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Abstract Tidal disruption events (TDEs) are among the brightest transients in the optical,
ultraviolet, and X-ray sky. These flares are set into motion when a star is torn apart by the
tidal field of a massive black hole, triggering a chain of events which is – so far – incom-
pletely understood. However, the disruption process has been studied extensively for almost
half a century, and unlike the later stages of a TDE, our understanding of the disruption
itself is reasonably well converged. In this Chapter, we review both analytical and numer-
ical models for stellar tidal disruption. Starting with relatively simple, order-of-magnitude
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physics, we review models of increasing sophistication, the semi-analytic “affine formal-
ism,” hydrodynamic simulations of the disruption of polytropic stars, and the most recent
hydrodynamic results concerning the disruption of realistic stellar models. Our review sur-
veys the immediate aftermath of disruption in both typical and more unusual TDEs, explor-
ing how the fate of the tidal debris changes if one considers non-main sequence stars, deeply
penetrating tidal encounters, binary star systems, and sub-parabolic orbits. The stellar tidal
disruption process provides the initial conditions needed to model the formation of accretion
flows around quiescent massive black holes, and in some cases may also lead to directly ob-
servable emission, for example via shock breakout, gravitational waves or runaway nuclear
fusion in deeply plunging TDEs.

Keywords Supermassive black holes · Transient phenomena · Stellar dynamics · Gas
magnetohydrodynamics

1 Introduction

The process of tidal disruption of a star by a supermassive black hole (SMBH) was originally
studied by Hills (1975) as a mechanism to fuel active galactic nuclei, whose emission had
recently been associated to SMBH gas accretion by Lynden-Bell (1969). Later, however,
it became clear that the stellar disruption rate may not be sufficient (e.g. Frank and Rees
1976, see also the Disruption Chapter) for producing the copious (∼ 10 M� yr−1) and steady
accretion flows needed to explain bright quasars. Rather, Rees (1988) suggested that tidal
disruption events (TDEs) could be used to identify the presence of quiescent SMBHs in
nearby galaxies, with the distinctive signature of an accretion-powered flare lasting up to a
few years. By the first decade of the 21st century, the ubiquity of SMBHs in galactic nuclei
was established, with an overwhelming majority of low-redshift SMBHs being quiescent
(e.g. Ferrarese and Merritt 2000). Thus, TDEs are currently regarded as a unique tool to
deliver a census of SMBH properties, including mass, spin and occupation fraction up to
redshifts of a few. This is vital information to unravel the galaxy formation process, which
is tightly linked to cosmological evolution of SMBHs. Beside black hole demographics,
the time-dependent emission of TDE flares can be exploited to understand the physics of
accretion and jet launching through different accretion regimes and/or states, similar to the
goal of X-ray binary observations.

This Chapter describes theoretical efforts and progress over the last 45 years to under-
stand the (magneto-hydro) dynamics of the stellar tidal disruption process. The tidal destruc-
tion of a self-gravitating body by a denser companion is a venerable problem in astrophysics,
dating back to the 19th century work of Roche. For most of its history, the problem was stud-
ied primarily in the circular-orbit limit. While stars can approach SMBHs on quasi-circular
orbits, the resulting tidal mass transfer is generally stable, and therefore far less luminous
than the TDEs which are our primary subject here. TDEs differ from standard Roche-lobe
overflowing systems through the orbits of the disrupted stars, which are generally parabolic,
or nearly so. Consequently, the entire star can be destroyed in a single pericenter passage,
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faster even than unstable mass transfer in the circular-orbit Roche problem. Alternatively, if
the star’s pericenter only grazes the tidal sphere, it may suffer limited stripping of its outer
envelope: a partial disruption.

While the disruption process itself is not expected to be highly luminous (although there
exist some notable, albeit speculative, possibilities for observing the disruption, which we
discuss later on), the dynamics of partial and full disruption set the stage for later events in
a tidal disruption flare. The efficiency and the qualitative manner in which an accretion flow
is formed, and the resulting light curve of the TDE, are all dictated by the rate at which tidal
debris falls back to the SMBH after disruption. These later stages in the evolution of TDEs
are, at the time of this writing, quite incompletely understood, and large open questions exist
about the hydrodynamics of accretion disc formation and the emission mechanisms operat-
ing during TDEs. In comparison, the actual process of tidal disruption is itself reasonably
well-understood. The focus of this Chapter is limited in scope1 to events occurring in the
immediate vicinity of the tidal sphere; the subsequent evolution of dynamically bound tidal
debris is picked up in the Formation of the Accretion Flow Chapter, Accretion Disc Chapter,
and Emission Mechanisms Chapter.

Here we review theoretical models of the tidal disruption process. In §2, we present a gen-
eral theoretical framework for tides, in both the Newtonian and general relativistic regimes.
We then overview both analytic and semi-analytic models for the disruption process and
the dynamical properties of the stellar debris as it exits the tidal sphere. In §3, we survey
the substantial literature of numerical hydrodynamic simulations of full tidal disruptions
(see also the Simulation Methods Chapter for a more detailed discussion of the numerical
techniques). §4 likewise surveys past numerical hydrodynamic simulations of partial tidal
disruption. In §5, we explore how the disruption process depends on the detailed stellar type
being examined. This section goes beyond the primarily polytropic disruption simulations of
the prior sections to examine realistic models for both main sequence and giant-branch stars.
In §6 we discuss the subset of highly penetrating TDEs as opposed to more common grazing
disruptions, examining three as-yet unobserved signatures of deeply penetrating encounters:
shock breakout, gravitational wave emission, and thermonuclear fusion. §7 reviews the fate
of the ≈ 50% of the star that is dynamically unbound from the black hole, and does not par-
ticipate in later stages of the bound debris evolution. In §8, we explore “unusual” sub-types
of TDEs, such as stable but extreme-mass-ratio Roche lobe overflow, disruption of stars
on non-parabolic orbits, tidal disruption of binary stars, and repeated partial disruptions.
Finally, we conclude in §9.

