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Abstract. The growth of computational power unleashed the
potential of high-resolution urban climate simulations us-
ing limited-area models in recent years. This trend empow-
ered us to deepen our understanding of urban-scale climatol-
ogy with much finer spatial–temporal details. However, these
high-resolution models would also be particularly sensitive
to model uncertainties, especially in urbanizing cities where
natural surface texture is changed artificially into impervi-
ous surfaces with extreme rapidity. These artificial changes
always lead to dramatic changes in the land surface pro-
cess. While models capturing detailed meteorological pro-
cesses are being refined continuously, the input data quality
has been the primary source of biases in modeling results
but has received inadequate attention. To address this issue,
we first examine the quality of the incoming static data in
two cities in China, i.e., Shenzhen and Hong Kong SAR,
provided by the WRF ARW model, a widely applied state-
of-the-art mesoscale numerical weather simulation model.
Shenzhen has gone through an unprecedented urbanization
process in the past 30 years, and Hong Kong SAR is an-
other well-urbanized city. A significant proportion of the in-
coming data is outdated, highlighting the necessity of con-
ducting incoming data quality control in the region of Shen-
zhen and Hong Kong SAR. Therefore, we proposed a so-

phisticated methodology to develop a high-resolution land
surface dataset in this region. We conducted urban climate
simulations in this region using both the developed land sur-
face dataset and the original dataset utilizing the WRF ARW
model coupled with Noah LSM/SLUCM and evaluated the
performance of modeling results. The performance of mod-
eling results using the developed high-resolution urban land
surface datasets is significantly improved compared to mod-
eling results using the original land surface dataset in this
region. This result demonstrates the necessity and effective-
ness of the proposed methodology. Our results provide ev-
idence of the effects of incoming land surface data quality
on the accuracy of high-resolution urban climate simulations
and emphasize the importance of the incoming data quality
control.

1 Introduction

With numerical weather prediction models increasingly ap-
plied in climate studies in past decades (Warner, 2011),
many scientists (such as Anthes, 1983; Keyser and Uccellini,
1987; Oreskes et al., 1994; Kain et al., 2008; Warner, 2011;
Teutschbein and Seibert, 2012; Hong and Kanamitsu, 2014)
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have argued about the best modeling practices or provided
suggestions related to modeling. Warner introduced the con-
cept of quality assurance for improving modeling practices
based on the summarization of wisdom in the previous stud-
ies (Warner, 2011). In recent years, with rapidly develop-
ing computational capabilities, researchers become capable
of applying high-resolution limited-area models to produce
detailed meteorological scenarios. This capability empowers
the studies of urban-scale climatology that require finer grid
spacing. At the same time, this kind of high-resolution urban
modeling also poses a significant challenge to the assurance
of modeling quality. High-resolution urban climate simula-
tion is sensitive to the quality of input of urban land surface
data (Bruyère et al., 2014). An essential process that many
pieces of research have overlooked is the incoming quality
control, which guarantees the quality of input data for cli-
mate modeling. The incoming data quality control (IDQC),
the procedure that ensures the accuracy of input data, is of-
ten ignored in modeling practices. In the manufacturing pro-
cess, incoming quality control (IQC) is one of the quality
assurance activities because it is “a proactive upstream ap-
proach that controls and manages the upstream activities to
prevent problems from arising” (World Meteorological Orga-
nization, 2014). By analogy with the manufacturing process,
IDQC of climate modeling resembles the incoming material
quality control. It is also a proactive activity of controlling
and managing the quality of the input data before the model
run rather than a “correction after problems occur” (World
Meteorological Organization, 2014). Modeling practices us-
ing inaccurate input usually lead to significant modeling bias.
However, sometimes, such modeling practices may still lead
to seemingly correct but scientifically misleading modeling.
Therefore, a more sophisticated IDQC procedure is needed,
which is a critical action of quality assurance.

Urban climate modeling is notoriously sensitive to land
surface characters (Chen et al., 2004; Sertel et al., 2010). The
fallacious spatial distribution of the land surface data causes
inaccurate values to be assigned to boundary layer variables.
So the fallaciousness would be finally propagated to the mod-
eling results, including temperature, wind fields, precipita-
tion, and humidity (Chen et al., 2004). High-resolution mod-
els are more sensitive to incoming data quality for producing
more refined details in finer spatial grids (Chen et al., 2004;
Sertel et al., 2010).

