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Abstract—The automatic diagnosis of various conventional
ophthalmic diseases from fundus images is important in clinical
practice. However, developing such automatic solutions is chal-
lenging due to the requirement of a large amount of training data
and the expensive annotations for medical images. This paper
presents a novel self-supervised learning framework for retinal
disease diagnosis to reduce the annotation efforts by learning the
visual features from the unlabeled images. To achieve this, we
present a rotation-oriented collaborative method that explores
rotation-related and rotation-invariant features, which capture
discriminative structures from fundus images and also explore
the invariant property used for retinal disease classification.
We evaluate the proposed method on two public benchmark
datasets for retinal disease classification. The experimental results
demonstrate that our method outperforms other self-supervised
feature learning methods (around 4.2% area under the curve
(AUC)). With a large amount of unlabeled data available, our
method can surpass the supervised baseline for pathologic myopia
(PM) and is very close to the supervised baseline for age-related
macular degeneration (AMD), showing the potential benefit of
our method in clinical practice.

Index Terms—Self-supervised learning, retinal disease classifi-
cation

I. INTRODUCTION

Fundus photography is a valuable clinical tool for evaluating
various ophthalmic diseases, e.g., aged-related macular de-
generation (AMD) [1, 2], glaucoma (GON) [3-7], pathologic
myopia (PM) [8], and diabetic retinopathy (DR) [9]. Recently,
computer-aided detection techniques help ophthalmologists
to automatically diagnose these retinal diseases by learning
the representative features from fundus images though the
deep convolutional neural networks (CNNs) [10, 9, 11-13].
These CNN-based methods require annotations of diseases
in the fundus images. However, annotating the fundus image
is tedious and expensive, where the professional knowledge
is also required. Self-supervised learning (SSL), also called
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Figure 1: (a) shows the rotation prediction task. Each fundus
image contains the obvious structures, i.e., optic disc, and
blood vessels. Rotating a fundus image by 90° will change the
obvious orientation of these structures; (b) Images generated
from one patient image under different augmentations (positive
pairs) should be similar in the embedding space, while images
from different patients (negative pairs) should be dissimilar.
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unsupervised visual representation learning, can help in this
regard by providing a strategy to pre-train a neural network
with unlabeled data, followed by fine-tuning for a downstream
task with limited annotations. Hence, in this paper, our goal
is to present a self-supervised method, which learns the
representative features from the data itself without any human
annotations. Then, the learned representation is evaluated on
retinal disease classification tasks.

Recently, self-supervised learning has attracted increasing
attention in the medical imaging domain, due to it is free
from human-annotated supervision and its potential of lever-
aging the massive amount of unlabeled data. Various types
of self-supervised methods have been developed for multiple
medical applications, such as subject identification from spinal
MRI [14], cardiac MR image segmentation [15], lung lobe



segmentation and nodule detection [16], brain hemorrhage
classification and brain tumor segmentation [17, 18]. The main
idea is to pre-define a handcrafted pretext task, which is used
to train a deep neural network to learn the visual features. The
pretext task usually performs a transformation to the input
images and requires the trained model to learn to predict
properties of the transformation from the transformed image.

In this work, we formulate a rotation prediction task by
adopting the rotation transformation to learn the rotation-
related features. This is based on the crucial observation that
the growth of abnormal blood vessels behind the macula tend
to hemorrhage or leak fluid, which is an important cause of
AMD [19]. Hence, exploring the low-level structure (e.g.,
vessel structures) information would be beneficial for the
observation of retinal diseases. We observe that the structures
of fundus images are sensitive to the orientations, e.g., the
optic disc, and the blood vessels have specific directions, as
shown in Figure 1(a). Hence, learning to predict rotations helps
discover the vessel structures of the fundus images, which
benefit self-supervised feature learning and then improve the
retinal disease diagnosis.

Although the features learned by the rotation prediction task
have explored the representative features for fundus images,
these features make the diagnosis (classification) results sen-
sitive to the image orientation, i.e., the network will produce
different results for the input image with different rotations. In
our task, the goal is to differentiate abnormal retinal diseases,
which is invariant to image rotations. Hence, in addition to
learn salient features, we present multi-view instance discrim-
ination task to learn rotation-invariant features. Specifically, as
shown in Figure 1(b), the multi-view instance discrimination
aims to learn the feature representations that are similar to the
representation of transformed versions of the input image and
different from other images, where the transformations include
rotation, randomly scaling, cropping, and the adjustment of
the image brightness, contrast, and saturation. By formulating
the collaborative learning tasks, i.e., rotation prediction and
multi-view instance discrimination, we encourage the network
to discover the discriminative structures of fundus images
and explore the robust representation used for fundus disease
diagnosis, and then use the learned features to improve
the overall performance of fundus disease diagnosis. Three
public datasets are employed to validate the effectiveness of
our self-supervised method for retinal disease diagnosis. We
summarize the main contributions of this work as follows:

o« We present a novel rotation-oriented collaborative self-
supervised learning method for disease classification from
fundus images. Our method does not require any human-
annotated labels during feature learning. With a large
amount of unlabeled data available, our method can
surpass the supervised baseline for PM and is very close
to the supervised baseline for AMD (see Table II and III).

