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Abstract

While many studies have focused on identifying the association between meteorological

factors and the activity of COVID-19, we argue that the contribution of meteorological factors

to a reduction of the risk of COVID-19 was minimal when the effects of control measures

were taken into account. In this study, we assessed how much variability in COVID-19 activ-

ity is attributable to city-level socio-demographic characteristics, meteorological factors, and

the control measures imposed. We obtained the daily incidence of COVID-19, city-level

characteristics, and meteorological data from a total of 102 cities situated in 27 provinces/

municipalities outside Hubei province in China from 1 January 2020 to 8 March 2020, which

largely covers almost the first wave of the epidemic. Generalized linear mixed effect models

were employed to examine the variance in the incidence of COVID-19 explained by different

combinations of variables. According to the results, including the control measure effects in

a model substantially raised the explained variance to 45%, which increased by >40% com-

pared to the null model that did not include any covariates. On top of that, including tempera-

ture and relative humidity in the model could only result in < 1% increase in the explained

variance even though the meteorological factors showed a statistically significant associa-

tion with the incidence rate of COVID-19. In conclusion, we showed that very limited variabil-

ity of the COVID-19 incidence was attributable to meteorological factors. Instead, the

control measures could explain a larger proportion of variance.
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Author summary

COVID-19 has a great impact worldwide, especially in some rural settings where health-

care resources are not sufficient. While control measures in these area may be limited,

scholars have been discussing the potential effects of meteorological factors on mitigating

COVID-19 transmission. Unfortunately, the majority of literatures only looked at the

association between COVID-19 and environmental factors in which their findings could

mislead readers that certain environmental conditions could be ‘protective’. In this study,

we argue that the impact of the meteorological factors was very limited by using the inci-

dence data from 102 Chinese cities in the first epidemic period when control measures

have been taken into account. As what we expected, once the control measures have been

incorporated in the modelling analysis, the meteorological factors could only explain <

1% increase in variability of COVID-19 while control measure explained the variance for

more than 40% in total. Because of it, we suggest stringent control measures are necessary

to control COVID-19 regardless the meteorological conditions of an area. Given that no

vaccine is available to date, our investigation provides an additional evidence, as advo-

cated by World Meteorological Organization rather than relying on changes in the natural

environment for mitigation, active non-pharmaceutical interventions are necessary to

curb the COVID-19 pandemic.

Introduction

Pneumonia cases associated with a novel coronavirus were first recognised at the end of

December 2019 in Wuhan City, Hubei Province of China. The 2019 coronavirus disease

(COVID-19) soon spread to all 34 provinces of China by the end of January. In response to

this epidemic, a lockdown was imposed in Wuhan city starting from 23 January 2020, followed

by travel restrictions in Hubei. By 29 January 2020, a total of 7,711 confirmed cases and 170

deaths were diagnosed in China, and 31 provinces/municipalities had launched the highest

level (level I) of response for major public health emergencies [1] which aimed at preventing

and controlling the emergency, to guide and standardize emergency-handling strategies and

to minimize the harm caused by such emergency in a prompt and effective manner [2]. The

control measure strategies covered nine main medical, social and political aspects: direct lead-

ing from the State Council, definition of risk areas, screening of the floating population, traffic

control, social distancing, resource mobilization, information release, public education and

maintaining social stability. Despite the restrictive political and societal interventions, the dis-

ease soon becomes a global public health threat. As of 11 March 2020, the World Health Orga-

nization (WHO) reported 118,319 confirmed cases and 4,292 deaths in over 100 countries/

regions [3] and announced COVID-19 as a global pandemic on the same day [4].

Scholars have been discussing the potential effects of meteorological factors on COVID-19

transmission. Previous influenza studies found that in cold and dry weather, respiratory drop-

lets remain airborne longer, the virus is more stable and hosts tend to have weakened immu-

nity, which therefore facilitate virus transmission [5]. Existing laboratory data also suggested

that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was more stable at a low

temperature [6]. Yet, among the population-based studies, the meteorological effects were

inconsistent [7–12] and none have assessed the extent to which the effect contributed to the

variability of COVID-19 incidence. It was argued that the inconsistent findings may be due to

the decreasing impacts of meteorological conditions after the imposition of political and socie-

tal measures for epidemic control [12].
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While many studies have focused on identifying the association between meteorological

factors and the activity of COVID-19, we hypothesize that the impact of the meteorological

factors on risk of COVID-19 was minimal when the effects of control measures were taken

into account. In this study, we aim to use data from the first wave of epidemic in China (out-

side Hubei) to assess how much variability in COVID-19 activity is attributable to city-level

socio-demographic characteristics, meteorological factors, and control measures of level I

responses. We argue stringent control measures are necessary to control COVID-19 regardless

the meteorological conditions of an area.