2 Analytical Modelling of the Process of Tidal Disruption

In Newtonian gravity, tides are a differential acceleration between two (initially) nearby
points, objects, or fluid elements. If we focus on the tidal forces exerted by a massive black
hole, with mass MBH, on an object at distance r away, then the “tidal approximation” will
apply if the object’s physical size R� � r . In this limit, we may Taylor expand the Newto-
nian gravitational field around the finite size of the object, which leads to an approximate
tidal acceleration at ∼ GMBHR�/r3, where G is the Newtonian gravitational constant. The
order unity numerical prefactor on at varies depending on which region of the object we

1The one exception to this is the evolution of the star’s debris which is dynamically unbound during the
disruption process; because it does not participate in later stages of the bound debris evolution, we cover its
evolution here.
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are concerned with, but from this approximation alone, it is straightforward to define a tidal
disruption radius: the distance interior to which objects are torn apart by tides from a black
hole. If specifically we consider a self-gravitating star of mass M� and radius R�, this tidal
radius will be, approximately (Hills 1975),

Rt = R�

(
MBH

M�

)1/3

. (1)

This equation is approximate in that it neglects a variety of effects: the internal structure
of the star, the finite duration over which tides strongly perturb a star on a parabolic orbit,
the positional variation of at across the star’s surface, the stellar spin and general relativis-
tic corrections. Ultimately, the true order unity prefactor on Eq. (1) can only be computed
through (relativistic) hydrodynamic simulations of the disruption process. Fortunately, how-
ever, most of these effects are subsumed into the cube root, and Eq. (1) is therefore reason-
ably accurate. Note that this equation may be understood in other ways as well. For example,
we see that Rt describes the orbital separation where the star of mass M� has the same av-
erage density as a sphere of radius Rt centered on the black hole and containing its mass
MBH.

We may make the above dynamical arguments more mathematically rigorous by com-
puting the exact tidal tensor Cij , which describes differential accelerations experienced in a
rest frame centered on the victim object. Our presentation of Cij will be brief, but a more
thorough treatment can be found in Brassart and Luminet (2008). Working once more in the
tidal approximation (R� � r), the tidal acceleration may be computed via the second deriva-
tives of the Newtonian gravitational potential Φ(r) = −GMBH/r . If the star’s position, in a
lab frame centered on the SMBH, is r, then

Cij = −∂ri ∂rj Φ(r) = GMBH

r3

(
−δij + 3rirj

r2

)
. (2)

Here δij is the Kronecker delta. In principle, one may also consider2 higher-order expansions
of the Newtonian tidal potential, such as the deviation tensor Dijk = −∂ri ∂rj ∂rkΦ(r): a rank-
3 tensor that encodes the asymmetries of the tidal field Cij . However, these higher-order
terms will be subdominant so long as R� � r , an inequality sometimes referred to as the
“tidal approximation.”

The symmetric, traceless tensor Cij has been defined so that, in the tidal reference frame
centered on the star’s center of mass, the acceleration of a test particle with position x will
be

ẍi = xjCij (r). (3)

Throughout the notation in this section, repeated indices denote summation. Because New-
tonian orbits about a point mass are planar, we may specialize to a lab frame coordinate
system where one of our reference axes is orthogonal to the stellar orbit, so that the matrix
representation of the tidal tensor Cij becomes

C(r) =
⎡
⎢⎣

−1 + 3r2
1

r2
3r1r2
r2 0

3r1r2
r2 −1 + 3r2

2
r2 0

0 0 −1

⎤
⎥⎦

2For explicit examples of higher-order tidal expansions in Newtonian and general relativistic gravity, the
reader may consult Brassart and Luminet (2008) and Ishii et al. (2005), respectively.
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=
⎡
⎣−1 + 3 cos2 f 3 cosf sinf 0

3 cosf sinf −1 + 3 sin2 f 0
0 0 −1

⎤
⎦ . (4)

Here, r1 and r2 represent positions along rectilinear coordinate axes in the orbital plane; the
tidal tensor is independent of the third, orthogonal direction, r3. In the second line of Eq. (4),
we have replaced these coordinates with the Keplerian true anomaly (azimuthal angle) f .
The tidal tensor has three eigenvalues,

λ1 =2GMBH

r3

λ2 = − GMBH

r3
(5)

λ3 = − GMBH

r3
,

which encode the tidal accelerations along the three principal axes (eigenvectors) of the
problem, u1, u2, and u3. The first two of these eigenvectors lie within the orbital plane:
u1 ‖ r, and u2 ⊥ u1. These two eigenvectors will, therefore, rotate as the star moves along
any non-radial orbit. The vector u3 is orthogonal to the orbital plane, and remains fixed in
direction. Notably, λ1 > 0, implying a “stretching” acceleration, while the negative values
of λ2 and λ3 imply a “compressional” type of acceleration. Since in the plane the star is
stretched in the radial direction, a rigorous but “generous” tidal radius could be defined by
equating λ1 to GM�/R

2
� , i.e. Rt = R�(2MBH/M�)

1/3. This is the largest radius at which any
fluid elements of the star will be unable to resist the tidal pull of the black hole through
self-gravity.