o« We formulate a collaborative learning task that splits
features to learn rotation-related and -invariant repre-
sentations, which not only discover the discriminative
structures from fundus images but also explores the
invariant property used for retinal disease classification.

e Various experiments on two common eye diseases classi-
fication tasks demonstrate the superiority of our method
than other state-of-the-art self-supervised methods (4.2%
absolute improvement on AUC for AMD). Our code
is publicly available at https://github.com/xmengli999/
Rotation-oriented-self-supervised

II. RELATED WORKS

In this section, we first review related works on automatic
ophthalmic disease diagnosis from fundus photography and
then discuss some recent literatures on self-supervised feature
learning.

A. Automatic Disease Diagnosis from Fundus Photography

Automated identification of retinal diseases is a big step
towards early diagnosis and prevention of exacerbation of the
disease. Early works for automatic retinal disease diagnosis
from fundus photography are mainly based on the hand-
crafted features, such as AMD detection through texture anal-
ysis [20] or color filter based features [21]. Recently, a large
portion of research is dedicated to supervised methods that
show remarkable results with convolutional neural networks
for automatic retinal disease recognitions [22, 23, 9, 24—
27, 12, 28, 29]. For example, Burlina et al. [23] proposed a
pretrained OverFeat feature for AMD classification from color
fundus photos. Grassmann [27] classified AMD diseases into
13 classes through ensembling several convolutional neural
networks. Recently, Peng et al. [12] developed a DeepSeeNet
based on an Inception-v3 architecture [30] to identify patient-
level AMD severity. Their method first detects individual
risk factors and then the results are obtained by combining
values from both eyes. For PM classification, Freire et al. [28]
employed Xception [31] with ImageNet pretrained weights
to classify PM and Non-PM from fundus images. Additional
data such as RIGA and REFUGE datasets are also utilized
as the training data. Xie er al. [32] trained the ImageNet
pretrained ResNet50 with the labeled training data to classify
PM from fundus images and this method achieved the highest
result (99.74%) on a PM classification challenge [33]. Guo et
al. [34] proposed a lesion-aware segmentation network to
simultaneously classify and segment lesions.

However, these works are based on supervised learning,
which adopts a massive amount of labeled data for training,
and annotating fundus photography requires the substantial
effort of human experts. Different from the previous works, in
this paper, we focus on developing the self-supervised method
for retinal disease diagnosis to reduce the annotation efforts.

B. Self-supervised Learning

Recently, self-supervised/unsupervised visual representation
learning has attracted increasing attention due to its enormous
potential of being free from human-annotated supervision
and its extraordinary capability of leveraging the boundless
unlabeled data. Various types of self-supervised methods have
shown promising results in multiple application fields. In this
section, we discuss some related self-supervised techniques in
the domain of medical images and natural images.



Medical images. The key challenge for self-supervised learn-
ing is identifying a suitable self-supervision task, i.e., pretext
task, to train the neural networks. Notable pretext tasks used
in medical images include Rubik’s cube and Rubik’s cube+
recovery [17, 18], anatomical position prediction [15], recon-
structing part of the image like image completion [35, 36],
3D distance prediction [37], image-intrinsic spatial offset
prediction [38]. The common principle of these works is to
construct different pretext tasks by discovering supervisory
signals directly from the input data itself and train the deep net-
work to predict this supervisory information, from which the
high-level representation of the input is learned. For example,
Zhuang et al. [17] proposed the Rubiks cube recovery task,
i.e., cube ordering, and orientation pretext tasks, for the brain
hemorrhage classification and tumor segmentation from CT
and MR images. Zhu et al. [18] further improved this method
and proposed Rubik’s cube+ recovery task, which contains an
additional masking identification pretext task. Bai et al. [15]
formulated an anatomical position prediction pretext task to
learn self-supervised features for cardiac MR image segmen-
tation. Spitzer et al. [37] introduced a pretext task, which aims
at predicting 3D distance between two patches sampled from
the same brain. Recently, Taleb et al. [39] developed a series
of 3D self-supervised methods for 3D medical images.

Natural images. Most of the above self-supervised methods
defined a handcrafted pretext task to learn visual representa-
tion. This kind of idea has also been explored in the natural
images, such as relative patch prediction [40, 41], image
inpainting [42], colorizing gray-scale images [43], image jig-
saw puzzle [44], geometric transformations [45, 46]. These
methods are shown to be useful in various natural images.
Yet, even with suitable architectures, these methods are being
outperformed by contrastive methods [47].