Method

Ethics statement

The is a statistical modelling study using publicly available data and all the data were in aggre-

gated level without personal information so no ethical issues were encountered.

Settings and primary data screening

We obtained data from a total of 102 cities situated in 27 provinces/municipalities outside

Hubei province in China from 1 January 2020 to 8 March 2020, which covers almost the first

wave of the epidemic. These cities were selected given that at least 20 cases of COVID-19 were

confirmed during the study period. While the epidemics in the Chinese cities outside Hubei

province consistently characterised by a mixture of imported from Hubei and local cases,

Hubei was regarded as an epidemic centre that exhibited completely different spatial dissemi-

nation and temporal dynamics of COVID-19 [13], and thus, we excluded all cities in Hubei

province from the analysis. Fig 1 shows the spatial distribution of the 102 Chinese cities

selected in this study.

Level I responses in different Chinese provinces and municipalities

By 25 January 2020, all 27 provinces in our study had initiated the level I response to major

public health emergencies. The schedule of level I responses and corresponding control mea-

sures in each province/municipality were summarized in S1 Table. As a follow-up to the pro-

vincial response, many cities launched more specific and multi-dimensional measures. For

example, closure of museums, tourist area and religious institutes in Hangzhou, Zhejiang

Province, forced masks-wearing and body temperature-checking in public spaces in Shenzhen,

Guangdong Province, as well as cancelling mass gathering activities and screening for individ-

uals with travel history from Hubei in Quanzhou, Fujian Province.

COVID-19 surveillance data

Daily number of confirmed cases of COVID-19 in different Chinese cities from 1 January

2020 to 8 March 2020 were obtained from the webpage of the National Health Commissions

of the People’s Republic of China [14]. We employed daily incidence, which is defined as the

number of cases with illness onset on that day divided by the population size (per million pop-

ulation) in a city, to describe the activity of COVID-19.

To adjust for the delay between date of illness onset and date of confirmation of COVID-19

diagnosis, we rebuilt the epidemic curves using the following recurrence equation:

nonset
ij ¼ nonset

iðjÞ ¼
X

u
�ðuÞnconfirm

iðjþ uÞ ð1Þ

where nonseti(j) and nconfirmi(j) are the number of cases with onset day j and the number of

cases confirmed on day j in city i respectively, and ϕ(u) is the discretized probability density

PLOS NEGLECTED TROPICAL DISEASES Limited role for meteorological factors in COVID-19

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009056 February 24, 2021 3 / 16

https://doi.org/10.1371/journal.pntd.0009056


function of delay duration U that was assumed to follow a gamma distribution with mean of

8.8 days and standard deviation of 4.6 days between 1 and 27 January 2020 and mean of 5.3

days and standard deviation of 3.0 days from 28 January 2020 onwards [13].

Meteorological data and other covariates

Daily meteorological data including average ambient temperature and relative humidity in

each of the cities were collected from the National Climate Data Center [15] and were averaged

over all weather stations in a city. As absolute humidity has been demonstrated to have a stron-

ger association with respiratory diseases [16–19], we employed vapour pressure determined by

Clausius–Clapeyron equation as a proxy for absolute humidity in our analysis [20–22].

In order to account for the variability between cities in our analysis, we also collected city-

specific characteristics including population size, population density, sociodemographic status

(i.e. gross domestic product (GDP) per capita, proportion of individuals having tertiary educa-

tion or above, and proportion of elderly population (i.e. aged>64 years) [23], and geographic

distance to Wuhan, which served as a proxy for potential accessibility to the epidemic centre.