A similar type of estimate may be made to account for the fully general relativistic tidal
field of a Schwarzschild or Kerr metric SMBH. By constructing a locally orthonormal co-
ordinate tetrad that is parallel-propagated along the star’s center of mass geodesic (a Fermi
Normal Coordinate system), it is possible to create a local tidal tensor, Γij , very analogous to
the Newtonian Cij we have just discussed (Marck 1983). Specifically, by projecting the Rie-
mann curvature tensor3 onto this coordinate tetrad, we obtain a local, Euclidean tidal tensor
Γij that nevertheless captures the leading-order effects of relativistic gravity. As was the case
with Cij , the indices on the Γij tensor run from 1 to 3, omitting timelike components (an
approach which is valid so long as internal motions in the center-of-mass reference frame
are sub-relativistic, and the tidal approximation itself holds). Γij describes the accelerations
of particles in a small radius around the star’s center of mass:

ẍi = xjΓij (r). (6)

For equatorial motion in the Kerr spacetime (with a SMBH of dimensionless spin 0 ≤ χBH ≤
1), the matrix representation of Γij is

Γ (r) =
⎡
⎣−1 + 3(1 + K/r̃2) cos2 Ψ 3(1 + K/r̃2) cosΨ sinΨ 0

3(1 + K/r̃2) cosΨ sinΨ −1 + 3(1 + K/r̃2) sin2 Ψ 0
0 0 −1 + 3K/r̃2

⎤
⎦ . (7)

3In general relativity, as in Newtonian gravity, we may view tides as differential gravitational forces. The
geometric nature of general relativity allows for a second, equivalent, interpretation, where tides reflect the
local curvature of spacetime. This is most easily seen in the geodesic deviation equation.
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The similarities with Cij are self-evident, allowing for straightforward continuity with our
Newtonian intuition. The azimuthal angle Ψ is analogous to, though distinct from, the Kep-
lerian true anomaly f (both angles are 0 at pericenter). The primary difference between the
two tensors is the presence of K ≡ (Lz − χBHε)2 + Q, a combination of the Kerr constants
of motion: relativistic energy ε (ε = 1 for a parabolic orbit), z-component of angular mo-
mentum Lz, and Carter constant Q. Note that here and in Eq. (7), we have written K in ge-
ometrized (G = c = 1 units); we also denote the dimensionless relativistic radius r̃ = r/Rg,
where the gravitational radius is

Rg = GMBH/c2. (8)

In the Schwarzschild limit, K is just the total orbital angular momentum. For inclined or-
bits in the Kerr geometry, Γij becomes considerably more complicated, and Lense-Thirring
precession “mixes up” the tensor’s eigenvalues4 (Luminet and Marck 1985).

In the equatorial Kerr limit, however, we may once again compute a simple tidal radius
by examining the positive eigenvalue of the tidal tensor (Beloborodov et al. 1992; Kesden
2012a). The eigenvalues of Γij are

Λ1 =2GMBH

r3
(1 + 3K/r̃2)

Λ2 = − GMBH

r3
(1 + 3K/r̃2) (9)

Λ3 = − GMBH

r3
,

and therefore the effective tidal disruption radius5 is (Kesden 2012a)

RGR
t = R�

(
Λ1

GMBH/r3

MBH

M�

)1/3

. (10)

The process of tidal disruption for misaligned orbits has received little analytic study, so for
now we will focus mainly on the Newtonian and (to a more limited extent) planar general
relativistic regimes.

As a star enters the tidal disruption radius, fluid and self-gravitational forces become
subdominant to the tides from the SMBH. The process of tidal disruption can be understood
through various levels of approximation. At the simplest level, we may postulate that at
the moment of disruption (usually assumed to be the first moment when r = Rt), the star
impulsively “shatters” to pieces, with internal forces becoming negligible and each fluid
element free-falling along a Keplerian trajectory (in Newtonian gravity) or timelike geodesic
(in general relativity). This assumption is simplistic, but allows for exact solutions to the
future evolution of the star, and provides important physical insights. Historically, analytic
TDE theory based around this assumption were often referred to as “freezing” or “frozen-
in” models, due to the assumption that the debris immediately freezes in to a fixed set of

4Speaking more rigorously, inclined Kerr orbits are no longer planar, meaning that the off-diagonal terms in
Γij are no longer equal to 0; as we shall see shortly, this complicates the dynamics of disruption.
5Note that RGR

t reduces in the Newtonian limit to the “generous” tidal radius derived from Cij :

R�(2MBH/M�)
1/3, rather than to Eq. (1). As mentioned before, the order unity prefactor on the tidal radius

is uncertain, sensitive to hydrodynamic and self-gravitational effects, and best calibrated through hydrody-
namical simulations.
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ballistic or geodesic trajectories; in this text, instead, we will refer to this as the “impulsive
disruption” approximation.

The semi-analytic “affine models” study the disruption process with a greater degree of
realism, though their increased complexity requires numerical solutions. These models, first
developed by Carter and Luminet (1983), couple the tensor virial theorem with strong as-
sumptions on the geometry of the disrupting star. As long as these geometrical assumptions
remain valid, the interplay between SMBH tides and weaker internal forces can be studied,
and more sophisticated variants of the original affine model provide sometimes surprising
degrees of physical accuracy. Of course, the greatest degree of physical realism will come
from numerical hydrodynamic simulations of the disruption process, which are discussed
later in this Chapter (and in the Simulation Methods Chapter). For the remainder of this
section, we discuss the analytic and semi-analytic insights provided by impulsive and affine
models for the disruption process.

2.1 Tidal Compression and the Affine Model

Although the semi-analytic affine model is in some ways more sophisticated than purely an-
alytic impulse-approximation solutions, we present it first for two reasons. Most obviously,
it was the earliest approach developed to studying tidal disruption, predating impulsive mod-
els by five years (Carter and Luminet 1983; Rees 1988). Second, it is focused on providing
an accurate picture of the early details of disruption, while the impulse approximation is
more concerned with accounting for the aftermath.

The early affine models considered the tidal disruption of a star in Newtonian gravity, and
assumed that throughout the disruption process, the stellar geometry would follow nested,
coaxial ellipsoids of deformable axis ratios, interacting in a way that satisfies the tensor
virial theorem (Carter and Luminet 1983). More specifically, the affine model (in its simplest
form) can be visualized as treating nested ellipsoids of gas that evolve due to combinations
of self-gravity, external (tidal) gravity, and internal pressure. Fluid elements inside the affine
star have positions

Ri = qij R̂j , (11)

where R̂ is the initial position of a fluid element in the unperturbed star (note that the hat
notation indicates a unit vector), and qij is a deformation matrix describing the warping
and rotation of the star’s principal axes under tidal stress. For now, we follow the earlier
implementations of the affine model and assume that qij is independent of R.

