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Abstract. Mangrove conservation is known as a significant means of sequestering atmospheric 

carbon dioxide to help mitigate climate change. Recently, a network called "Phenocam" has 

initiated the use of low-cost camera photos to monitor vegetation phenology world-wide. 

Despite that Phenocam has been proved to be feasible and useful for many tree species, to the 

authors’ knowledge, the Phenocam approach has not been tested on mangroves. In this paper, 

we first collected two months of repeated digital camera photos capturing mangroves in the 

Mai Po Nature Reserve (MPNR), Hong Kong. Then, vegetation indices were extracted from 

the camera photos and validated with in situ measured NDVI. The feasibility, effectiveness, 

and potential biases of using camera photos to monitor the phenology of mangroves are 

discussed. 

1. Introduction 

The mangrove is a specific type of tropical and subtropical tree species having substantial 

reproductive adaptations that allow it to colonize and develop in saline, hypoxic environments. 

Vegetation phenology has been a focus of attention in recent years because of its linkage to plant 

biogeochemistry[1]. The earth is expected to warm up by 5◦C on average in the next 100 years, and 

around 60% of the increase is attributable to carbon emissions [2]. Mangroves take only 0.1% of the 

earth’s surface [3]. However, if all mangrove habitats were destroyed on the planet, the atmospheric 

CO2 concentration would be 2.5 times higher than its current level [4]. As a result, monitoring 

mangrove phenology and investigating the pattern in its cycle play crucial roles in understanding the 

carbon dynamics in mangrove wetlands. The greenness of vegetation in a particular area is a sound 

indicator of the vegetation phenology. 

 

Conventional measurements of vegetation phenology were based on field records of biological events 

such as bud-burst, flowering, seed set and leaf senescence [5]. To apply them in a mangrove wetland 

requires labor-intensive work. Despite the accuracy and reliability of the in-situ measurements, they 

can be expensive and require special expertise to operate correctly and so it’s difficult to achieve a 

broad geographical and temporal coverage. Remote sensing from the space is another source to 

produce specific images of the forests with better spatial and temporal resolution than in-situ 

approaches. However, satellite images are significantly disturbed by bad or cloudy weather, especially 

for tropical and sub-tropical areas like Hong Kong where clear sky is rare due to its long rainy season. 

Recently, a network of fine-resolution digital cameras installed in the field known as “Phenocam” 

emerged as a new method to monitor vegetation phenology [6]. Compared to classical methods, the 

Phenocam approach has two main advantages. First, Phenocam is cheap and easy to operate since it 

only requires photos taken by regular commercial cameras to generate time-series measurements of 



2019 International Conference on Resources and Environmental Research

IOP Conf. Series: Earth and Environmental Science 432 (2020) 012001

IOP Publishing

doi:10.1088/1755-1315/432/1/012001

2

vegetation phenology. Second, camera photos taken below the cloud boundary are free from the cloud 

influence, and thus, can provide a quasi-continuous time-series of vegetation phenology with temporal 

resolutions varying from minutes to hours. The fine temporal resolution enables plant physiologists to 

investigate high-frequency variations of canopy phenology. Many existing studies have proved the 

feasibility and effectiveness of monitoring vegetation phenology using camera photos and the 

Phenocam approach [6][7][8], but the method has not been tested on mangroves yet. 

This paper investigated and discussed the feasibility, effectiveness, and potential bias in using camera 

photos and the Phenocam approach to characterize the phenology of mangroves. Taking the Mai Po 

Nature Reserve (MPNR), Hong Kong, China, as the study area, we first collected a time-series of 

camera photos focusing on mangrove canopies for two months in Summer and Winter, under 

systematic data quality control. Then, two vegetation indices, Green Chromatic Coordinate (GCC) and 

excess GCC (ExGCC) were extracted from the camera photos and validated with in-situ measured 

Normalized Difference Vegetation Index (NDVI). 