Recently, contrastive methods [48-51], which are based on
the task of instance discrimination, currently achieve state-
of-the-art performance in self-supervised learning. The main
idea of contrastive approaches is to bring representations of
different views of the same image closer (‘positive pairs’)
and spread representations of views from different images
(‘negative pairs’) apart. For example, Dosovitskiy et al. [52]
proposed to use the Softmax embedding with classifier weights
to calculate the feature similarity, however, it prevents ex-
plicitly comparison over features, which results in limited
efficiency and discriminability. Wu et al. [49] developed a
memory bank to memorizes features of each instance. Ye et
al. [50] calculated the positive concentrated property based on
the “real” instance feature, instead of classifier weights [52]
or memory bank [49]. He et al. [48] used a moving average
network (momentum encoder) to maintain consistent represen-
tations of negative pairs drawn from a memory bank.

Most of the existing methods focus on designing a single
pretext task to learn visual feature representation. In con-
trast, we present a novel collaborative method to learn the
complementary information, i.e., rotation-related features and
rotation-invariant features, from different pretext tasks, thus
discovering the vessel structures in fundus images and dis-
criminative features for retinal disease diagnosis, respectively.

C. Learning Rotation-invariant Features

Some methods learn rotation-invariant features by design-
ing the network architecture to be rotation-invariant [53—
55]. For example, Cheng [53] introduced a rotation-invariant
layer and a Fisher discriminative layer and embedded them
into a neural network. Our method learns rotation-invariant
features by learning to predict rotations. Different from these
related works, our method is a self-supervised method without
modifying network architecture.

III. METHODOLOGY

Figure 2 shows the workflow of the overall architecture
of our self-supervised method for retinal disease diagnosis.
At the beginning, we randomly sample m images from the
training dataset S = {xl}fil For each image x;, we apply
random data augmentation twice to generate T; and T;; see
the z; and zo as examples in the Figure 2. Then, we gener-
ate the rotated images by rotating these augmented images
by 0°,90°,180°,270°, and each image is assigned with a
rotation label 0, 1,2, 3, correspondingly. After that, a feature
embedding network F'(-;6) is utilized to map the input x;
to a high-level feature vector f;, which is then decoupled
into fi(d and fi(r). These two decoupled features are collab-
oratively optimized by a multi-view instance discrimination
task and a rotation prediction task. Finally, we employ the
features learned from the multi-view instance discrimination
task to perform the retinal disease classification. Below, we
will elaborate on the rotation prediction, multi-view instance
discrimination, and other network details.

A. Rotation prediction task

To discover the salient structures of fundus images, we
perform the rotation prediction task to learn the rotation-
related features. The input x; is fed into a neural network (e.g.,
ResNet18) and we denote the output of the last residual block
as feature f;. Note that each image x; is rotated to obtain z; ,
as the inputs, the actual feature should be f; ,,, y € {0, 1,2, 3}.
To simplify the description, here, we use f; to represent
fi . Then, to reduce feature dimension and get a high-level
representation, two modules with a fully connected layer,
followed by a BN and a ReLU, are applied sequentially after
f;. Then, the feature is equally decoupled to fi(r) and fi(d)
along the channel dimension. Finally, a fully connected layer,
denoted as F.(-;0.), takes the feature fi(r) as the input and
generates four probabilities, followed by a Softmax operation.
As mentioned above, each image is assigned with a rotation
label, i.e., 0, 1, 2, 3. Then, the rotation prediction loss is
denoted as:

N 3
1
= ().
Lr=1N ;;“Fc(f“y 10c),9), (1)

where [ is the cross-entropy loss [56] used for the classification
task and y € {0,1,2,3} is the rotation label.
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Figure 2: The illustration of the proposed method. We randomly select m raw images in one mini-batch and random data
augmentation is applied twice to generate Z; and ;. We visualize the case that m = 2 for visualization. Each image is rotated
by {0°,90°,180°,270°} to derive the rotation-transformed images, i.e., T; 1, ;.2, Ti,3, L .4.%i,1, T2, Ti,3, Li,4. These images
are fed into the neural network to learn the high-level feature f, which is decoupled and then jointly optimized by two pretext
tasks, i.e., a multi-view instance discrimination task and a rotation prediction task. Finally, we adopt the features learned by
the multi-view instance discrimination task and evaluate the learned features on retinal disease classification, based on a kNN
classifier.

B. Multi-view instance discrimination task

exp (Zk 0 Z’y/f\z’k/T)
2?21 exp (Ek:() ij,kfi,y/T)

where 7 is the temperature parameter that controls the concen-
tration level of the sample distribution and 7 is set to 0.1 by
default [49]. £ Z k. denotes the cosine similarity between pos-

P(iffi,) = @)

To reveal the transformation-invariant representation for
retinal disease diagnosis, we present the multi-view instance
discrimination. As shown in Figure 2, Z; , and @,vy denote dif-
ferent data augmented views of image x;. The key hypothesis
of the instance discrimination task is that the good features
are shared between multiple views of the same fundus image.
Hence, the objective is that different data augmented views
(positive pairs) of a single image should be invariant in the
embedding space, while images from different patients (nega-
tive pairs) should be dissimilar, as illustrations in Figure 1(b).