The power of the affine approximation comes from the fact that, at lowest order, Newto-
nian tides induce quadrupolar deformations in a spherical star (Press and Teukolsky 1977),
making the ellipsoidal approximation very good for weak (non-disruptive) tidal encounters,
and reasonable for the early stages of a TDE. Under these assumptions, Carter and Luminet
(1983) derive a Lagrangian formulation for the process of tidal disruption, with equations of
motion given by:

Ṗi = − M�

∂Φ(r)

∂ri

+ M�

2
qlj qkj

∂Clk(r)

∂ri

(12)

ṗij =M�Cik(r)qkj + Πδikq
−1
jk + Ωikq

−1
jk . (13)

Here r is the position vector of the stellar center of mass relative to the SMBH, Pi = M�ṙi

is its total (“external”) momentum, and pij = M�q̇ij is an “internal” momentum tensor. In
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other words, the first of these equations describes the motion of the stellar center of mass
in its orbit about the SMBH, while the second describes internal deformations of the star,
which are encoded in qij . From the definitions of Pi and pij , we can re-express Eqs. (13) and
(12) as sets of second-order ordinary differential equations (ODEs) for the evolution of qij .
Overall, we have 12 coupled second-order ODEs, supplemented by the scalar, quadrupolar
moment of inertia (evaluated for the original, unperturbed star)

M� = 1

3

∫∫
R̂iR̂idM, (14)

the gravitational self-energy tensor

Ωij = −G

2

∫∫
(Ri − R′

i )(Rj − R′
j )

|R − R′|3 dMdM ′, (15)

and the volume integral of the local pressure P ,

Π =
∫

P

ρ
dM. (16)

In the definitions of Π and Ωij , it is useful to remember that qij can be used to relate
(Lagrangian) mass coordinates to the original positions of stellar gas parcels. Finally, an
equation of state is needed to relate local pressures P to local densities ρ. These definitions
and equations of motion have been presented without proof or elaboration; the reader inter-
ested in a more rigorous mathematical treatment of the affine model should consult Carter
and Luminet (1985); it is also covered more thoroughly in the Simulation Methods Chapter.

So far, we have written the simplest version of the affine model, and many generalizations
exist that incorporate additional physical effects or, alternatively, loosen the underlying as-
sumptions. By adding additional terms to the underlying Lagrangian, it is possible to model
the effect of viscosity, other sources of internal dissipation, and internal rotation (Carter and
Luminet 1985; Luminet and Carter 1986). By replacing Eq. (12) with the geodesic equations
and Cij with Γij , the model can be made general relativistic (Luminet and Marck 1985). The
addition of heating terms and a nuclear reaction network enable the study of nuclear fusion
reactions triggered by tidal compression (Luminet and Pichon 1989b). More recent gen-
eralizations of the affine model have generalized the underlying geometry, specifically by
allowing the ellipsoidal orientations and axis ratios (i.e. qij ) to vary at a single moment in
time as one moves from inner mass shells to outer ones (Ivanov and Novikov 2001). This
generalized affine model was derived in a Newtonian context, but it has also been applied
to the general relativistic tidal problem (Ivanov et al. 2003; Ivanov and Chernyakova 2006).
Figure 1 illustrates results and geometrical assumptions in the extended affine model.

The most prominent application of the affine model has been to the study of tidal com-
pression during the star’s destruction. As was first noted in Carter and Luminet (1982), the
decoupling of vertical from in-plane acceleration in Eq. (3) leads to a homologous collapse
of the star in the direction orthogonal to the fixed orbital plane (we will refer to this as the
“vertical” or z direction). The vertical deformation of the star is extremely pronounced be-
cause of the coherent effect of tidal acceleration: in Newtonian gravity,6 z̈ is always negative
(positive) for z > 0 (z < 0), so the star is uniformly compressed by tides in this direction.
This evolution is markedly different from tidal acceleration within the orbital plane, where

6This statement also holds true in the Schwarzschild spacetime, and in the Kerr equatorial plane.
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Fig. 1 The internal geometry of a star being disrupted in the framework of the extended (Ivanov and Novikov
2001), general relativistic (Ivanov et al. 2003) affine model. Panels show different moments in time in the
evolution of a β = 0.72 encounter (β = Rt/Rp is a dimensionless inverse of the orbital pericenter, Rp). The
top left panel shows the star during its approach to pericenter, with r = 1.5Rp. The top right panel shows the
star at pericenter. The bottom left and bottom right panels show the star after pericenter passage, at distances
r = 1.9Rp and r = 2.73Rp, respectively. In this figure, we can see that the extended affine model permits
different axis ratios and orientations in different internal mass shells. Vectors inside the star denote internal
motions, while the vector outside the star points to the SMBH. Taken from Ivanov et al. (2003), their Fig. 5

the eigenvectors of the tidal tensor Cij must rotate to follow the Keplerian trajectory of
the stellar center of mass. In the star’s reference frame, an in-plane direction that is getting
stretched at one moment in time will be squeezed at a later one, and therefore the degree of
in-plane deformation during the disruption process does not exceed factors of order unity.7

The degree of vertical compression is thus severe, and turns out to depend strongly on
the penetration factor

β = Rt/Rp, (17)

a dimensionless inverse of the pericenter Rp. Analytic arguments (Carter and Luminet 1982)
suggest that the vertical collapse velocity achieved during the star’s passage through the tidal
sphere is wc ≈ βV� (see Stone et al. 2013 for a precise derivation of this result in the test
particle limit), where we have made use of the star’s natural velocity: V� = √

GM�/R�. This
velocity can be understood as the approximate average sound speed in the star (though it

7Note that after the stellar debris leaves the tidal sphere, it is completely deconfined along the direction of
motion, and its ballistic expansion elongates the debris into a very narrow, spaghettified stream.
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has other meanings as well, such as being the Keplerian speed for circular orbits around the
surface of the star). If the star were made of test particles, and were collapsing uniformly
everywhere, it would compress into an infinitely thin pancake somewhere in the vicinity
of pericenter. However, this compression will be reversed by the buildup of internal gas
pressure. If we assume the pressure increase is adiabatic, then the internal energy of the star
at peak tidal compression is