Despite the close association between the quality of land
surface dataset and the quality of modeling results, IDQC
has received inadequate attention in many existing model-
ing practices. Many urban climate systems provide a default
and elemental input land surface dataset, the quality of which
varies dramatically over space and time. For example, the
WRF ARW model only provides detailed urban information
for some large US cities. In most areas except these big cities,
not only the recording date of the default input land surface
dataset for the WRF ARW model is long before 2010, but
also the grid sizes of these areas are far larger than 1 km.

First, respective land surface datasets need to be developed if
the study period is out of the default dataset’s temporal cover-
age. Second, while the quality of the default dataset in these
large US cities is found to be acceptable, the quality of the
same dataset in many other parts of the world can be quite
problematic, especially in the rapidly urbanizing China. In
the developing world, dramatic artificial interferences change
natural surface texture into impervious surfaces with extreme
rapidity. A compelling example would be Shenzhen, China,
a city that went through dramatic urbanization in the past 30
years.

In this study, a sensitivity test was conducted to examine
the influence of urban land surface data accuracy on the ur-
ban climate modeling quality. Moreover, the article also pro-
posed an explanation of why urban land surface data accu-
racy affected urban climate modeling accuracy and stated the
importance of the incoming data quality control in urban cli-
mate modeling.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the methodologies used in this paper.
Section 3 presents the comparison results between the de-
fault land surface dataset and the developed high-resolution
dataset and compares the corresponding modeling results.
Section 4 sums up the discussions and concludes the paper.

2 Methodologies

2.1 Experimental design

In this study, we took the Hong Kong–Shenzhen area in
the Pearl River Delta (PRD) as the study area and delin-
eated it in the modeling as the innermost domain (domain 4,
Fig. 1). We conduct two modeling experiments using the de-
fault land surface dataset and the developed high-resolution
urban land surface dataset, respectively, to examine if the
IDQC improves urban climate modeling results. We com-
pared the quality of the incoming data in the two urban cli-
mate simulation cases and the quality of the modeling results
to demonstrate the effects of the incoming data quality on
high-resolution urban climate modeling. In this study, two
comparative urban climate simulation cases were designed
for evaluating the impacts of the refinement using the urban
land surface dataset on the quality of the modeled results.
So, the modeled results from simulations using the WRF
ARW/Noah LSM/SLUCM model with and without a refine-
ment by the urban land surface dataset on the primary data
would be compared. Case-NCAR is a 1-year climate sim-
ulation using the default land surface dataset provided by
NCAR. Case-ULSD is a comparative experimental case us-
ing the developed high-resolution urban land surface dataset.
Both cases are utilizing the same lateral boundary conditions
from 2010 and the same model settings.
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Figure 1. The study area was delineated in the modeling as the in-
nermost domain (domain 4). Base map source: © Google Maps.

2.2 Evaluation methods for incoming data quality

We compared the original and refined land surface dataset
by analyzing its four major components – land cover, vege-
tation coverage, urban morphology, and anthropogenic heat
fluxes. These components are meteorological variables that
are involved in most of the urban climate processes at the
intra-urban scale.

We also compared the simulation results using land sur-
face data before and after the refinement to investigate the
impact of incoming data quality on the accuracy and gran-
ularity of simulation results. Typically, the quality of urban
climate modeled results should be evaluated by comparing
the modeled near-surface variables with their correspond-
ing observed ones (Li et al., 2019a). We extracted and com-
pared five near-surface meteorological variables – surface
temperature and near-surface air temperature, wind speed,
precipitation, and relative humidity – along the spatial and
temporal dimension. Moreover, these critical modeled near-
surface variables are also compared with their correspond-
ing observed ones using the statistic tools suggested by Li
et al. (2019a), which include a temporal comparison of spa-
tial variation (TCSV), Perkins skill score (PSS), and proba-
bility density function of difference (PDFD). For more de-
tails on the TCSV, PSS, and PDFD, please refer to the com-
panion paper – “Model evaluation of high-resolution urban
climate simulations: using the WRF/Noah LSM/SLUCM
model (Version 3.7.1) as a case study” (Li et al., 2019b).
Furthermore, the near-surface variables of two experimental
cases are compared spatially to analyze the difference be-
tween the two cases in the spatial dimension.