After obtaining feature f @ for image x;, we first use Iy nor- Z Z logP(ilZi,y) Z Z Z log{(1 = P(ifz;4))},

ALY
= 1. For simplicity, (3)

where P(i|Z; ,) is the probability of Z; , being recognized as
class i, and 1 — P(i|z; ) is the probability of z; , not being
recognized as class i.

itive pairs whlle f kfl 4 denotes the cosine similarity between
negative pairs. Through the Softmax embedding function in
Eq. (2), the network pushes “negative pairs” away and pulls
“positive pairs” together. The final objective is minimizing the
sum of the negative log likelihood over all the images within
the batch, which is described as:

malization to normalize f , Le.,

in this section, we use f; to represent fi( . The positive pair is

,Y

represented as (f
label, i.e., y, k € {0,1,2,3}. The negative pair is denoted as

fi,k), where y and k denote the rotation

gfi,y,fj,k , where i # j; see color illustrations in Figure 2. C. Network details
or each iteration, we randomly sample m images from the

dataset. For each image x;, the augmented samples should be
classified into class 7 and the other images derived from z;
should not be classified to class 7. Formally, the probability of
Z;, being recognized as class ¢ is defined by L=Lg+ N, 4)

1) Loss function: The total objective is the weighted com-
bination of a rotation prediction task and a multi-view instance
discrimination task. The objective is denoted by



where ) is a weighting factor, indicating the importance of
the rotation prediction task. In our experiment, we set A = 1.
We also analyze the effects of A in Table V.

2) Network architecture: Our framework is based on the
ResNet18 [57], following the same setting as the previous
works [49, 50]. We apply a max pooling on the output
of the last residual block in ResNetl8. Then, the feature
is flattened to a vector, and a fully connected layer, batch
normalization, and ReLU are sequentially applied to reduce
the feature dimension to 256. Then, f is equally split into f(")
and f(4) to learn the rotation prediction task and the multi-view
discrimination task. A fully connected layer with the output
channel 4 is applied on £(") to generate the probabilities for
each rotation type, while a ls normalization layer is employed
on the £(%) to calculate the cosine similarities among features.

3) Implementation details: At each training iteration, m im-
ages are randomly selected, and random data augmentation is
applied twice to the selected images, resulting in 2m generated
images. Then each image is rotated by {0°,90°, 180°,270°} to
derive the rotation-transformed images, hence, the final batch
size is 8m. In our experiments, m is set to 64. This training
strategy also takes the full advantage of relationships among
all instances sampled in a mini-batch. To evaluate the learned
feature, we apply the k-nearest neighbors (kKNN) classifier
based on the (%) and k is empirically set to 100.

The whole framework is built on PyTorch [58] with an
NVIDIA Tesla V100 32GB GPU. We resized images to
320 x 320 resolution. For data augmentation, we randomly
scaled and cropped images into the patches of size 224 x 224,
with a random scaling factor chosen from [0.2, 1.0]. Our
algorithm performs a randomly horizontal flip and has a
probability of 0.2 to randomly grayscale the input. The al-
gorithm also randomly blends the image to some extent with
its black version, grayscale version. This operation changes
the brightness, contrast, and saturation of the input image
with a random factor is chosen uniformly from [0.6, 1.4],
following the setting in [50]. The network is optimized with
Adam optimizer [59], the learning rate is set to 0.0001 and
the weight decay is 0.0001.

IV. EXPERIMENTAL RESULTS

A. Datasets

To evaluate the effectiveness of our method, we perform
normal and abnormal classification to diagnose age-related
macular degeneration (AMD) and pathological myopia (PM)
on two public ophthalmic disease datasets, i.e., Ichallenge-
AMD and Ichallenge-PM, respectively. To the best of our
knowledge, these two datasets are the only publicly available
datasets for AMD and PM screening, respectively.

Ichallenge-AMD dataset. Ichallenge-AMD dataset [60] con-
tains 1200 annotated retinal fundus images from both non-
AMD subjects (77%) and AMD patients (23%). Typical signs
of AMD that can be found in these photos include drusen,
exudation, hemorrhage, etc. Labels of AMD/non-AMD, disc
boundaries, and fovea locations, as well as boundaries of
kinds of lesions are provided in this dataset. More detailed

information about the dataset can be seen from Ichallenge-
AMD website'. During the feature learning stage, we do
not use any label information. Only the image-level labels
are used in the AMD/non-AMD accuracy evaluation stage.
The training, validation, and test dataset has 400 fundus
images, respectively. Since only training data is released with
annotations, we perform 5-fold cross-validation on the training
dataset.

Ichallenge-PM dataset. Ichallenge-PM dataset [33] contains
1200 annotated color fundus images with labels, including
both PM and non-PM cases. All the photos were captured
with Zeiss Visucam 500. More detailed information can be
found in the Ichallenge-PM website>. Note that the training
stage does not need any annotations and only the image-level
annotations are utilized during the evaluation stage. We also
perform 5-fold cross-validation on this dataset.