Uc ∼ β2U�, (18)

its peak density is

ρc ∼ β2/(γ−1)ρ�, (19)

and the duration of the peak compression is

Tc ∼ β−(γ+1)/(γ−1)T�. (20)

Here we have assumed a polytropic equation of state (adiabtic index γ ) and made use of
other “natural” stellar variables, namely ρ� = M�/R

3
� , U� = GM2

� R−1
� /(5γ − 5), and T� =

1/
√

Gρ�. Since most of the distortion of the stellar shape happens along one axis, the height
at peak compression is

zc ∼ R�ρ�/ρc ∼ β−2/(γ−1)R�. (21)

These scaling relations are simple, but match numerical integrations of the affine model
(Luminet and Carter 1986) as well as 1-dimensional hydrodynamic simulations of collapsing
stellar columns (Brassart and Luminet 2008). Their validity has not been explored across a
wide parameter space of 3-dimensional hydrodynamic simulations.

The degree of vertical compression in a high-β TDE can be severe: if one assumes
γ = 5/3, then ρc ∝ β3. Under a softer equation of state, such as γ = 4/3, the adiabatic
compression is even more violent (ρc ∝ β6). This phase of stellar pancaking reverses itself
rapidly, in an intense burst of hydrodynamic acceleration: for γ = 5/3 (γ = 4/3), the time
of peak compression Tc ∝ β−4 (Tc ∝ β−7). The vertical compression of a γ = 5/3 star in a
β = 5 TDE is illustrated in Fig. 2. Under such violent conditions, additional physics may
come into play, such as shock heating or thermonuclear reactions. While these effects have
been incorporated in approximate ways into the affine model (Luminet and Carter 1986; Lu-
minet and Pichon 1989b), they are sensitive to the internal structure of the collapsing star,
and are in principle more accurately treated in hydrodynamical simulations with sufficient
spatial resolution. It should be noted that strong shock heating or thermonuclear detonation
will cause the stellar collapse to become non-adiabatic, invalidating the assumptions behind
the analytic scaling relations in Eqs. (18), (19), (20). A description of physical phenomena
caused by stellar vertical collapse around the time of pericenter passage can be found in
Sect. 6.

The extended affine model of Ivanov and Novikov (2001) has an additional application,
which is to determine the amount of mass lost from stars in partial TDEs, with β � 1.
By decoupling individual mass shells from each other, the extended affine model allows
the outer shells of the star to achieve positive total energy, at which point they are treated
as unbound. As we will show in §4, the predictions of the extended affine model are in
fairly impressive agreement with three-dimensional hydrodynamic simulations of partial
disruption.
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Fig. 2 The evolution of the
principal axes of a star, as
simulated by the simple affine
model. The principal axes are
shown in units of R� , and are
plotted against a dimensionless
time t (in units of the orbital time
at r = Rt). The disruption
simulated is that of a γ = 5/3
star with β = 5, in Newtonian
gravity. The duration of the
encounter inside the tidal sphere
is shown with vertical dashed
lines. Severe compression of the
second principal axis (the vertical
direction) is visible at t ≈ 0.
Taken from Luminet and Carter
(1986), their Fig. 7d

2.2 Impulsive Disruption Approximation

One of the earliest and most robust results in the context of tidal disruption events is without
a doubt the “t−5/3” decay of the fall-back rate after the total disruption of a star. The result
is so fundamental that it is often viewed as the classical signature of TDEs, although it
is non-trivial to observe directly. It was initially derived by Rees (1988), although in the
original paper the result was quoted with an incorrect t−5/2 exponent, later corrected to t−5/3

by Phinney (1989) (interestingly, the t−5/3 law had been independently discovered just one
week after Rees 1988 in another Nature paper, by Michel 1988, to describe disc formation
from supernova fall-back8). The basics of the argument is very simple and is based only
on Kepler’s third law. We will assume for now that the penetration factor β = 1 and that
the disrupted star approaches on a parabolic orbit. The argument by Rees (1988) assumes
that the star is almost unperturbed until it reaches pericenter, where it has an impulsive
interaction with the black hole and gets torn apart. This is clearly an approximation, but, as
we shall see, is not a bad one and deviations from it can be incorporated in the theory. It is
straightforward, in this approximation, to compute the spread in the specific orbital energies
of the debris as being due to the different depths in the potential well of the black hole across
the stellar radius,

ΔE = GM

R2
t

R�, (22)

which corresponds to velocities of the order of

vej ∼
(

MBH

M�

)1/6

V�, (23)

for the highest-energy ejecta. For a typical mass ratio between the black hole and the star of
106, the debris can reach 10 times the stellar escape velocity V�. Interestingly, tidal forces
also induce a spin in the debris, but this can only accelerate the debris up to the escape

8We thank Sterl Phinney for pointing out this paper during a conference.
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velocity (see, for example, Sacchi and Lodato 2019 for a recent description). The argument
by Rees (1988) then continues by assuming that the orbital energy E distribution is flat
among the debris:

dM

dE
= M�

2ΔE
, (24)

and that the return time of the debris to pericenter simply follows from Keplerian dynamics:

T 2 = 4π2

GMBH

(
GMBH

2|E|
)3

. (25)

From the above, one can calculate the return time of the most bound debris, by setting
E = ΔE in Eq. (25):

tmin = π√
2

(
R3

�

GM�

)1/2 (
MBH

M�

)1/2

(26)

≈40 days

(
MBH

106 M�

)1/2 (
M�

M�

)−1 (
R�

R�

)3/2

.

One can also obtain the distribution of return times (that is the fall-back rate) as:

Ṁ = dM

dt
= dM

dE

dE

dt
= M�

3tmin

(
t

tmin

)−5/3

, (27)

where in the last equation we have used Eqs. (24) and (25). For the case of a 1M� star
disrupted by a 106M� black hole, the peak fall-back rate M�/(3tmin) corresponds to roughly
100 times the Eddington rate.