 

The remainder of this paper is organized as follows. Section 2 introduces the study site, data collection, 

data quality control, and analytical methods used. Section 3 presents the results of mangrove 

phenology monitoring using camera photos and validation results compared with NDVI. Section 4 

discusses the effectiveness and potential risks of such phenology monitoring. Section 5 concludes. 

2. Methods And Materials 

2.1. Study Sites 

The study site, managed by the World Wide Fund For Hong Kong and Hong Kong Police Force, is 

located at the core zone of Mai Po Nature Reserve (MPNR), which is at the corner of Hong Kong 

SAR, China. As part of the Inner Deep Bay Ramsar wetland, MPNR is of international biological 

importance. 

 

Mangroves in MPNR cover an area of 115 hectares, the largest among all mangrove stands in Hong 

Kong. Our study area is dominated by two native species, Kandelia obovata and Acanthus ilicifolius. 

The K. obovata are aged 25-30 years. The canopy height averages 6.7 m with a diameter at breast 

height (DBH) of 7.6 cm, and the forest density is 0.7 trees m−2. A. ilicifolius scatters at the understory 

of K. obovata, reaching a maximum height of 2 m. In mangrove sediments, total organic carbon 

contents are 34.3 g per kilogram of soil at a depth of 0-10 cm and 31.1 g per kilogram of soil at 10-20 

cm. The semidiurnal tide is a factor influencing the growth of mangroves. According to a two-year 

result from monthly-based field campaigns that records the volumetric soil moisture content of 

sediments when exposed to air, the mangroves experienced a consistent wet condition (45.7% 1.2%, 

mean standard deviation, n = 186). Hydrology in MPNR is also primarily influenced by the Pearl 

River, the largest river in southern China. 

The mean annual temperature was 23.3 ◦C, and yearly rainfall averaged 2399 mm from 1981 to 2010 

in Hong Kong (https://www.hko.gov.hk/cis/normal/1981_2010/normals_e.htm), indicating a typically 

humid tropical climate. Wet seasons start from April and end by September, and dry seasons begin 

from October and end by March (Tang, 2006)[9]. For wet seasons, mean monthly temperature is 

above 25◦C, while 86% of rainfall concentrates in this period. What is noteworthy is that the annual 

rainfall at MPNR is lower than the rest of Hong Kong because it is under the rain shadow of the Tai 

Mo Hill. 

2.2. Data 

2.2.1. Data Collection.  

A digital camera was installed in a fixed position on top of a meteorological tower. It was leveled with 

the horizon with a view across the top of the canopy. This Wingscapes Timelapse Cam provided JPG 

images at 30-min intervals for daytime. Each image has three color channels of 8-bit RGB color 

information and for each channel digital numbers (DN) ranging from 0 to 255. Cameras operated in 

the automatic aperture and exposure mode. The timestamps of all images were extracted from the 

https://www.hko.gov.hk/cis/normal/1981_2010/normals_e.htm
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Exchangeable Image File Format (Exif) information stored along with the images. The Exif data stores 

the basic information about the image, including image gamut space, capture time and save time. We 

save all the capture times to a timestamp dictionary for fast queries. In total, we captured 1045 images 

in the period of February 2017 and July 2017. Figure 1 shows two examples of images. 

 

Figure 1. Camera Picture Examples. 

2.2.2. Data Quality Control.  

Camera, Aperture, and Exposure. We ensured that the camera’s position and direction remained 

constant all the time during the whole period. The time series of photos was first visually inspected for 

camera shifts and the related changes in field of view (FOV) [10]. The FOV remained mostly 

unchanged. However, some more significant alterations in the FOV were observed as the direction of 

the camera skewed a few times throughout the study. 

Illumination Conditions. We also observed images with unusual illumination which may affect the 

calculation of vegetation indices. For example, images before sunrise and after sunset had inadequate 
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lighting and so could hardly be used for monitoring the greenness. Also, images around the sunrise 

and sunset had significant different hues. 

 

To filter out the bad-quality images that were significantly affected by camera shifting or unusual 

illumination, we calculated the percentage of green color in each image as an indicator for filtering. 