EyePACS dataset. To evaluate the transfer learning capacity
of our model among different diseases, we train the self-
supervised model on a large diabetic retinopathy (DR) dataset,
i.e., Kaggles Diabetic Retinopathy Detection Challenge (Eye-
PACS) dataset®, and report the classification result on the
Ichallenge-AMD and Ichallenge-PM datasets, respectively.
EyePACS dataset is sponsored by the California Healthcare
Foundation and the images are captured under various condi-
tions and various devices. The left and right fields are provided
for every subject, and an ophthalmologist rate the presence
of DR in each image on a scale of 0 to 4. We use the
training dataset (35,126 images) in this dataset to train our
self-supervised model. Note that we do not use any human-
annotated labels in this dataset.

B. Evaluation Metrics

We use AUC, Accuracy, Precision, Recall, Fl-score to
measure the classification performance. AUC stands for area
under the receiver operating characteristic (ROC) curve, which
measures the entire two-dimensional area underneath the entire
ROC curve. ROC curve is a graphical plot that illustrates
the diagnostic ability of a binary classifier system as its
discrimination threshold is varied. The definitions of Accuracy,
Precision, Recall and Flscore are shown as follows.

Accuracy = (TP+TN)/(TP+TN + FP+ FN),
Precision = TP/(FP + TP),
Recall =TP/(TP + FN),

F1 = 2 % (Recall % Precision) /(Recall 4+ Precision),

&)

where TP, TN, FP, FN refer to true positive, true negative,
false positive, false negative, respectively.

C. Comparisons with others on the Ichallenge-AMD dataset

We compare our method with the state-of-the-art unsu-
pervised feature learning methods on the Ichallenge-AMD
dataset. The results are shown in Table I.

Uhttp://ai.baidu.com/broad/introduction?dataset=amd
Zhttp://ai.baidu.com/broad/introduction?dataset=pm
3https://www.kaggle.com/c/diabetic-retinopathy-detection/data



Table I: Comparisons with other self-supervised methods on
the Ichallenge-AMD dataset (Unit: %). Backbone: ResNet18.

AUC  Accuracy Precision Recall Fl-score
Supervised 77.19 87.60 84.51 77.19 79.71
Rotation [46] 52.26 78.73 59.53 52.26 48.69
MemoryBank [49] 66.49 82.02 74.63 66.49 68.69
Contrastive [61] 68.06 82.45 73.48 68.06 69.84
Decouple [51] 69.19 83.80 79.72 69.19 71.62
Invariant [50] 71.42 84.31 77.99 71.42 73.67
Multi-modal [62] | 74.58 86.58 83.20 74.58 77.33
Ours 75.64 87.09 83.96 75.64 78.51

1 need additional data to synthesize another modality.

Experimental settings. To have a fair comparison, all models
were trained on the ResNetl8 backbone [57] with 5-fold
cross-validation. In the “Supervised” baseline, we modified the
output channel of the last fully connected layer in ResNetl8
to 2 and the model was trained with cross-entropy loss for
binary classification.

We compare with other self-supervised methods, including
rotation prediction task [46], instance discrimination meth-
ods [49, 61, 50] and collaborative method [51]. We run these
methods with their released code on the Ichallenge-AMD
dataset. For [46], we modified the output channel of the
last fully connected layer of ResNetl8 [57] to 4 and trained
the network with cross-entropy loss for four rotation type
predictions. To compare with instance discrimination based
methods [49, 61, 50], we used the same training strategies and
the only difference is the optimization method. Wu et al. [49]
proposed an instance discrimination method to compute the
similarity among instances. However, the memory bank saves
the memorized feature and is only updated per epoch, which
is inefficient and would cumber the training process. Chen et
al. [61] showed that contrastive learning can be beneficial
to unsupervised feature learning and Ye et al. [50] proposed
a positive concentrated and negative spread out method. To
fairly compare with these unsupervised methods, we trained all
the models for 2000 epochs on the Ichallenge-AMD dataset.
For simplicity, we perform kNN on all the unsupervised
feature learning methods to evaluate the final performance for
classification.

Results. From Table I, we can see that our method excels
other state-of-the-art unsupervised feature learning methods by
around 4.2% on AUC, which demonstrates that our method is
very promising in the unsupervised feature learning. Compared
to [62] that relies on additional data, our method still have a
higher result (around 1.0% improvement). Notably, without
any annotation during training, our method achieves compara-
ble results with the supervised learning baseline, i.e., 75.64%
vs 77.19% on AUC and 87.09% vs 87.60% on Accuracy.
The results further demonstrated the effectiveness of our self-
supervised learned features.

D. Comparison on the generalization among datasets

To show the generalization capability of our method, we
trained the self-supervised model on the EyePACS dataset
(source dataset) and evaluated on the Ichallenge-AMD and
Ichallenge-PM datasets (farget datasets), respectively.
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Table II: Results obtained by first training a self-supervised
model on the EyePACS dataset (source dataset) and then
evaluating on the Ichallenge-AMD dataset (target dataset)
with the kNN classifier. Random weights denotes the network
weights are randomly initialized (Unit: %).