Lodato et al. (2009) refined this calculation further by estimating the differential distri-
bution of debris mass with respect to specific energy, dM/dE. This may be visualized as a
“salami slicing” of the star at the moment of breakup: each infinitesimally thin cylindrical
slice of star will have the same ε value. More specifically, for a spherically symmetric star
with internal mass density profile ρ̂ = ρ(x)/ρ�, where 0 ≤ x = R/R� ≤ 1,

dM

dE
= 2π

M�

ΔE

∫ 1

x

ρ̂(x ′)x ′dx ′. (28)

The cylindrical slabs of the star we integrate over are axisymmetric about a vector connect-
ing the SMBH to the star’s center of mass, and the center of each cylindrical slab is a distance
R from the center of the star. Each cylinder, at the beginning of tidal free fall, freezes in to
its specific orbital energy E = xΔE (note that the approximation of constant energy across
the cylindrical slab requires R� � Rt). In this way, we can evaluate the distribution of debris
energies that accounts for the nontrivial internal structure of the star.

It is important to note that the impulse approximation yields an accurate spread of specific
energy when applied at the tidal disruption radius r = Rt as in Eq. (22) and in Eq. (28),
rather than at periapsis r = Rp. For high-β disruptions, GMBHR�/R

2
p may over-estimate the

specific energy spread by one to two orders of magnitude (Guillochon and Ramirez-Ruiz
2013; Stone et al. 2013). The primary reason for this is the relatively short duration the star
spends at radii much less than Rt, which limits the amount of work internal forces (self-
gravity and hydrodynamic pressure) can do to alter the energy spread that exists during the
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crossing of the tidal sphere. The ability of internal forces to do work on the debris is further
reduced by their near-cancellation during the star’s entry into the tidal sphere (when the star
is not so far from hydrostatic equilibrium); later on, self-gravity will be further reduced in
importance by the increasing physical size of the star.

A further elaboration of the impulse approximation was provided by Stone et al. (2013),
who used the free solutions to the parabolic Hill equations (Sari et al. 2010) to write explicit
orbital elements for every individual fluid element of the disrupted star (once again, under
the assumption of instantaneous, impulsive freeze-in to ballistic motion once r = Rt). Each
of the six solutions represents small perturbations of the Keplerian orbital elements around
the star’s parabolic (i.e. eccentricity e = 1) center-of-mass trajectory, and the ballistic, post-
disruption orbits of the stellar debris are linear combinations of the six free solutions. One
notable feature of the parabolic free solutions, already evident in Eq. (4), is the decoupling
of motion within and orthogonal to the orbital plane. It is also possible to derive somewhat
more complicated free solutions that allow for internal motions at the time of disruption
(Stone et al. 2013), accounting for the effects of e.g. stellar rotation; for the sake of brevity
we reproduce neither set here.

This geometrical picture of the disruption process is exact under the (strong) assumption
of impulsive disruption and subsequent ballistic motion, and allows one to compute several
quantities of interest. After entering the tidal sphere, at a true anomaly (i.e. azimuthal angle)
ft = − arccos(2/β−1), the star will undergo a homologous vertical collapse. If it were made
of test particles, peak vertical compression of the star would occur shortly after pericenter
passage, at a true anomaly

fc = arctan(1/
√

β − 1). (29)

At this point in the orbit, each component of the star will be vertically free-falling with a
speed

wc = −β
z0

R�

√
GM�

2R�

(√
1 − β−1 + 1

)
, (30)

and the in-plane principal axes of the deformed star will have lengths

rlong/R� ≈4

5
β1/2 + 22

5
β−1/2 (31)

rshort/R� ≈2β−1/2 − 23

2
β−3/2. (32)

The above expressions for rshort and rlong represent expansions in the high-β limit and will
not be accurate for β ≈ 1. If pressure gradients during peak compression are unable to
accelerate significant motions within the orbital plane, the energy spread will not change
during the compression process, and the frozen-in specific energy for each fluid element
will remain

E = ΔE

(
x0

R�

(1 − 2β−1) + 2
y0

R�

√
β−1 − β−2

)
. (33)

Here we have denoted initial positions of fluid elements inside the star as x0, y0, and z0, with
an origin at the stellar center of mass. By combining the free solutions with a simple approx-
imation for the hydrodynamics of the bounce, Stone et al. (2013) argue that the frozen-in
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energy spread is unlikely to be altered by even severe degrees of tidal compression. This
conclusion stems from the homology of the star’s vertical compression, and could be altered
if some source of asymmetry (e.g. a substantial stellar or SMBH spin component that is mis-
aligned with the orbital angular momentum) breaks the homology of collapse, and increases
the magnitude of in-plane pressure gradients at peak compression.

A general relativistic version of the impulse approximation was developed by Kesden
(2012b), who numerically computed the spread of geodesics that stellar debris would find
itself on, assuming disruption of stars on equatorial orbits in the Kerr spacetime. As with
other efforts in this subsection, this work assumed that a static star shatters to pieces at
r = Rt, although here the tidal radius in question is the general relativistic one provided
by Eq. (10). Kesden (2012b) finds that the specific energy spread is not altered greatly by
the relativistic disruption process, although for orbits where the gravitational radius Rg is
comparable to Rp, ΔE may change at the factor of two level.

3 Numerical Simulations of the Disruption Process

The analytical picture outlined above has been confirmed numerically by various works,
starting with the early simulations of Evans and Kochanek (1989), who used Smoothed Par-
ticle Hydrodynamics (SPH) to demonstrate that the fall-back rate is indeed proportional to
t−5/3, and that the energy distribution of the debris is approximately flat.9 Later, Lodato et al.
(2009) considered the effects of changing the internal structure of the star on the fall-back
rate, both analytically (as described above) and in numerical hydrodynamics simulations.
While Evans and Kochanek (1989) had modelled the star as a polytropic sphere with an
adiabatic index γ = 5/3, Lodato et al. (2009) considered instead a range of indices, finding
that the mass fallback rate can depend significantly on stellar structure.