2.3 Data

The primary data include the “Completed Dataset and the
New Static Data Released With v3.7 of WRF Preprocess-
ing System (WPS) Geographical Input Data” and the “2010
NCEP FNL (Final) Operational Global Analysis Dataset
with 1-degree grid spatial resolution and the 6-hour tempo-
ral resolution” (National Center for Atmospheric Research,
2016). Moreover, to demonstrate the effectiveness of the pro-
posed methodology, we developed a high-resolution urban
land surface dataset for the Hong Kong–Shenzhen area in
2010. This dataset includes six kinds of data, including land
cover data, vegetation coverage data, urban morphology data,
artificial impervious area data, and anthropogenic heat data,
describing different urban land surface characters. Further-
more, the “2010 MODIS/Aqua Land Surface Temperature
and Emissivity (LST/E) product” (MODIS, 2012) and the
“2010 near-surface meteorological observation data in PRD”
(Li, 2020b) were used for modeled results’ quality evalua-
tion. In a physical meaning, the land surface temperature in
the MODIS/Aqua product and the surface skin temperature
in the WRF simulation are two different concepts. The land
surface temperature is the grid-mean brightness temperature
of the Earth, which is calculated based on the black-body ra-
diation theory. The surface skin temperature is a land’s state
variable in WRF, which is adjusted iteratively in each calcu-
lation based on the balance of the radiation, the sensible heat
flux, the latent heat flux, and the soil heat conduction flux.
The value of the surface skin temperature may deviate a bit
from one of the land surface temperatures in the same grid.
However, these two variables are highly correlated. There-
fore, we use the land surface temperature to evaluate the
quality of the surface skin temperature in the WRF simu-
lation. Finally, the comparative meteorological variables are
listed in Table 1.

3 Results

3.1 Refinements in urban land surface data

Through the comparison between two cases, we found the
default terrestrial input data missed many details in land
cover (Fig. 2), the vegetation coverage (Fig. 3), urban mor-
phology (Fig. 4), and anthropogenic heat (Fig. 5).

3.2 Quality of simulation results

With the TCSV figure, the temporal patterns of the simula-
tion results using the land surface data before and after the re-
finement were examined against the temporal patterns in ob-
servations. By temporal patterns, we refer to both the diurnal
and monthly variations of the selected meteorological vari-
ables. As evidenced by Fig. 6, both simulation results, using
the original and refined land surface data respectively, repro-
duced the diurnal and monthly patterns that agreed with the
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Table 1. Comparative meteorological variables.

Modeling results Observation

Surface skin temperature 2010 MODIS/Aqua land surface temperature
and emissivity (LST/E) product1

2 m air temperature 2010 PRD 2 m air temperature2

10 m wind at U direction 2010 PRD 10 m wind speed 2

10 m wind at V direction

Accumulated total cumulus precipitation 2010 PRD precipitation2

Accumulated total grid-scale precipitation

2 m relative humidity2 2010 PRD relative humidity2

1 The data were provided by the MODIS (2012). 2 The data were provided by the Meteorological Bureau of Shenzhen
Municipality.

Figure 2. The land covers provided by NCAR originally (a), and the adjusted land covers based on the urban land surface dataset (b). Data
source: Li et al. (2019a, b).

observed data. Other meteorological variables of both cases,
such as land surface temperature and relative humidity, pre-
cipitation, and wind speed, also have similar temporal varia-
tion patterns to the corresponding observed ones.

Compared to Case-NCAR, the PSS annual mean values of
Case-ULSD improved by 1.0 %, 3.2 %, and 5.5 % in the 2 m
air temperature, surface temperature, and 10 m wind speed,
respectively. On the contrary, the PSS annual mean values of
Case-ULSD deteriorated by 5.6 % and 2.7 % in relative hu-
midity and precipitation, respectively, compared to those of
Case-NCAR. Figure 7 shows the PSS monthly variation of
the 2 m air temperature. Meanwhile, the PSS monthly varia-
tions of other meteorological variables (surface temperature,
relative humidity, precipitation, and wind speed) are shown
in Sect. S2 of the Supplement.