Statistical analysis

To account for between-city variation, we employed generalized linear mixed effect models

(GLMMs) to examine the variability in the incidence of COVID-19 explained by different

combinations of variables. The GLMMs were fitted using the data from the date of the

Fig 1. The 102 Chinese cities selected in the study.

https://doi.org/10.1371/journal.pntd.0009056.g001
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epidemic start (i.e. date of having the first case with illness onset) to the date of epidemic end

(i.e. date of the last case) in each of the included cities. Suppose yij, the daily incidence rate on

day j in city i (i.e. nonsetij/population size of city i), follows a Poisson distribution with mean λij,
the full model form is as follow:

lnðlijÞ ¼ b0 þ
X

p
bpxpi þ

X

q
bqxqij þ bmxmij

þ bttimei þ ai ð2Þ

where β0 is the grand intercept, xpi is the p-th city-specific characteristic variable of city i with

regression coefficient βp, xqij is the q-th time-varying meteorological variable of city i on day j
with regression coefficient βq, xmij

is the variable with regression coefficient βm which captures

the incremental effect of control measures of level I responses implemented on day k as

defined below:

xmij
¼

0 where j � date of control measures implementation

j � k where j > date of control measures implementation
ð3Þ

(

To account for the time trend, we included a variable timei, which is the number of days

since the date of the first case with illness in city i with regression coefficient βt in the model.

In the GLMM, the city-specific random effect is modelled as αi which followed a normal distri-

bution with mean 0 and variance σα2. The use of the random effect is to capture the city-spe-

cific heterogeneity that cannot be accounted for by our data. To account for over-dispersion of

the outcome variable, yij was assumed to follow a negative binomial distribution when the

standard Pearson chi-squared statistic divided by its residual degree of freedom (χ2/df) was

greater than two.

We compared five regression models: (i) model with time trend only (M1, base model), (ii)

model with city-specific characteristics and time trend (M2), (iii) model with city-specific

characteristics, meteorological factors, and time trend (M3), (iv) model with city-specific char-

acteristics, control measures variable, and time trend (M4), and (v) model with city-specific

characteristics, meteorological factors, control measures variable, and time trend (M5, full

model) using R-squares (R2) proposed by Nakagawa and colleagues [24], so as to determine

which variable combination best explains the variance of the activity of SARS-CoV-2. We used

R2
fixed to depict the proportion of variance explained by the fixed effects and R2

random to depict

the proportion of variance explained by the random effects of cities’ heterogeneity. ΔR2
fixed

was used to determine the proportion of variance explained by the additional fixed effect

terms in each of the M2 to M5 compared with M1. To avoid the problem of collinearity, the

impact of vapour pressure was studied in another set of models by replacing temperature and

relative humidity with vapour pressure. Relative risks (RR) with corresponding 95% confi-

dence intervals (CIs) and p-values (p) were employed to quantify the effects of the variables on

risk of COVID-19.

A stratified analysis by climate zone was conducted to examine the difference in proportion

of variance explained by factors between temperate and subtropical/tropical cities. Of the 102

Chinese cities included, 45 located in the temperate zone and 57 located in the subtropical or

tropical zones. Apart from that, we categorized the control measures into 5 types: social dis-

tancing, screening and contact tracing, quarantine of risky populations, hospital-related mea-

sures, and other public health measures in order to examine the robustness of the composite

variable of the level I responses in the GLMM and to assess the statistical significance for each

types of the control measures. A similar model form was used (S1 Text).

In the sensitivity analysis, we tested whether adding an interaction term between meteoro-

logical factors and control measures in the model would enhance the explained variance. Since
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day of week was shown to be associated with the consultation pattern of some non-acute dis-

eases [25, 26], we examined the variability of our results when the day-of-week term was

included into the model. We also compared the main results from models using different lags

for meteorological factors (i.e. 3 and 7 lag days) to assess the robustness of our findings. All

analyses were carried out using software SAS version 9.4.

Results

Table 1 shows the descriptive statistics of the city-specific characteristics of the selected 102 cit-

ies. The population size ranged from around 600 thousand (Sanya, Hainan province) to 34

million (Chongqing municipality), whereas the population density ranged from 66/km2 (Wuz-

hong, Ningxia province) to 6,523/km2 (Shenzhen, Guangdong province). The GDP per capita

and distance to Wuhan ranged from 22 thousand to 190 thousand Chinese yuan and 210 km

to 3,270 km respectively. Beijing municipality had the largest proportion of residents with ter-

tiary education (42.3%), while Chongqing had the largest proportion of population aged>64

years (12.9%).