In particular, more centrally concentrated (less compressible) stars should have a steeper
energy distribution, resulting in a slower rise to the peak of the fall-back rate. This result
follows from a more precise determination of the energy distribution of the debris (as is
expressed analytically in Eq. (28)), rather than the simple flat distribution of Eq. (24). Note,
however, that for any reasonable stellar density profile, the energy distribution of the least
bound debris, which originates near the stellar center of mass and determines the late fall-
back rate, should be indeed characterized by a flat dM/dE. The analytical model for dM/dE

was tested numerically with SPH in Evans and Kochanek (1989), Lodato et al. (2009),
and later works, and gives good qualitative agreement (see Fig. 3 for numerical results).
However, since the star is perturbed before reaching pericenter, quantitative deviations from
the analytical models appear. Lodato et al. (2009) show that such deviations can be ac-
counted for in the impulse approximation by allowing for homologous expansion of the star
at pericenter, due to the reduced effective gravity. A subsequent analysis by Guillochon and
Ramirez-Ruiz (2013) using the adaptive mesh grid-based code FLASH (simulated in the rest
frame of the star’s center of mass to reduce advection errors) closely confirmed this picture.
Recently, Law-Smith et al. (2019) and Ryu et al. (2020a) have also studied the disruption of
realistic stellar models, as opposed to simple polytropes, and discuss the differences in the
resulting fall-back rates (see Sect. 5).

9It is worth noting that the energy distribution presented by Evans and Kochanek (1989) and some others is
on a logarithmic scale, which artificially “flattens” it to the eye, but it is correct that at late times, the material
falling back from a full disruption is sampled from a flat part of the dM/dE curve.
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Fig. 3 Fall-back rate as a
function of time from the
numerical simulations of Lodato
et al. (2009), for different
polytropic models of the star:
γ = 1.4 (solid line), γ = 1.5
(short-dashed line), γ = 5/3
(dot-dashed line), γ = 1.8
(long-dashed line). At late times,
the returning mass is always
drawn from the flat, central
portion of the dM/dE curve, and
the fallback rate asymptotes to a
t−5/3 solution regardless of
internal structure. Figure taken
from Lodato et al. (2009), their
Fig. 10, left panel

The above discussion considered the case Rp = Rt, or β = 1. What happens for more, or
less, penetrating events? For more penetrating TDEs, the main result of numerical hydrody-
namics is in agreement with the analytical arguments of §2.2: one can still use the impulse
approximation to estimate ΔE, but the energy spread needs to be evaluated at the tidal ra-
dius rather than at pericenter. This was first seen numerically in the work of Guillochon and
Ramirez-Ruiz (2013), and has been investigated in greater detail more recently by Steinberg
et al. (2019), who simulated β = 5,6,7 disruptions of polytropic stars in Newtonian gravity.
For this set of highly penetrating TDEs, there is little variation in the final dM/dE for a
given unperturbed stellar structure. For less concentrated n = 3/2 polytropes (i.e. stars with
a uniform adiabatic index of γ = 5/3, representative of lower-mass main sequence stars),
the assumptions of the impulse approximation work reasonably well at all β , and the final
ΔE is within tens of percent of analytic predictions. For more highly concentrated n = 3
polytrope models (i.e. stars with a uniform adiabatic index of γ = 4/3), internal forces are
seen to do substantially more work for the portion of the orbit where r < Rt, and the fi-
nal energy spread is enhanced by a factor of a few over the analytic ΔE estimate. For less
penetrating encounters the disruption is only partial, as we discuss in Sect. 4 below. At this
point, numerical simulations of “simple” tidal disruptions are increasingly converged in their
results, but interesting open questions remain about (usually) higher-order effects in the dis-
ruption process, such as stellar spin, stellar magnetization, and general relativistic gravity.
We will briefly outline the current understanding of these phenomena in the remainder of
this section, along with complications that arise when the disrupting SMBH is a component
of a close SMBH binary.

Until very recently, most simulations have neglected the effect of initial stellar rotation
on the tidal disruption process. This is mostly due to the fact that tidal torques massively
spin up the star immediately prior to disruption, so that pre-existing rotation will only be
important for initial stellar spins close to break-up. The effect of stellar rotation has been
studied recently by Golightly et al. (2019b) and by Sacchi and Lodato (2019), who find that
prograde stellar rotation (with respect to the orbital axis) enhances the rate of mass fallback
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(possibly leading to a faster and more luminous flare), while the opposite occurs for stars
whose spin is retrograde with the orbital plane. If the star is rapidly spinning in a retrograde
sense, tidal disruption might be completely inhibited so that the outer stripped layers of the
star re-accrete onto the star rather than onto the black hole, possibly giving rise to a fainter
X-ray flare (Sacchi and Lodato 2019).

General relativistic effects on the disruption process have been considered analytically by
Kesden (2012b) (see above), but also by a number of recent hydrodynamical simulations.
Relativistic simulations of tidal disruptions by spinning black holes have been performed
by Haas et al. (2012a) in the case of white dwarf disruption by intermediate black holes,
by Hayasaki et al. (2013), Cheng and Bogdanović (2014), Evans et al. (2015), Hayasaki
et al. (2016) for stellar disruptions, and more recently by Tejeda et al. (2017), Gafton and
Rosswog (2019), Liptai et al. (2019). While in general, the frozen-in energy spread agrees
with the Newtonian limit at the factor of ≈ 2 level, there are some cases where large gen-
eral relativistic enhancements to the energy spread are seen for deeply plunging (β � 10)
disruptions. This has been attributed both to shock-heating during the vertical compression
of the star (Tejeda et al. 2017) and also to prompt self-intersection of debris streams before
they leave the region of pericenter (Evans et al. 2015).