Ichallenge-AMD

Method AUC  Accuracy Precision Recall Fl-score
Supervised 77.19 87.60 84.51 77.19 79.71
Random weights | 50.00 78.23 39.11 50.00 43.86
Moco v2 [63] 62.93 83.29 88.11 62.93 65.66
Moco v1 [48] 65.39 83.04 77.94 65.39 67.81
Invariant [50] 74.43 86.07 81.71 74.43 76.95
Ours 78.11 87.85 85.58 78.11 80.78

Table III: Results obtained by first training a self-supervised
model on the EyePACS dataset (source dataset) and then
evaluating on the Ichallenge-PM dataset (target dataset) with
the kNN classifier. Random weights denotes the network
weights are randomly initialized (Unit: %).

Ichallenge-PM

Method AUC  Accuracy Precision Recall Fl-score
Supervised 98.04 97.66 97.30 98.04 97.53
Random weights | 91.83 91.35 90.93 91.83 91.11
Moco v2 [63] 97.97 98.11 98.18 97.97 98.06
Moco v1 [48] 96.60 97.30 97.40 96.60 96.91
Invariant [50] 97.83 98.11 98.35 97.83 98.05
Ours 99.12 99.19 99.27 99.12 99.18

Experimental settings. To adapt the method to the EyePACS
dataset, we first resized the images to 256 x 256 and trained all
the unsupervised methods for 150 epochs for a fair compari-
son. We then froze model parameters and only evaluated the
model performance on the target datasets by the kNN classifier
(k=100), respectively. The reported results are the 5-fold cross-
validation results on the target datasets, i.e., Ichallenge-AMD
and Ichallenge-PM datasets. The results are shown in Table II
and Table III. “Random weights” denotes that the network
weights are randomly initialized. To reproduce [50, 48, 63]
on this dataset, we run these methods with the same network
backbone (ResNetl8), the same batch size (b = 64), learning
strategies (Adam optimizer with learning rate 0.0001) and
trained for the same epochs (150 epochs). All the kNN
classifiers are evaluated at the features from the last fully
connected layer. For the “Supervised” baseline, we trained
the model on the target datasets with image-level labels, as
procedures described in Section IV. B.

Results. From Table II and Table III, we can see that “Ran-
dom weights” achieves a random result (50% AUC) on the
Ichallenge-AMD dataset and a higher result (91.83%) on
the Ichallenge-PM dataset, which indicates that pathological
myopia classification is a much easier task. It is observed
that Moco v2 [63] achieves limited results on AMD and PM
classification tasks and this is due to that this method employs
heavy data augmentations that may not be suitable for the
fundus imaging. Moco vl [48] gets a slightly higher result
on the Ichallenge-AMD dataset, but a worse result on the
Ichallenge-PM dataset. We can see that our method outper-
forms the other state-of-the-art method (i.e., Invariant [50])



Table IV: Results obtained by fine-tuning with different pre-
trained models on the Ichallenge-AMD dataset (Unit: %).

Ichallenge-AMD

Pretrain AUC  Accuracy Precision Recall Fl-score
ImageNet 85.50 91.39 89.16 85.50 86.88
Unsupervised (ours) | 86.99 90.64 86.34 86.99 86.40

AMD and PM classification tasks, respectively. These results
further demonstrated the effectiveness of our method in terms
of generalizing among datasets. Notably, we can see that
our self-supervised method can achieve higher performance
(around 1.1% improvement) than supervised baseline for PM
diagnosis. Compared to our results in Table I, we can see that
with more unlabeled fundus photos available, the performance
of our self-supervised method can be further increased.

E. Comparison with the ImageNet pretrain

Our method provides an alternative approach to the Ima-
geNet pretrained model. To validate this argument, we train
the model on a large unlabeled fundus dataset, i.e., Eye-
PACS dataset, and fine-tune the model on the target dataset,
i.e., Ichallenge-AMD dataset. We compare this unsupervised
model with the ImageNet pretrained model and both models
have been fine-tuned on the target dataset in the same way.

Table IV shows the comparison of using the ImageNet
pretrained model and the unsupervised pretrained model. We
can find that our method achieves a higher AUC (86.99%)
than the ImageNet pretrained model (85.5%). Note that in our
approach, we trained the model with 35,126 fundus images
without any annotations. However, in the ImageNet pretrained
model, 1.2 million natural images with labels are employed.
Compared to the ImageNet pretrained model, our method does
not have annotation cost and achieves a higher AUC, showing
the practical value of the proposed method.

F. Ablation Study

1) Importance of the rotation prediction task: Our frame-
work collaboratively trains two pretext tasks and utilizes the
output for the multi-view instance discrimination task as the
final feature, i.e., f (4) The rotation prediction task serves as
an auxiliary task to provide rich structure features during fea-
ture training, and then the multi-view instance discrimination
task learns the transformation-invariant features that can be
employed in the retinal disease diagnosis. Then, we analyze
the importance of the auxiliary rotation prediction task in our
framework.