Across all the included cities, the daily ambient temperature and relative humidity ranged

from -23.6˚C to 29.5˚C and 9.4% to 100% respectively (Table 1). The overall median of city-

specific mean temperature was 6.9˚C (range: -15.0˚C to 22.6˚C) and the median of city-spe-

cific mean temperature increased from 4.8˚C (range: -18.5˚C to 22.2˚C) in January 2020 to

10.0˚C (range: -7.4˚C to 24.3˚C) in March 2020 (Fig 2A). The overall median of city-specific

mean relative humidity was 74.4% (Range: 44.9% to 89.7%) and the median of city-specific

mean relative humidity decreased slightly from 76.3% (range: 51.6% to 90.9%) in January 2020

to 73.8% (range: 30.3% to 97.9%) in March 2020 (Fig 2B).

Before 22 January 2020, most of the cities had a daily incidence rate below 2 per million

population (Fig 2C). Before further upsurge of epidemic outbreaks, the Chinese provincial

governments have declared level I responses during 23 to 25 January 2020. After that, Shen-

zhen in Guangdong province experienced the peak daily incidence of 6.9 per million inhabi-

tants on 28 January 2020 among all cities outside Hubei province. A downward trend was

observed in the epidemic curve about a week after the implementation of control measures of

level I responses.

Table 2 shows the model comparison results. Compared with M1, which solely included the

time trend, including city-specific characteristics in the model (M2) could only explain an

additional 3.22% of the variance in the incidence rate. Further inclusion of temperature and

relative humidity as time-varying fixed effects in the model (M3) boosted the explained vari-

ance to 11.8%. However, having the control measure effects included in the GLMM (M4) sub-

stantially raised the explained variance to 45.0%, which increased by>40% compared to the

Table 1. Descriptive statistics of city-specific characteristics and meteorological factors in 102 cities.

Minimum 25th percentile Median 75th percentile Maximum

Population (in 10,000) 60 413 605 825 3,397

Population density (in /km2) 66 254 514 706 6,523

GDP per capita (in 10,000 Chinese Yuan) 2.2 3.9 6.3 8.8 19.0

Proportion of individuals having tertiary education (%) 8.5 10.9 12.0 13.7 42.3

Proportion of elderly population (%) 7.4 9.5 10.8 11.7 12.9

Distances to Wuhan (in 100 km) 2.1 6.7 9.3 12.5 32.7

Ambient temperature over all cities (oC) -23.6 3.6 8.8 13.7 29.5

Relative humidity over all cities (%) 9.4 58.4 72.8 84.2 100.0

Vapour pressure over all cities (hPa) 0.6 4.9 7.9 11.3 29.9

https://doi.org/10.1371/journal.pntd.0009056.t001
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null model. On top of this effect, including the meteorological effects in the model (M5) only

resulted in < 1% increase in the explained variance even though temperature and relative

humidity showed a statistically significant association with the incidence rate of COVID-19

(temperature: RR = 0.984, 95% CI: 0.969–0.999, p = 0.040; relative humidity: RR = 0.993, 95%

CI: 0.988–0.997, p = 0.001). In the full model, no city-specific characteristics (i.e. distance to

Wuhan, population density, GDP per capita, proportion of tertiary education, and proportion

of elderly population) were significantly associated with the COVID-19 incidence.

When temperature and relative humidity in the models were replaced with vapour pres-

sure, the increases in explained variance were similar (Table 3). Nevertheless, a decrease in

vapour pressure was statistically significantly associated with an increased risk of the COVID-

19 incidence (RR = 0.958, 95% CI: 0.939–0.976, p<0.001).

While the analysis was stratified by climate zone, the additional variances explained by the

control measures were similar between the temperate and subtropical/tropical cities when

compared with the variance explained in the model without the effects of M3 control measure

(Table 4). However, the contribution of meteorological factors in the explained variance of the

subtropical/tropical cities was around 3-fold more than that in the temperate cities (i.e.

ΔR2fixed = 14.4% vs ΔR2
fixed = 5.04% in M3). The temperature and relative humidity even

became statistically insignificant in the full model when fitting the data of temperate cities

Fig 2. Temporal distribution of (A) ambient temperature (oC), (B) relative humidity (%), (C) vapour pressure

(hPa), and (D) incidence of COVID-19 infections (per million population). The level I responses were implemented

in different provinces between 23 and 25 January 2020.

https://doi.org/10.1371/journal.pntd.0009056.g002

Table 2. Comparison of changes in R-square among different models and relative risks (95% confidence intervals) of the variables.