Figure 8 shows the PDFD of 2 m air temperature of two
experimental cases. For the PDFD of surface temperature,

relative humidity, precipitation, and 10 m wind of two cases,
please refer to Sect. S3 of the Supplement. Compared to
Case-NCAR, the annual mean values of the specified interval
of the PDFD of Case-ULSD improved 2 % in surface tem-
perature and precipitation. However, the annual mean val-
ues of the specified interval of the PDFD of Case-ULSD are
the same as their corresponding ones of Case-NCAR in 2 m
air temperature and 10 m wind speed. Worse still, the annual
mean values of the specified interval of the PDFD of Case-
ULSD deceased 1 % in relative humidity than those of Case-
NCAR.

To demonstrate the advantage of using the refined high-
resolution land surface data, Fig. 9 illustrates the spatial dis-
tributions of the annual mean values of the simulated 2 m
air temperature and surface temperature using the original
and refined land surface data. For other meteorological vari-
ables (relative humidity, precipitation, and 10 m wind) of two
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Figure 3. The original (a, c) and refined (b, d) vegetation coverage data product in January (a, b, local winter) and July (c, d, local summer).
Data source: Li et al. (2019a, b).

Figure 4. The number mean building height before (a) and after refinement (b). Data source: Li et al. (2019a, b). For other urban morphology
indicators, please refer to Sect. S1 of the Supplement.
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Figure 5. Maps of the anthropogenic sensible (a, b) and latent (c, d) heat fluxes before (a, c) and after (b, d) refinement. Data source: Li et
al. (2019a, b).

Figure 6. The annual and diurnal variation of 2 m air temperature of Case-NCAR (a) and Case-ULSD (b). Data source: Li et al. (2019a, b).
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Figure 7. PSS monthly variation of 2 m air temperature of Case-NCAR (a) and Case-ULSD (b). Data source: Li et al. (2019a, b).

Figure 8. PDFD of 2 m air temperature of Case-NCAR (a) and Case-ULSD (b). Data source: Li et al. (2019a, b).

cases, please refer to Sect. S4 of the Supplement. For all
meteorological variables, the data refinement enabled more
spatial details in the simulation results, which could be in-
creased or decreased in value. Such differences were espe-
cially significant for urban centers where massive and rapid
urbanization has taken place. The urban–rural differences
were strengthened, especially for temperatures and the wind
speed. The air temperature and surface temperature in urban
areas mostly increased with the refined datasets due to the in-
creased urban area and newly included effects of urban mor-
phology. On the contrary, wind speed and humidity mostly
decreased in urban areas.

4 Discussions and conclusions

Undoubtedly, the high-quality land surface input data influ-
ence the modeling results by providing more distinct spatial
details. Taking a further step, we conducted a cause analysis
of the physical mechanism of how the detailed spatial fea-
tures were transferred from urban land surface to urban at-
mosphere. The inhomogeneity of the urban land surface af-
fects energy and mass redistribution in the atmosphere. At-
mospheric models are composed of interacting components
(Fig. 10), representing certain atmospheric physics principles
(Dudhia, 2014). The WRF ARW model can be applied as a
regional climate model, even though it was originally a nu-
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Figure 9. Spatial distribution of 2 m air temperature and surface temperature of Case-NCAR (a, c) and Case-ULSD (b, d). Data source: Li
et al. (2019a, b).

merical weather prediction (NWP) model (Dudhia, 2014).
By coupling it with the Noah LSM/UCM model, the near-
surface atmospheric physical processes of momentum, water
vapor, and the heat exchange in an urban environment are
represented in the WRF ARW model, thus enabling an im-
provement in the results of urban climate simulation (Tewari
et al., 2007). The Noah LSM Model provides the different
quantities to the WRF ARW model, such as the surface sensi-
ble heat flux, surface latent heat flux, upward longwave radia-
tion, and upward shortwave radiation, based on the different
textures of the surface. In an urban area, the anthropogenic
heat release caused by human activities increases the surface
sensible heat flux. The urban morphology also has an im-
pact on the radiation exchange and the roughness. The UCM
model captures the improvement in quality of these urban
land surface characteristics to improve the accuracy of the
near-surface atmospheric physical processes. Figure 10. Schematic of physics and their interactions within a typ-

ical NWP model (Dudhia, 2014).
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Figure 11. The mechanism in propagating the detailed spatial features from the land surface attributes to the atmospheric variables.