Experimental settings. We trained our framework with dif-
ferent A\, where )\ is the weight in Eq. (4) and indicates the
importance of the rotation prediction task. A = 0.0 denotes
that the network is trained with only a multi-view instance
discrimination task. As \ increases, the more important of the
rotation prediction task in the network training. We trained
models with different A\ and each model was trained for 150
epochs. We used the same learning rate (0.0001) and batch
size (b = 64). All the models were trained with the same
network backbone (ResNet18).

Table V: The importance of the rotation prediction task. A
indicates the weight of the rotation prediction task, which is
defined in Eq. (4). The models are trained on the EyePACS
dataset and evaluated on the Ichallenge-AMD dataset. A = 0.0
denotes using the vanilla rotation augmentation without the
rotation prediction task.

| AUC | Accuracy | Precision | Recall | Fl-score

A=0.0 | 74.43 86.07 81.71 74.43 76.95
A=0.5 | 75.70 86.84 83.90 75.70 75.41
A=10 | 7811 87.85 85.58 78.11 80.78
A=20 | 72.17 85.57 83.63 72.17 75.49
A=4.0 | 72.08 85.57 81.88 72.08 75.12

Table VI: The importance of the rotation prediction task. A
indicates the weight of the rotation prediction task, which is
defined in Eq. (4). The models are trained on the Ichallenge-
AMD dataset by 5-fold cross-validation.

| AUC | Accuracy | Precision | Recall | Fl-score

A=0.5 | 69.08 83.29 71.47 69.08 71.39
A=1.0 | 75.64 87.09 83.96 75.64 78.51
A=2.0 | 70.11 83.80 77.69 70.11 72.36

Results. The results are shown in Table V and Table VI.
When A = 0.0, the network only includes the multi-view
instance discrimination task and the result is 74.43% on AUC
in Table V. Note that A = 0.0 denotes that using vanilla
rotation augmentation without the rotation predict task. We
found that this setting achieves lower results than our method
(A = 1.0). The comparison shows the effectiveness of the
learning to prediction task, which learns effective features and
cannot be replaced by vanilla rotation augmentation.

As )\ increases, the classification performance improves
and the best performance is reached when A = 1.0. When
A continues increasing, the classification performance drops
apparently from 78.11% to 72.17%. From Table VI, we can
observe that with A = 1.0, our method also achieves the
best result on the Ichallenge-AMD dataset by 5-fold cross-
validation. The results show that both the rotation prediction
task and multi-view instance-wise discrimination task are
useful in the training.

2) Effects of each individual task: Our method is a col-
laborative method that decouples features to the rotation-
related and rotation-invariant features by formulating two
tasks. Here, we analyze the effects of each task in Table VII.
The experiments are conducted with 5-fold cross-validation on
the Ichallenge-AMD dataset. The experimental setting keeps
consistent with those in Table 1.

As shown in Table VII, we can see that training the rotation
prediction task alone can achieve very limited performance
(52.26% AUC), while training with the instance discrimination
task can reach a higher result, i.e., 71.42% on AUC. This
phenomenon can also be found in [47], which indicated that
instance discrimination task, i.e., contrastive method, outper-
forms other the handcrafted pretext tasks. It is also observed
that through collaborative training of these two tasks, our
method can achieve a higher result for disease classification.

3) Analysis on the data augmentation: In this section, we
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Figure 3: The visualization of the features of three examples from the self-supervised models. “Random weights” denotes that
the model weights are randomly initialized, while “Without” and “With” Rotation refer to train the network without/with the
rotation task. Grad-CAM [64] (blue heatmap) highlights the discriminative regions (red regions), which correspond to high
scores. We can see that our method captures more discriminative regions; see the 6th column. Guided Grad-CAM [65] gives
high-resolution discriminative visualizations and we can also find salient structures such as vessels; see the last column. Best

viewed in color.

Table VII: Effects of each individual task on the Ichallenge-
AMD dataset (Unit: %).

| AUC | Accuracy | Precision | Recall | Fl-score

Rotation | 52.26 78.73 59.53 52.26 48.69
InstDist | 71.42 84.31 77.99 71.42 73.67
Ours 75.64 87.09 83.96 75.64 78.51

Table VIII: Results by different augmentation strategies on the
Ichallenge-AMD dataset (Unit:%).

| AUC | Accuracy | Precision | Recall | Fl-score
4n+Rot | 61.45 80.00 69.76 61.45 62.98
Ours 75.64 87.09 83.96 75.64 78.51

analyze the different strategies of data augmentation. Our
method first augments the input images with random scaling,
random left-right flip, random intensity modifications, etc. On
top of that, we further augment 4 rotated versions for each
image.