Variables M1 (null model) M2 M3 M4 M5 (full model)

City-specific characteristics

Population density (in /100 km2) 1.011 (0.990, 1.033) 1.022 (0.996, 1.048) 1.016 (0.994, 1.039) 1.019 (0.995, 1.043)

GDP per capita (in 10,000 Chinese Yuan) 1.032 (0.981, 1.084) 1.051 (0.991, 1.115) 1.015 (0.993, 1.070) 1.021 (0.966, 1.078)

Proportion of tertiary education (in %) 1.003 (0.967, 1.040) 0.984 (0.942, 1.028) 1.008 (0.970, 1.048) 1.000 (0.961, 1.042)

Proportion of elderly population (in %) 0.927 (0.842, 1.021) 0.865 (0.771, 0.970)� 0.921 (0.832, 1.019) 0.907 (0.815, 1.009)

Distances to Wuhan (in 100 km) 1.004 (0.979, 1.029) 0.961 (0.932, 0.992)� 1.001 (0.975, 1.028) 0.986 (0.958, 1.016)

Meteorological factors

Temperature (in oC) 0.943 (0.929, 0.956)�� 0.984 (0.969, 0.999)�

Relative humidity (in %) 0.992 (0.988, 0.996)�� 0.993 (0.988, 0.997)�

Control measure effect 0.755 (0.739, 0.771)�� 0.755 (0.739, 0.771)��

Time trend 1.009 (1.006, 1.013)�� 1.009 (1.005, 1.012)�� 1.011 (1.007, 1.015)�� 1.227 (1.206, 1.248)�� 1.226 (1.205, 1.248)��

χ2/df 0.33 0.33 0.30 0.11 0.11

R2
fixed 0.98% 4.20% 11.8% 45.0% 45.7%

R2
random 22.7% 20.9% 25.6% 13.3% 14.0%

ΔR2
fixed - 3.22% 10.8% 44.0% 44.7%

Note: M1, Model with time only; M2, Model with city-specific characteristics and time; M3, Model with city-specific characteristics, meteorological factors, and time;

M4, Model with city-specific characteristics, control measure variable, and time; M5, Model with city-specific characteristics, meteorological factors, control measure

variable, and time (full model). RR, Relative risk in incidence rate of COVID-19 for each unit change of variable; χ2/df, chi-square statistics divided by the degree of

freedom; R2
fixed, Proportion of variance in the incidence rate (per million population) explained by the fixed effect terms; R2

random, Proportion of variance explained by

the random effect term of cities’ heterogeneity. ΔR2
fixed, R2

fixed of each model minus R2
fixed of M1.

�p<0.05

��p<0.001.

https://doi.org/10.1371/journal.pntd.0009056.t002
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(temperature: RR = 0.981, 95% CI: 0.952–1.010, p = 0.198; relative humidity: RR = 0.997, 95%

CI: 0.990–1.004, p = 0.458).

When the control measures were categorized by types, the overall variance explained in the

models was reduced by around 8% (Table 5). However, as with the major finding, including

the meteorological effects in the model (M5) only resulted in 2% increase in the explained vari-

ance with the statistical significances of the temperature and relative humidity remain

unchanged. Among all types of control measure, imposing social distancing (RR = 0.912, 95%

CI: 0.892–0.932, p<0.001), screening and contact tracing (RR = 0.945, 95% CI: 0.926–0.965,

p<0.001), hospital-related measures (RR = 0.954, 95% CI: 0.941–0.967, p<0.001), and other

public health measures (RR = 0.942, 95% CI: 0.927–0.958, p<0.001) were significantly associ-

ated with a lower risk of COVID-19. Quarantine of risky populations was not found to be a

significant predictor.

As shown in the sensitivity analysis, our results were robust to variance explained by the

delayed effects of meteorological factors (S2 Table). When the lags of temperature and relative

humidity were increased in the models, a slight decrease in the explained variance was

observed (lag = 3 days: R2
fixed = 10.4% in M3; lag = 7 days: R2

fixed = 9.15% in M3) and both of

the temperature and relative humidity tended to be less significant. Compared with R2
fixed of

M4, R2
fixed of the full model that accounted for lag effects did not change remarkably and was

kept at around 45%. Adding the interaction terms (S3 Table) or the day-of-week term (S4

Table) in the model did not enhance the proportion of variance explained.

Table 3. Comparison of changes in R-square among different models and relative risks (95% confidence intervals)

of the variables when vapour pressure was used to replace temperature and relative humidity.