Moreover, when we looked inside the WRF ARW/Noah
LSM/SLUCM model, there are several physical modules.
These modules interact with each other to update the
state variables iteratively to propagate the land surface at-
tributes’ detailed spatial features to the atmospheric variables
(Fig. 11). The detail spatial features in the land cover, vege-
tation coverage, urban morphology, and anthropogenic sen-
sible and latent heat had effects on the 2 m air temperature,
relative humidity, precipitation and 10 m wind speed through
the intermediate variables (long- and shortwave radiations,
surface temperature, surface sensible and latent heat).

For example, the 2 m air temperature has a similar spa-
tial pattern to those of the albedo and sensible anthropogenic
heat in Case-NCAR and Case-ULSD. Moreover, this propa-
gating mechanism can be seen from the transmission of the
difference between the two cases in the aforementioned inter-

mediate variables. The spatial differences in the land cover
and vegetation coverage between Case-NCAR and Case-
ULSD caused the spatial difference in albedo (Fig. 12a).
The differences in albedo and sensible anthropogenic heat
(Fig. 11b) led to the spatial differences in the sensible heat
flux (Fig. 12c). In turn, these spatial differences led to the
spatial difference in 2 m temperature (Fig. 12d).

Distortion of modeling is nothing short of the problem
in the climate modeler community. The spatial or temporal
distortion in climate modeling means that the simulation re-
sult is divergent with the observation data spatially or tem-
porally. Many scientists have addressed the problem since
the 1980s and gone on improving modeling practice in re-
sponse to it (Warner, 2011). While improving the modeling
practice, quality assurance should not be neglected in the cli-
mate modeling project (Warner, 2011), from an engineering
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Figure 12. Differences (Case-NCAR − Case-ULSD) in the albedo (a), the sensible anthropogenic heat (b), the annual mean sensible heat (c),
and the annual mean 2 m air temperature (d).

project point of view. Quality assurance is “a part of quality
management, but it is focused on providing confidence that
quality requirements will be fulfilled” (ISO, 2015). However,
quality assurance is overlooked because the modeler has less
awareness of the sensitivity of the model (Warner, 2011). As
a typical case of being careless, the IDQC, which makes sure
the input data are accurate, is often ignored. Incoming qual-
ity control (IQC) is a familiar concept in production, which
refers to the quality checking and evaluating incoming ma-
terial. In the scenario of climate modeling, IQC is the qual-
ity control in the very first stage, which refers to the qual-
ity checking and evaluating incoming data before they will
be delivered to the modeling system. From our findings, the
IDQC indeed improved the modeling results at the spatial

dimension, creating substantially more spatial details in sim-
ulation results.

On the other hand, the modeled variables of both cases
have the same temporal variation behaviors as their corre-
sponding observed ones, irrespective of the 2 m air temper-
ature, surface temperature, relative humidity, precipitation,
or 10 m wind speed. However, the values of PSS of 2 m air
temperature, surface temperature, and 10 m wind speed in
Case-ULSD are a little bit higher than those in Case-NCAR.
The differences indicate that the modeling quality of Case-
ULSD does not significantly improve when compared to that
of Case-NCAR. Worse still, the values of PSS of relative hu-
midity and precipitation in Case-ULSD are lower than those
in Case-NCAR, which means the modeling quality of Case-
ULSD in these variables is worse than those of Case-NCAR.
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Similarly, the annual mean values of the specified interval
of the PDFD of Case-ULSD do not have a significant im-
provement in the modeled 2 m air temperature, surface tem-
perature, precipitation, and 10 m wind speed than those of
Case-NCAR. It is even worse than those of Case-NCAR in
the modeled relative humidity, which means the high-quality
input data did not positively affect the accuracy of the mod-
eling results.