The percentage of green color was computed as the percentage of image pixels where the digital 

number of green channel DNg was smaller than 175. After applying the greenness proportion 

calculation to one month’s images, we found that the proportions are segmented into two parts. 

Irregular images suffering from inadequate illumination or camera shifting problems had values close 

to 1, while the normal ones were normally around 0.6. Therefore, we selected a benchmark of 0.75 to 

sift out the high-quality images to be used in further calculations (Figure 2). The threshold value can 

vary significantly depending on the position and direction of the camera. In this study, we selected 

based on the histogram of the fraction of green color and picked 0.75 as the threshold. Later visual 

inspection confirmed the effectiveness of the proposed data cleaning method. Using this filter, we 

identified and removed 422 images from the original dataset. Rechecking the identified bad images, 

we found that they are all ill-illuminated and had a time span from 6 pm to the next day’s 6 am. 

 

Moreover, at the bottom of each image, a black bar is attached to display the time, temperature and 

equipment manufactory, which largely disturbed our calculation of vegetation indices. Noting these 

noises, images were first cropped to exclude the bars. The way to solve the field of view shifts is 

discussed in later sections. All image processing was conducted using Python 3.6.  

 

 

Figure 2. Data cleaning using the fraction of green color. Images with more than 75% of non-green 

colors were excluded from follow-up analysis. The x-axis represents the proportion of non-green color 

pixels in each image. 

 

2.3. Extracting Vegetation Indices from Camera Photos 

To quantify canopy greenness, we calculated the green chromatic coordinate (GCC) [11], which is 

widely used to monitor canopy development and is strongly related to Global Primary Production 

(GPP) (Pastor-Guzman, 2018)[12]. The GCC index can be denoted as follows,  

 

      
   

              
                                           Equation (1) 

 

where DN indicates the digital values at respective channels of the images, and the subscripts R, G, 

and B indicate the red, green, and blue channels, respectively. 

We also computed another vegetation index, the excess green chromatic coordinate (ExGCC) [13], 

which can be denoted as follows, 

            (       )                               Equation (2) 
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ExGCC can be less noisy than GCC in some ecosystems, notably in conifer canopies [14], although 

GCC is generally more effective than ExGCC in suppressing the effects of changes in scene 

illumination [14]. Due to the formulas, all the GCCs larger than 1.0 were discarded. All the ExGCCs 

greater than 200 were modified to 200. 

 

2.4. Time-Series Smoothing 

Knowing the vegetation indices (VIs) were sensitive to illumination conditions, we extracted them 

from the images taken between 10 am and 2 pm to avoid the biases caused by sunset when stable 

illumination is unavailable. We applied a moving window smoothing to the extracted VIs to highlight 

the underlying monthly and seasonal change patterns by removing several outliers caused by 

unexpected fluctuations that appeared in the extracted time series of GCC and ExGCC caused by 

factors such as light illumination disturbance, droplets on lens, and cloud. Several smoothing methods 

including the mean filter, median filter, and 90% percentile filter were applied for comparison. We 

used in situ half-hour NDVI data for validation. A three-day moving window was applied to smooth it 

[12]. The results were shown in Table 2. The validation will be conducted by the Pearson Correlation 

Coefficient and Room Mean Squared Error (RMSE). 

3. Results 

3.1.  Extracted Vegetation Indices of Mangroves 

We obtained the GCC (Figure 3) and ExGCC (Figure 4) of mangroves from camera images and 

smoothed them for the two entire months of February 2017 and July 2017. Table 1 shows the 

descriptive statistics of the extracted GCC and ExGCC. 

 

The extracted GCC of mangroves ranged from 0.342 to 0.370, averaged at 0.360 and had a standard 

deviation of 0.007 in February 2017. In July, GCC ranged from 0.342 to 0.396 with an average of 

0.361 and a standard deviation of 0.009. ExGCC was on a different scale. ExGCC in February ranged 

from 4.9 to 36.8, averaged at 19.6, and had a standard deviation of 6.7. In July, the ExGCC ranged 

from 10.7 to 66.7, averaged at 34.6, and had a standard deviation of 8.9. 