Variables M1 (null model) M3 M5 (full model)

City-specific characteristics

Population density (in /100 km2) 1.021 (0.996, 1.047) 1.020 (0.996, 1.045)

GDP per capita (in 10,000 Chinese Yuan) 1.043 (0.984, 1.106) 1.019 (0.965, 1.077)

Proportion of tertiary education (in %) 0.986 (0.944, 1.029) 1.001 (0.961, 1.042)

Proportion of elderly population (in %) 0.865 (0.773, 0.969)� 0.894 (0.804, 0.995)�

Distances to Wuhan (in 100 km) 0.988 (0.960, 1.017) 0.994 (0.967, 1.022)

Meteorological factors

Absolute humidity (in hPa) 0.905 (0.888, 0.923)�� 0.958 (0.939, 0.976)��

Control measure effect 0.757 (0.741, 0.773)��

Time trend 1.009 (1.006, 1.013)�� 1.010 (1.007, 1.014)�� 1.225 (1.204, 1.247)��

χ2/df 0.33 0.30 0.11

R2
fixed 0.98% 10.9% 45.6%

R2
random 22.7% 25.5% 14.2%

ΔR2
fixed - 9.93% 44.6%

Note: M1, Model with time only; M3, Model with city-specific characteristics, vapour pressure, and time; M5, Model

with city-specific characteristics, vapour pressure, control measure variable, and time (full model). RR, Relative risk

in incidence rate of COVID-19 for each unit change of variable; χ2/df, chi-square statistics divided by the degree of

freedom; R2
fixed, Proportion of variance in the incidence rate (per million population) explained by the fixed effect

terms; R2
random, Proportion of variance explained by the random effect term of cities’ heterogeneity. ΔR2

fixed, R2
fixed of

each model minus R2
fixed of M1.

�p<0.05

��p<0.001.

https://doi.org/10.1371/journal.pntd.0009056.t003
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Discussion

Although laboratory findings showed that the stability of SARS-CoV-2 was sensitive to tem-

perature and relative humidity [6,27,28] in controlled environments, the meteorological effect

varies greatly at population level when host factors were taken into account. In this study, we

employed data from 102 Chinese cities which experienced the first wave of epidemic to assess

how much variability in COVID-19 activity was attributable to city-level socio-demographic

characteristics, meteorological factors, and control measures of level I responses. According to

our results, despite temperature and relative humidity were significantly associated with the

risk of COVID-19, we could not identify a substantial variability of the COVID-19 incidence

Table 4. Comparison of changes in R-square among different models and relative risks (95% confidence intervals) of the variables by climate zone.

Climate zone Variables M1 (null model) M3 M5 (full model)

Temperate City-specific characteristics

Population density (in /100 km2) 0.971 (0.880, 1.072) 0.959 (0.854, 1.077)

GDP per capita (in 10,000 Chinese Yuan) 0.975 (0.904, 1.053) 0.946 (0.865, 1.034)

Proportion of tertiary education (in %) 1.031 (0.988, 1.076) 1.046 (0.994, 1.100)

Proportion of elderly population (in %) 0.914 (0.787, 1.060) 0.923 (0.777, 1.097)

Distances to Wuhan (in 100 km) 0.974 (0.934, 1.016) 0.987 (0.940, 1.037)

Meteorological factors

Temperature (in oC) 0.959 (0.934, 0.984)� 0.981 (0.952, 1.010)

Relative humidity (in %) 0.996 (0.990, 1.003) 0.997 (0.990, 1.004)

Control measure effect 0.771 (0.745, 0.798)��

Time trend 1.015 (1.009, 1.021)�� 1.018 (1.011, 1.026)�� 1.219 (1.184, 1.254)��

χ2/df 0.24 0.23 0.09

R2
fixed 2.40% 7.43% 43.1%

R2
random 15.1% 14.2% 12.1%

ΔR2
fixed - 5.04% 40.7%

Subtropical/tropical City-specific characteristics

Population density (in /100 km2) 1.018 (0.988, 1.048) 1.014 (0.989, 1.039)

GDP per capita (in 10,000 Chinese Yuan) 1.083 (1.002, 1.170)� 1.071 (1.004, 1.142)�

Proportion of tertiary education (in %) 0.957 (0.876, 1.045) 0.967 (0.899, 1.041)

Proportion of elderly population (in %) 0.866 (0.741, 1.012) 0.924 (0.810, 1.053)

Distances to Wuhan (in 100 km) 1.024 (0.957, 1.095) 0.966 (0.913, 1.022)