It is a valuable scientific question to probe why high-
quality land surface data do not improve the accuracy of the
modeling results. The modeled humidity and precipitation
are impacted majorly by two soil variables (soil water per-
meability and initial relative soil moisture). We just used the
default values of these two variables provided by NCAR in
Case-ULSD. This could be a reason for why the modeled
humidity and precipitation never improved. Moreover, many
physical parameterization processes involved in the physics
components (cumulus parameterization, microphysics, radi-
ation planetary boundary layer, surface layer, land surface
model, and urban canopy model) of the WRF ARW Noah
LSM/SLUCM model. The default parameters of these pro-
cesses were set to be suitable for the coarse-resolution land
surface data to ensure overall robustness in global uses. Ac-
cordingly, they cannot guarantee the adaptability for the fine-
resolution land surface data. This the main reason for why
the quality of land surface data did not transmit positive ef-
fects on the quality of modeling results, which sheds light
on the direction of urban climate model development. The
land surface data will become more and more refined in the
future, and the parameterization schemes of the numerical
model need to adapt to these more refined data. Perhaps the
parameterization schemes need to be further improved and
consider more physical processes involved in the model.

Also, we only focused on the IDQC on the land surface
data in this study. The IDQC on the soil attributes and ini-
tial condition data should be conducted in order to improve
the quality of the modeling results. Moreover, the quality of
FNL data is critical to the accuracy of the lateral boundary
conditions. The resolution of the currently used FNL data
is relatively coarse. Accordingly, further follow-up work can
be considered to improve the FNL data by employing vari-
ational assimilation to improve the quality of urban climate
modeling results.

The most significant improvement in modeling results
through the incoming data quality control of the land sur-
face data is that the model produced more distinct spatial de-
tails in the fine grids. Urban climate modeling is a meteoro-
logical downscaling application that is employed to produce
the fine-scale spatial and temporal details from the coarse-
resolution meteorological data (Hong and Kanamitsu, 2014).
It is, therefore, a critical indicator for the urban climate to
precisely construct the fine-scale details in the area of inter-
est (Lo et al., 2008). In this study, we conducted two mete-
orological downscaling cases in the dynamical limited-area
model with the same lateral boundary condition of coarse-

resolution data and two different land surface data. Then we
compare which case constructs more fine details in the area
of interest. From the dynamical meteorological downscaling
point of view, Case-ULSD has a significant improvement in
the performance of modeling results compared to the Case-
NCAR. Admittedly, the incoming data quality contributes
to improving modeling performance. The sensitivity of land
surface processes to input land surface data is also vital for
enhancing modeling performance. We suggested improving
the sensitivity of the urban land surface model to the input
land surface data as a further step in the atmospheric model
development.

Code availability. The source codes of the WRF ARW mod-
eling system package (WRF Model 3.7.1 and WRF Pre-
Processing System (WPS) 3.7.1) are publicly available at https:
//www2.mmm.ucar.edu/wrf/users/download/get_source.html (Na-
tional Center for Atmospheric Research, 2005a, b). The configu-
ration profile of the WRF ARW modeling system (namelist.wps
and namelist.input), changes in the WRF ARW modeling sys-
tem (the source codes for inputting the 2D anthropogenic sen-
sible and latent heat), geo_data_refinement processing package
and wrf_input_refinement processing package are available at
https://doi.org/10.5281/zenodo.3996876 (Li, 2020a).

Data availability. The 2010 NCEP FNL (Final) Operational
Global Analyses dataset is available at https://rda.ucar.edu/datasets/
ds083.2/ (National Centers for Environmental Prediction/National
Weather Service/NOAA/US Department of Commerce, 2016). The
completed dataset of WRF Preprocessing System (WPS) geograph-
ical input data is publicly available at http://www2.mmm.ucar.edu/
wrf/users/download/get_sources_wps_geog.html (National Center
for Atmospheric Research, 2016). The 2010 PRD urban land sur-
face dataset is available at https://doi.org/10.5281/zenodo.3687362
(Li and Zhou, 2020). The 2010 PRD observation locations,
2010 PRD 2 m air temperature, 2010 PRD 10 m wind speed,
2010 PRD precipitation, and 2010 PRD relative humidity are
available at https://doi.org/10.5281/zenodo.4016909 (Li, 2020b).
The 2010 MODIS/Aqua land surface temperature and emissiv-
ity (LST/E) product is publicly available at https://modis.gsfc.
nasa.gov/data/dataprod/mod11.php (MODIS, 2012). The mod-
eling variables for model evaluation (T2, TSK, U10, V10,
RAINC, RAINNC, RH2, and SWDOWN) are available at
https://doi.org/10.5281/zenodo.4016909 (Li, 2020b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-6349-2020-supplement.