 

 
Figure 3. Extracted GCC of mangroves in February and July, 2017 before and after data smoothing. 
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Figure 4. Extracted ExGCC of mangroves in February and July 2017 before and after data smoothing. 

 

Table 1. Summary of extracted GCC and ExGCC in February and July 2017. 

 Feb GCC Feb ExGCC July GCC July ExGCC 

Count 26 143 117 260 

Mean 0.359 19.6 0.361 34.6 

Std 0.007 6.7 0.009 8.9 

Min 0.343 4.9 0.342 10.7 

25% 0.357 14.7 0.354 28.2 

50% 0.360 19.6 0.358 36.3 

75% 0.365 24.1 0.367 40.5 

Max 0.370 36.8 0.396 66.7 

 

Both GCC and ExGCC were relatively stable during both months, while we still observed some minor 

fluctuations that lasted for days. For example, we observed significant decreases in GCCs on about 

July 10th and 19th, which were confirmed to be rainy days according to local weather records. In 

February, the largest values appeared in the middle of the month and on July 23rd. 

 

Table 2. Examples of raw and smoothed NDVI time series. 

 

 

Time NDVI meanNDVI medianNDVI qNDVI 

2016-03-09 

14:00:00 

0.841 0.830 0.829 0.858 

2016-03-09 

14:30:00 

0.859 0.830 0.828 0.858 

2016-03-10 

10:00:00 

0.826 0.837 0.828 0.858 

2016-03-10 

10:30:00 

0.816 0.837 0.828 0.858 

2016-03-10 

11:00:0 

0.799 0.837 0.828 0.858 



2019 International Conference on Resources and Environmental Research

IOP Conf. Series: Earth and Environmental Science 432 (2020) 012001

IOP Publishing

doi:10.1088/1755-1315/432/1/012001

7

3.2.  Seasonal Difference 

Since February and July are representative months of winter and summer, respectively, we 

summarized the potential seasonal effects on mangroves by comparing these two months' statistics and 

trends. 

 

The mean value of the ExGCC increased from 19.62 in February to 34.63 in July by about 76.5%, 

indicating a greener canopy. However, we only observed an increase of about 2%, for GCC, from 

February to July. We applied the Two-sample t-Test to check statistical significance of the difference 

between GCCs in these two months, with an alternative hypothesis that the average GCC in February 

was greater than that in July. It turned out that the p-value of this test was about 0.302, signifying that 

there is no sufficient evidence to prove that the mean GCC in February was different from that in July.  

Also, July's ExGCC has higher standard deviations, for about 8.94, compared with 6.71 of that in 

February, meaning that high temperatures and more significant day and night temperature difference 

made the VIs in July have larger values and standard deviations. 

When looking for trends from the Figure 1 and Figure 2 of smoothed vegetation indices, we found that 

the mean GCC in July had risen from 0.3772 to 0.3895, different from the drop in February, which 

started from 0.3472 to 0.3431. It means that GCCs and ExGCCs had quite positive relationships with 

the temperatures. The same trends can be displayed more significantly using ExGCCs. 

 

3.3. Validation Results 

We validated the VIs extracted from the photos with in-situ NDVI measurements. The correlation 

coefficient between the time-smoothed GCC and in-situ time-smoothed NDVI was about 0.252 in 

February and 0.351 in July. If we look at both months, this model has a correlation coefficient of about 

0.7921. We chose quantiles because they behaved the most stably and were not affected by extreme 

values. These two months both presented positive correlations, demonstrating that the Phenocam 

method's moderate effectiveness in predicting field vegetation indices. 

 

Effects of Exposure Time. When scanning all the images for visible stains, we found that they had 

different exposure times, which might lead to varying illumination conditions that affect the 

magnitude of extracted indices. We, therefore, extracted the exposure times from images' Exif data 

and computed their correlation between GCCs and ExGCCs and in-situ NDVI values controlling the 

effects of exposure time, as presented in Table 3. The correlation coefficient between time-smoothed 

GCC and NDVI increased to 0.8250 in February and 0.7108 in July, Figure 5, indicating that the 

Phenocam method can provide accurate monitoring results of mangrove phenology with controlled 

exposure times. 

