðωÞ
; ð4Þ

where Ea is the energy associated with the single-particle
eigenstate jai. We take a crude simplification: ΓaðωÞ ¼ Γ1

is a constant for all eigenstates of the Dirac fermion, and
ΓaðωÞ ¼ Γ2 is also a constant for all eigenstates of the
quadratic fermions. We will see that this somewhat over-
simplified treatment produces surprisingly good results. In
the Supplemental Material [24], we also apply the Born
approximation [28] of disorder for zero-field transport
quantities as a comparison, but no qualitative difference
is observed. Therefore, we will not bother to apply more
realistic disorder models at finite B fields where self-
consistent Born approximation may be necessary for large
B [30].
Evaluations of ρxxðTÞ, RHðTÞ, and SxxðTÞ are done

numerically with an input of temperature-dependent μ
determined from Eq. (3). The results are shown in
Fig. 3. Indeed, an anomalous peak appears in the longi-
tudinal resistivity and the sign reverses in both the Hall and
Seebeck coefficients, all of which occur around the
temperature T0. The shapes of the curves in Figs. 3(a),
3(c), and 3(e) agree very well with those in experiments
[1–5,10,15,31]. To have a better understanding, we show
different contributions to the longitudinal conductivity σxx
and Hall conductivity σxy in Figs. 3(b) and 3(d).
Contributions from intrabranch scatterings of the Dirac
fermion (σð1Þαβ;e and σð1Þαβ;h) dominate, and those from inter-
branch scattering σð1Þαβ;eh and the quadratic fermions σð2Þαβ are
negligible in the temperature regime of our interests.
Intuitively, the “relativistic” Dirac fermion moves much
faster than the “nonrelativistic” quadratic fermions, and so
contributes more to the conductivity [32]. Although they do
not conduct much current, the quadratic fermions do serve
as good thermodynamic reservoirs, as shown in Fig. 3(f).
That is, they are thermodynamically activated, but not quite
in transport.
Analytically, once we neglect the contributions from the

quadratic fermions and interbranch scattering of the Dirac
fermion and focus on the regime T ≫ Γ1, the conductivities
can be approximated by

σxx ≈ Cxx

X
λ¼�

Z
∞

m
dϵ

ðϵ2 −m2Þ3=2
ϵ

½−f0Tðλϵ − μÞ�;

σxy ≈ Cxy

X
λ¼�

Z
∞

m
dϵ

ðϵ2 −m2Þ3=2
ϵ2

½λf0Tðλϵ − μÞ�; ð5Þ

where the coefficients are Cxx ¼ v2xα1ℏe2=ð3Γ1Þ and
Cxy ¼ e3ℏ2Bv2xv2yα1=ð6cΓ2

1Þ. The conductivity σyy can be
obtained by replacing the index “x” with “y” in the
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expression of σxx, and the resistivity is given by
ραβ ¼ ðσ−1Þαβ. One can see that, when μ ¼ 0, the Hall
conductivity σxy is zero, which is a consequence of the PH
symmetry of the Dirac fermion. The nonzero conductivity
σð2Þxy , though tiny, makes the sign-reversing temperature T̃0

of RH differ slightly away from the sign-reversing tempera-
ture T0 of μ.
Magnetoresistivity and Hall resistivity at finite B.—The

longitudinal resistivity ρxxðT; BÞ and Hall resistivity
ρyxðT; BÞ in a finite magnetic field B are also calculated.
The calculation is similar to the zero-field case: we first
express the Kubo formula of the conductivity tensor σαβ in

the Landau level basis, then input the chemical potential
μðT; BÞ obtained from Eq. (3), and finally evaluate the
conductivity numerically (see details in the Supplemental
Material [24]).
Numerical results are shown in Fig. 4. Our focus is the

high-field and high-temperature regime, i.e., T, ℏωc1 ≳ Γ1.
The curves of ρxx and ρyx as functions of T or B again show
good agreement with experiments. Two features deserve
some attention. First, the “anomalous” peak in ρxxðTÞ is
largely enhanced by the magnetic field, which was initially
observed in experiments in Ref. [33] (see also [10,31]).
Theoretically, current conduction occurs when electrons
and/or holes hop between two states, in the Nth and
(N þ 1)th Landau levels, respectively, whose energies
overlap after disorder broadening. By increasing B such
that Landau level spacing is larger than Γ1, available states
that overlap in energy greatly decrease, leading to enhance-
ment of resistivity. For the same reason, ρyx is also enlarged
by the magnetic field. Second, the temperature T̃0 at which
σxy ¼ 0 (equivalently, ρyx ¼ 0) increases as B increases
(e.g., see experiments in Refs. [10,31]). When B is large,

σð2Þxy cannot be neglected, as shown in the inset of Fig. 4(b).
The underlying reason is that Landau level spacing is much
smaller for the quadratic fermions than for the Dirac

fermion, so σð1Þxy reduces faster than σð2Þxy as B increases.

If σð2Þxy is neglected, σxy ¼ 0 occurs at μ ¼ 0 and so
T̃0 ¼ T0, which has negligible B dependence. Now that

σð2Þxy is non-negligible, its B dependence as well as the B
dependence of other conductivity contributions make T̃0

increase as B increases. This is also the reason behind the
feature that ρyxðBÞ reverses the sign as B increases, for
certain temperatures, as shown in Fig. 4(d).
Discussions.—In summary, we have proposed a mecha-

nism for the long-standing transport anomaly in dilute
metals ZrTe5 and HfTe5. Our proposal describes a scenario
that a minority current carrier may be thermodynamically
very active, leading to intriguing interplay between equi-
librium thermodynamics and transport properties. Many
aspects of this work can be improved, e.g., by a more

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Temperature dependence of the longitudinal resistivity
(a) ρxx, (c) Hall coefficient RH , and (e) Seebeck coefficient Sxx
with different Fermi energies. The level broadening constants are
set by Γ1 ¼ 0.5 meV (estimated from experimental data in
Ref. [10]) and Γ2 ¼ 10Γ1 (see an estimate in the Supplemental
Material [24] using Born approximation) throughout our calcu-
lations. (b),(d) Different contributions to the longitudinal con-
ductivity σxx and Hall conductivity σxy at EF ¼ 25 meV. (f) The
density ratios nDirac=n and nquad=n versus temperature.

(a) (b) (c) (d)

FIG. 4. Calculated magnetoresistivity and Hall resistivity. (a),(b) Temperature dependences of magnetoresistivity ρxx and Hall
resistivity ρyx in various magnetic fields. (c),(d) Magnetic-field dependences of ρxx and ρyx at various temperatures. Inset in (b) shows
different contributions to σxyðTÞ at B ¼ 10 T. The dashed lines mark the temperatures at which μ ¼ 0 and σxy ¼ 0, respectively. Units of
all numerics are the same as in Fig. 3.
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realistic handling of disorder and by including electron-
phonon coupling in the high-temperature regime. However,
we believe that our model captures the essence of the
experimentally observed transport anomalies. In the present
model, the quadratic bands are responsible for PH
symmetry breaking. However, in real samples there exist
other factors that break PH symmetry, e.g., additional
electron pockets [34] or the Dirac band itself being
asymmetric [17]. Hence, detailed experimental or first-
principles study on the asymmetry of low-energy band
structure is strongly encouraged for the purpose of verify-
ing or falsifying our theory at a more quantitative level.
This work can be thought of as a microscopic theory of the
phenomenological multicarrier model that is commonly
used to fit experimental data [10,15,31]. For future studies,
it would be interesting to extend this work to other dilute
metals, such as SrTiO3 [35].
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