4) Feature visualization: In this section, we visualize fea-
tures to verify whether the rotation prediction task can suc-
cessfully learn the salient/structure features on fundus images.
We have shown the results without and with the rotation
prediction task in Table V (see the 1st and 3rd rows). We
visualize the features from these two models in Figure 3,
and the showed feature is obtained from the 1st layer in the
last residual block. The “input” column is randomly selected
from the target dataset (Ichallenge-AMD dataset). “Random
weights” denotes that the model weights are randomly initial-
ized. We visualize the features through Grad-CAM [64] and

Guided Grad-CAM. Grad-CAM [64] (blue heatmap) localizes
discriminative regions and represents where the model has
to look to make the particular decision. Guided Grad-CAM
gives high-resolution discriminative visualizations, which is
obtained by pointwise multiplying the heatmap with guided
backpropagation [65]. The red region corresponds to a high
score (discriminative regions). From observations on Guided
Grad-CAM in Figure 3, we can see that compared with the
other two alternatives, “With Rotation” can present more clear
retinal structures, such as vessel structures. The visualization
indicates that the rotation prediction task can help the network
in learning salient features or obvious structures.

5) Visualizations of kNN results: The final result is obtained
by running kNN on the features from the multi-view instance
discrimination task. Hence, we retrieve 5-nearest neighbors
from the training set for each test image based on the similarity
scores through the kNN algorithm. The label and the similarity
score are listed below each image. The higher score is, the
more similar to the test image. We can see from Figure 4
that compared with 299th and 300th neighbors, the retrieved
images have high visual similarity with the test image, which
can help in assigning a correct class to the test image. It is
also observed that the majority vote of the 5-nearest neighbors
keeps the same with the label of the test sample.

V. DISCUSSION
Fundus photography is an important tool in assessing retinal
diseases, such as AMD classification [23, 66, 27, 12], DR
grading [9, 11, 10, 67] and PM classification [33], etc. With
the advances of deep learning techniques, automatic retinal
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which can contribute to assign a correct class to the test image.

disease diagnosis, such as AMD and PM, has been well
studied in the research community. Although promising results
were obtained on these diagnosis tasks, these methods require
human annotations during the model development, which is
costly and expensive to obtain. Self-supervised/unsupervised
techniques that learn representation from data itself without
annotations provide solutions for this issue. In this work, we
present a rotation-oriented collaborative self-supervised model
for retinal disease diagnosis. Different from previous self-
supervised works [48, 63, 50], we formulate collaborative
learning pretext tasks, i.e., rotation prediction and multi-view
instance discrimination, to decouple features to both rotation-
related and rotation-invariant features, which help discover
the discriminative structures of fundus images and reveal
the transformation-invariant representation for retinal disease
diagnosis, respectively. Our method is validated on two public
retinal disease datasets, i.e., Ichallenge-AMD and Ichallenge-
PM datasets, in which our method consistently outperforms
other self-supervised methods. With a large amount of unla-
beled data available, our method can surpass the supervised
baseline for PM and very close to the supervised baseline for
AMD.

Our method decouples features to rotation-related and
rotation-invariant features by collaboratively training two pre-
text tasks based on the core observations from the color
fundus images. The rotation prediction task learns the salient
structures and the instance discrimination task is a contrastive
learning method that learns transformation-invariant features.
Although our method achieves excellent performance, it comes
with limitations. There are some other pretexts, such as image
painting [42], relative position prediction [44], which may also
help decouple features to several types, but are less studied in

this work. In the future, we will investigate the advantages
of different pretext tasks, and study how to design a better
pretext that contributes to the representation feature learning.
Another potential research direction is to extend our method to
other medical image applications that have obvious orientation
characteristics, such as liver, kidney CT, and MR.

Another limitation is that our method only tackle the 2-
class classification problem, i.e., the retinal disease cases with
obvious lesion patterns, e.g., AMD and PM. The developed
rotation prediction task can bring obvious changes when the
image rotates. However, DR grading is a challenging task
and the grading task requires to know the location and size
of different lesions, such as microaneurysms, haemorrhages,
microvascular anomalies. In this paper, the method is devel-
oped for 2-class normal and abnormal classification, where
abnormal case contains obvious lesions. The exploration of
the method on more retinal disease diagnosis tasks, including
segmentation, grading, and detection would be our future
work.

VI. CONCLUSION

This paper presents a novel self-supervised learning method
for retinal disease diagnosis. Our key idea is to learn the
visual features from the unlabeled images by developing the
rotation-oriented collaborative pretext tasks, i.e., a rotation
prediction task, and a multi-view instance discrimination task.
The rotation prediction helps to discover the discriminative
structures of fundus images by learning the rotation-related
features, while the multi-view instance discrimination helps
to explore the rotation-invariant features for retinal disease
classification. These two features, i.e., rotation-related and
rotation-invariant features, are obtained by decoupling features



through collaboratively training two pretexts. Experimental re-
sults on two benchmark datasets demonstrate that our method
outperforms state-of-the-art self-supervised learning methods.
With a large amount of unlabeled data available, our method
can surpass the supervised baseline for PM and is very close
to the supervised baseline for AMD, showing the potential
benefit of our method in clinical practice.
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