Author contributions. ZL, as the leading author, designed the
model configuration, conducted the model run, conceived and de-
signed the experiment and the analysis, performed the experiment
and the analysis, contributed data, developed the related software
packages, and wrote the paper. BW contributed the ideas in the ex-
planations of the physical mechanisms, designed the model config-

https://doi.org/10.5194/gmd-13-6349-2020 Geosci. Model Dev., 13, 6349–6360, 2020

https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://doi.org/10.5281/zenodo.3996876
https://rda.ucar.edu/datasets/ds083.2/
https://rda.ucar.edu/datasets/ds083.2/
http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
https://doi.org/10.5281/zenodo.3687362
https://doi.org/10.5281/zenodo.4016909
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://doi.org/10.5281/zenodo.4016909
https://doi.org/10.5194/gmd-13-6349-2020-supplement


6360 Z. Li et al.: Incoming data quality control in high-resolution urban climate simulations

uration, collected the data, designed the analysis methods, and pro-
grammed some related software packages. YZ collected the data,
performed the analysis, and critically revised the paper. HW sup-
ported the computer systems and checked the paper for language
errors.

Competing interests. The authors declare that they have no conflict
of interest.

Review statement. This paper was edited by David Topping and re-
viewed by two anonymous referees.

References

Anthes, R. A.: Regional models of the atmosphere in middle lati-
tudes, Mon. Weather Rev., 111, 1306–1335, 1983.

Bruyère, C. L., Done, J. M., Holland, G. J., and Fredrick, S.: Bias
corrections of global models for regional climate simulations of
high-impact weather, Clim. Dynam., 43, 1847–1856, 2014.

Chen, F., Kusaka, H., Tewari, M., Bao, J. W., and Hirakuchi, H.: Uti-
lizing the coupled WRF/LSM/Urban modeling system with de-
tailed urban classification to simulate the urban heat island phe-
nomena over the Greater Houston area, in: Fifth Symposium on
the Urban Environment, 25 August 2004, American Meteorolog-
ical Society, Vancouver, BC, Canada, 9–11, 2004.

Dudhia, J.: A history of mesoscale model development, Asia-Pac.
J. Atmos. Sci., 50, 121–131, 2014.

Hong, S. Y. and Kanamitsu, M.: Dynamical downscaling: funda-
mental issues from an NWP point of view and recommendations,
Asia-Pac. J. Atmos. Sci., 50, 83–104, 2014.

International Organization for Standardization (ISO): ISO 9000,
Quality management systems–fundamentals and vocabulary,
Geneva, Switzerland, 51 pp., 2015.

Kain, J. S., Weiss, S. J., Bright, D. R., Baldwin, M. E., Levit, J. J.,
Carbin, G. W., Schwartz, C. S., Weisman, M. L., Droegemeier,
K. K., Weber, D. B., and Thomas, K. W.: Some practical con-
siderations regarding horizontal resolution in the first generation
of operational convection-allowing NWP, Weather Forecast., 23,
931–952, 2008.

Keyser, D. and Uccellini, L. W.: Regional models: Emerging re-
search tools for synoptic meteorologists, B. Am. Meteorol. Soc.,
68, 306–320, 1987.

Li, Z.: The technical note for the programming techni-
cal preparation package in high-resolution urban climate
simulation: Hong Kong-Shenzhen area urban climate sim-
ulation using WRF/Noah LSM/SLUCM model, Zenodo,
https://doi.org/10.5281/zenodo.3996876, 2020a.

Li, Z.: Evaluation dataset for urban climate simulation, Zenodo,
https://doi.org/10.5281/zenodo.4016909, 2020b.

Li, Z. and Zhou, Y.: High-resolution (100 m) urban land sur-
face dataset for the Hong Kong-Shenzhen area, Zenodo,
https://doi.org/10.5281/zenodo.3687362, 2020.

Li, Z., Zhou, Y., Wan, B., Chen, Q., Huang, B., Cui, Y., and Chung,
H.: The impact of urbanization on air stagnation: Shenzhen as
case study, Sci. Total Environ., 664, 347–362, 2019a.