Meteorological factors

Temperature (in oC) 0.901 (0.881, 0.921)�� 0.979 (0.956, 1.002)

Relative humidity (in %) 0.991 (0.985, 0.996)� 0.989 (0.984, 0.994)��

Control measure effect 0.744 (0.724, 0.765)��

Time trend 1.006 (1.002, 1.011)� 1.007 (1.003, 1.012)� 1.233 (1.206, 1.260)��

χ2/df 0.36 0.34 0.13

R2
fixed 0.48% 14.8% 51.3%

R2
random 27.8% 27.0% 11.3%

ΔR2
fixed - 14.4% 50.8%

Note: M1, Model with time only; M3, Model with city-specific characteristics, meteorological factors, and time; M5, Model with city-specific characteristics,

meteorological factors, control measure variable, and time (full model). RR, Relative risk in incidence rate of COVID-19 for each unit change of variable; χ2/df, chi-

square statistics divided by the degree of freedom; R2
fixed, Proportion of variance in the incidence rate (per million population) explained by the fixed effect terms;

R2
random, Proportion of variance explained by the random effect term of cities’ heterogeneity. ΔR2

fixed, R2
fixed of each model minus R2

fixed of M1.

�p<0.05

��p<0.001.

https://doi.org/10.1371/journal.pntd.0009056.t004
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was attributable to meteorological factors once the effect of control measures of level I

response was taken into account. Instead, the implementation of control measures was associ-

ated with a larger proportion of variance explained with regard to the activity of COVID-19

and the result was robust to variations in climate zones of the cities and lag effects of meteoro-

logical factors.

Our findings support that control measures have significant effects on COVID-19 inci-

dences while climatic conditions are less important in the limits of this study. This corrobo-

rates with an investigation by te Beest and colleagues [29] which focused on seasonal

influenza, another respiratory disease with likely identical transmission route (via contact,

droplets, and fomites). They [29] showed that the effect of absolute humidity could only

explain very limited proportion of variance in disease transmission intensity, instead, deple-

tion of susceptible during an epidemic that might be done by vaccination contributed to one-

third of total variance. Our study suggests a similar perspective that the effect of host factors

likely contributes much variability to COVID-19 transmission at population level even though

laboratory findings suggested the viral spreading ability of coronavirus reduced in hot condi-

tion [30]. This, on the other hand, suggests that if a vaccine is not available, non-

Table 5. Comparison of changes in R-square among different models and relative risks (95% confidence intervals)

of the variables with control measures stratified by type.

Variables M4 M5 (full model)

City-specific characteristics

Population density (in /100 km2) 1.017 (0.990, 1.044) 1.022 (0.994, 1.051)

GDP per capita (in 10,000 Chinese Yuan) 1.031 (0.970, 1.095) 1.040 (0.974, 1.109)

Proportion of tertiary education (in %) 0.984 (0.941, 1.030) 0.945 (0.929, 1.023)

Proportion of elderly population (in %) 0.951 (0.845, 1.069) 0.921 (0.812, 1.045)

Distances to Wuhan (in 100 km) 1.009 (0.979, 1.040) 0.985 (0.952, 1.019)

Meteorological factors

Temperature (in oC) 0.970 (0.955, 0.986)�

Relative humidity (in %) 0.993 (0.989, 0.997)�

Control measure effect

Social distancing 0.915 (0.896, 0.935)�� 0.912 (0.892, 0.932)��

Screening and contact tracing 0.942 (0.923, 0.960)�� 0.945 (0.926, 0.965)��

Quarantine of risky populations 1.007 (0.993, 1.022) 1.009 (0.994, 1.024)

Hospital-related measures 0.954 (0.942, 0.967)�� 0.954 (0.941, 0.967)��

Other public health measures 0.942 (0.927, 0.957)�� 0.942 (0.927, 0.958)��

Time trend 1.161 (1.146, 1.175)�� 1.161 (1.146, 1.176)��

χ2/df 0.16 0.15

R2
fixed 37.0% 38.7%

R2
random 19.2% 20.5%

ΔR2
fixed 36.0% 37.7%

Note: M4, Model with city-specific characteristics, different control measures, and time; M5, Model with city-specific

characteristics, meteorological factors, different control measures, and time (full model). RR, Relative risk in

incidence rate of COVID-19 for each unit change of variable; χ2/df, chi-square statistics divided by the degree of

freedom; R2
fixed, Proportion of variance in the incidence rate (per million population) explained by the fixed effect

terms; R2
random, Proportion of variance explained by the random effect term of cities’ heterogeneity. ΔR2

fixed, R2
fixed of

each model minus R2
fixed of M1 in Table 1.