Table 3. Ordinary Least Square Regression Results of NDVI. 

4.  Discussions 

4.1. Pros and Cons of Using Camera Photos to Monitor the Growth of Mangroves 

After Comparing the Phenocam method with others like Landsat data, we found that we could detect 

the potential drawbacks of the clear digital images more swiftly and directly and correct them as soon 

as possible. Using digital images is also an economic research method that can be used in other 

scientific cases and save a lot of money if the vegetation indices are representative of one type of 

ecosystem [15][16]. 

 coef standard 

error 

t P > |t| [0.025 0.975] 

const 0.7085 0.003 248.3 0.000 0.703 0.714 

x1 -0.0260 0.011 -2.463 0.014 -0.047 -0.005 

x2 0.0248 0.004 5.896 0.000 0.017 0.033 
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As a result, a number of researchers applied this method to their interesting vegetation. According to 

Sara Helen Knox [14], Phenocam-based indices were calculated on two wetlands, West Pond and 

Mayberry. The West Pond was characterized by a mix of emergent marsh species, including 

Schoenoplectus acutus and Typha species. The Mayberry site was more spatially heterogeneous, 

consisting of an intermixing of open water and vegetation patches. It also comprised Typha sp. and 

Schoenoplectus acutus. The generated GCC in West Pond had a correlation of 0.88 with local GPP, 

compared to 0.65 at Mayberry. As the author mentioned, although the associations were high at both 

sites, Phenocam-derived data will be affected by the heterogeneous nature. 

 

However, the restrictions of digital photos can directly influence the outcome of the research. The 

location of the cameras should be fixed for such a long time span that it is difficult to ensure the same 

field of view. According to our experiment, the VIs and GPP can be not so synchronous due to the 

change in the illumination condition, the hue of the images and the complexity of the region. 

 

 
Figure 5. Observed and Predicted NDVI using GCC and Exposure Time (blue, observed; red, 

predicted) 

4.2. Other Potential Risk Factors 

4.2.1. Illumination.  
We observed that the extracted VIs correlated significantly with the illumination conditions. The VIs 

increased with stronger incoming daylight and decreased with weaker daylight. On cloudy days, the 

gloomy weather largely weakened the illumination due to less incoming sunlight. Moreover, the hues 

displayed on the images were shifted from bright colors to dim and dark ones. These resulted in 

consequences that some of the days generated extremely low VIs, which had no relationships with the 

conditions of the mangrove forests. The same situation can be applied to rainy days, which were 

usually accompanied by clouds. It was noteworthy that on rainy days, large rain droplets may descent 

on the lens of the cameras. These stains were also potential causes of sudden decreases in VIs. In this 

paper, we adopted the method from Herrera-Silveira [17] and only extracted VIs from images captured 

from 10 am to 2 pm when the daylight is relatively stable. Results showed that this method helped 

control the effects of illumination change. 

 

4.2.2. Effects of Different Time-Smoothing Methods.  
The moving mean smoothing method generates similar results compared to the moving median 

smoothing method, while the moving 90% quantile smoothing method could minimize the fluctuations 

caused by weather changes and other potential factors. The moving mean smoothing method can be 

affected by extreme values, which has appeared relatively frequently in our research. The moving 90% 
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quantile smoothing method may be inaccurate because it only displays the pattern of data with large 

values and so that ignores comparatively small ones. 

5. Conclusion 

This study demonstrates that camera-based indices can be used to model phenology in mangrove 

ecosystems. Although some limitations still need to be addressed, like poor illumination and camera 

shifts, the approach presented in the paper provides a simple and cost-effective way to monitor and 

predict mangrove growth. Given the vital role of mangrove trees in mitigating global warming, a 

useful quantification of mangrove phenology can help us understand better how mangroves are 

responding to the climate change, and thus make more sound conservation strategies. 
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