Li, Z., Zhou, Y., Wan, B., Chung, H., Huang, B., and Liu,
B.: Model evaluation of high-resolution urban climate simu-
lations: using the WRF/Noah LSM/SLUCM model (Version
3.7.1) as a case study, Geosci. Model Dev., 12, 4571–4584,
https://doi.org/10.5194/gmd-12-4571-2019, 2019b.

Lo, J. C.-F., Yang, Z.-L., and Pielke Sr., R. A.: Assessment of three
dynamical climate downscaling methods using the Weather Re-
search and Forecasting (WRF) model, J. Geophys. Res., 113,
D09112, https://doi.org/10.1029/2007JD009216, 2008.

MODIS: NASA EOSDIS Land Processes DAAC/USGS Earth Re-
sources Observation and Science (EROS) Center: MODIS/Aqua
Land Surface Temperature and Emissivity Daily L3 Global 1 km
Grid SIN, Data file, available at: https://modis.gsfc.nasa.gov/
data/dataprod/mod11.php (last access: 13 January 2017), 2012.

National Center for Atmospheric Research: WRF Model 3.7.1,
Computer software, Boulder, Co., USA, available at: https://
www2.mmm.ucar.edu/wrf/users/download/get_source.html (last
access: 22 March 2016), 2005a.

National Center for Atmospheric Research: WRF Pre-Processing
System (WPS) 3.7.1, Computer software, Boulder, Co., USA,
available at: https://www2.mmm.ucar.edu/wrf/users/download/
get_source.html (last access: 22 March 2016), 2005b.

National Center for Atmospheric Research: Completed Dataset
and the New Static Data Released with v3.7 of WRF Pre-
processing System (WPS) Geographical Input Data, avail-
able at: http://www2.mmm.ucar.edu/wrf/users/download/get_
sources_wps_geog.html, last access: 22 March 2016.

National Centers for Environmental Prediction/National Weather
Service/NOAA/U.S. Department of Commerce: NCEP FNL Op-
erational Model Global Tropospheric Analyses, continuing from
July 1999, available at: https://rda.ucar.edu/datasets/ds083.2/,
last access: 22 March 2016.

Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Verification, val-
idation, and confirmation of numerical models in the earth sci-
ences, Science, 263, 641–646, 1994.

Sertel, E., Robock, A., and Ormeci, C.: Impacts of land cover data
quality on regional climate simulations, Int. J. Climatol., 30,
1942–1953, 2010.

Teutschbein, C. and Seibert, J.: Bias correction of regional climate
model simulations for hydrological climate-change impact stud-
ies: Review and evaluation of different methods, J. Hydrol., 456,
12–29, 2012.

Tewari, M., Chen, F., Kusaka, H., and Miao, S.: Coupled
WRF/Unified Noah/urban-canopy modeling system. NCAR
WRF Documentation, NCAR, Boulder, USA, 1–20, 2007, avail-
able at: http://www.ral.ucar.edu/research/land/technology/urban/
WRF-LSM-Urban.pdf (last access: 9 April 2015), 2007.

Warner, T. T.: Quality assurance in atmospheric modeling, B. Am.
Meteorol. Soc., 92, 1601, https://doi.org/10.1175/BAMS-D-11-
00054.1, 2011.

World Meteorological Organization: Guide to the Quality Manage-
ment System for the Provision of Meteorological Service for In-
ternational Air Navigation, World Meteorological Organization,
Geneva, Switzerland, 2014.

Geosci. Model Dev., 13, 6349–6360, 2020 https://doi.org/10.5194/gmd-13-6349-2020

https://doi.org/10.5281/zenodo.3996876
https://doi.org/10.5281/zenodo.4016909
https://doi.org/10.5281/zenodo.3687362
https://doi.org/10.5194/gmd-12-4571-2019
https://doi.org/10.1029/2007JD009216
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
https://rda.ucar.edu/datasets/ds083.2/
http://www.ral.ucar.edu/research/land/technology/urban/WRF-LSM-Urban.pdf
http://www.ral.ucar.edu/research/land/technology/urban/WRF-LSM-Urban.pdf
https://doi.org/10.1175/BAMS-D-11-00054.1
https://doi.org/10.1175/BAMS-D-11-00054.1

	Abstract
	Introduction
	Methodologies
	Experimental design
	Evaluation methods for incoming data quality
	Data

	Results
	Refinements in urban land surface data
	Quality of simulation results

	Discussions and conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Review statement
	References