�p<0.05

��p<0.001.

https://doi.org/10.1371/journal.pntd.0009056.t005
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pharmaceutical interventions to reduce the frequency of host contacts (e.g. social distancing)

are required to induce a decrease in COVID-19 incidence.

Although we could not show a large proportion of variance explained by the meteorological

factors, temperature and relative humidity were negatively associated with the risk of COVID-

19. Another investigation in China also indicated that temperature was a driver of the

COVID-19 outbreak and the incidence decreased with the rise of temperature [31]. Consistent

with a study in the United States [7], higher temperature was significantly associated with a lin-

early decreasing risk of COVID-19. Our study echoed with a recent systematic review that hot

and wet climates were related to a decrease in spread of COVID-19 [32]. Nevertheless, the

association identified in our study contradicts the results of an earlier study showing that high

temperature favoured the transmission of COVID-19 in Brazil [33]. Yet, we noted that the Bra-

zil study did not account for the increase in intensity of control measures along time. Such

inconsistency of association between temperature and disease transmission was typically

observed in respiratory diseases across different zones and hemispheres [13]. We also showed

relative humidity and absolute humidity were correlated with the activity of COVID-19 and

the result was consistent with other studies [7,33]. We speculate COVID-19 shares similar

viral characteristics with influenza in which a lower humidity level could enhance the survival

and transmission of the virus [18].

In our analysis, we employed random effects to capture the city-specific heterogeneity that

cannot be accounted for by our data. Random effects term, together with the fixed effects

terms, helped to increase the variance explained by the models to around 60% of the total vari-

ability. The remaining unexplained variance could be attributed to many other factors. For

example, we did not capture the between-province heterogeneity which might be inherited

from the variation in the compliance of the control measures in level I response (S1 Table).

Nevertheless, we conducted an additional analysis by including different types of control mea-

sures in the GLMMs and the results were consistent with our major finding though a decrease

of model fitness was observed. We also found majority of control measures (i.e. social distanc-

ing, screening and contact tracing, hospital-related measures, and other public health mea-

sures) was significantly associated with a lower risk of COVID-19 activity. Moreover, different

levels of reporting rates may contribute to the unexplained variance, especially when the public

awareness of the newly emerged COVID-19 has increased compared to the start of the epi-

demic which might only be partly captured by the time effect.

There are several major limitations in our study. First, we did not account for the changes

in number of susceptible individuals by taking it as one of the fixed effects in our statistical

models. However, given COVID-19 is a newly emerged infectious disease, the effect of varia-

tion in number of susceptibles on our results is likely to be comparatively minor [29]. Second,

we did not study the impacts of other meteorological variables such as rainfall because major-

ity of studies have only documented the impacts of temperature and humidity. Ultraviolet

radiation was also shown to be insignificantly associated with the transmission of COVID-19

[10]. Moreover, since the pollution level in China was likely to be reduced at the moment due

to shutdown of business and industrial activities, pollutants were not included in our analysis

so as to avoid interpretation of non-causal relationship [34]. However, we cannot completely

rule out a potential effect of pollutants on exacerbating the prognosis of COVID-19 especially

in elderly with chronic conditions as we observed more cases and deaths in the elderly [35–

37]. In addition, our study period covered the first wave of COVID-19 epidemic which only

lasted for three months. Our findings may thus not be generalized to other seasons although

our study period covered a wide range of meteorological variation in most Chinese cities

across a year. Third, we used a single variable to capture the effect of control measures of level

I response in the model due to complexity in differentiating the impacts of each control
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measure. Further modelling investigation using more information to rank the importance of

factors in explaining the reduction of COVID-19 incidence is warranted.

In conclusion, even though meteorological factors were associated with COVID-19, we

could not find an apparent impact of them and only the effect of control measures could

explain a large portion of variability in COVID-19 activity. Therefore, we argue stringent con-

trol measures are necessary to control COVID-19 regardless the meteorological conditions of

an area. Given that no vaccine is available to date, our investigation provides an additional evi-

dence, as advocated by World Meteorological Organization [38], rather than relying on

changes in the natural environment for mitigation, active non-pharmaceutical interventions

are necessary to curb the COVID-19 pandemic.
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