While stellar magnetic fields are generally too weak to play a dynamically important role
in the disruption process itself, they may become important later on, possibly affecting the
self-gravitating equilibria of the debris streams or seeding the magneto-rotational instability
in the subsequent accretion disk. During the disruption phase, any internal magnetic field
in the star could in principle be amplified. This effect has been studied by Guillochon and
McCourt (2017) and by Bonnerot et al. (2017). The magnetic field can be significantly
amplified by at least an order of magnitude, but this is not enough to have a strong dynamical
effect or modify the fall-back rate. However, the presence of a strong magnetic field can have
implications for the resulting accretion flow.

Finally, the fall-back rate can be strongly affected if the stellar disruption is due to a
black hole that is a member of a close binary system. The first studies of this process were
by Liu et al. (2009), who used N-body simulations to predict that in this case the fall-back
rate would suffer several, almost periodic interruptions. This was used by Liu et al. (2014)
to argue for the presence of a hidden black hole binary system based on the light curve of
an observed TDE, and motivated the first hydrodynamical simulations of TDEs in binary
SMBH systems (Hayasaki and Loeb 2016). A large set of hydrodynamical simulations of
this process have been performed by Coughlin et al. (2017), while a more systematic explo-
ration of the parameter space has been provided by Vigneron et al. (2018). While in general
the interruptions are very sharp, in some cases, especially if the binary orbit is perpendicular
to the stellar orbit, the interruption can result in a relatively gentle decrease in the fall-back
rate, which might resemble the light curve observed in ASASSN-15lh (Coughlin and Ar-
mitage 2018). More details on disruption by SMBH binaries are provided in the dedicated
Binaries Chapter within this book.

4 Partial Tidal Disruptions

In star–black hole encounters with periapsis radii significantly greater than the tidal radius,
non-disruptive tides can act on the star as it passes through pericenter. In this case, oscillatory
motions of the star’s envelope are excited by the tide and continue after the star has passed
periapsis (e.g. Press and Teukolsky 1977). Deeper encounters, meaning those with higher β ,
lead to distortions and subsequent oscillations of progressively larger amplitude in the star.



Stellar Tidal Disruption by SMBH Page 17 of 48 40

Fig. 4 The amount of mass lost from a single pericenter passage of a Solar-type star around a 106 M� SMBH
with penetration parameter β . Thick curves and solid circles show γ = 4/3 models of stellar structure, while
thin curves and open circles show γ = 5/3 models. The solid lines and colored data points show results
from three-dimensional hydrodynamical simulations; dashed lines and black data points show results from
the extended affine model of Ivanov and Novikov (2001), which is generally in good agreement. The critical
β demarcating full from partial disruption is roughly β = 1.875 for γ = 4/3 (β = 0.975 for γ = 5/3). This
is Fig. 4 from Guillochon and Ramirez-Ruiz (2013)

At a critical impact parameter, with β of the order of unity, a fraction of the stellar material
is unbound from the star, in a partial disruption. In still-deeper encounters, the entire star is
disrupted and no self-bound remnant survives.

This section focuses on the phenomenology of partial tidal disruptions, in which only the
external layers are peeled off the star. Partial tidal disruptions occur because stars have differ-
entiated interiors. The simple definition of the tidal radius states that the density enclosed by
the tidal sphere at periapsis is equal to the mean density of the star, i.e. MBH/R3

t = M�/R
3
� , or

ρt = ρ�. If we imagine a star with a constant density interior (an n → 0 polytrope), the entire
interior experiences an equal ratio of tidal gravitational force to self-binding force in a given
encounter. For any realistic star with a stratified interior, this statement is no longer true: the
stellar density ρ(R) decreases towards the surface, and consequently external layers have
larger effective tidal radii, and one can define a radius-dependent tidal radius, Rt(R) > Rt

(see e.g. Ryu et al. 2020b for a more detailed example of this). Therefore, in grazing encoun-
ters with Rp = Rt(R) > Rt, the stellar core within roughly a radius R of the center remains
bound by self-gravity and proceeds on its orbit away from the black hole, stripped of its
outer, more tenuous layers. Clearly, the way the density changes within the star determines
the mass of the surviving core as a function of β .

More quantitative versions of these statements in the literature have relied on semi-
analytic models as well as on numerical simulations. In the following, we review these
efforts in chronological order. The first hydrodynamical simulations of the partial disruption
process were performed by Diener et al. (1997), in Eulerian simulations that made use of a
relativistic tidal tensor (the inclined generalization of Eq. (7)). While these simulations were
the first to resolve the survival of a self-bound core following tidal stripping of its enve-
lope, the computational expense limited their coverage of parameter space. Further progress
originated from the semi-analytic, nested-affine model of Ivanov and Novikov (2001). By
assuming shells are lost when they gain positive energy, these authors were able to estimate
not just the degree of nonlinearity imparted by tides, but also fractional mass losses.
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Fig. 5 Snapshots of γ = 5/3
polytropes following encounters
with differing impact parameter
β . These simulations are
computed using the
smoothed-particle hydrodynamic
code GADGET2. This is Fig. 2 in
Mainetti et al. (2017)

The first detailed sampling of the parameter space of partial disruptions with hydrody-
namical simulations were performed in Newtonian gravity by Guillochon and Ramirez-Ruiz
(2013). Figure 4 presents these results, showing also a comparison to the semi-analytic pre-
dictions of Ivanov and Novikov (2001). As a function of β , this figure shows the fraction
of the star unbound in the encounter (ΔM/M� = 1 implies a complete disruption). Figure 4
demonstrates important differences that occur for polytropes of differing internal structure.
The γ = 1+1/n = 4/3 models transition from partial mass removal near β ∼ 0.6 to full dis-
ruption near β ∼ 2. The γ = 5/3 models, by contrast, are partially disrupted in a narrower
range of β ∼ 0.5 to β ∼ 0.9. This numerical result aligns with our qualitative discussion
above: the γ = 4/3 polytropic star has a wider range of internal densities and self-binding
forces than the γ = 5/3 star, which is less centrally condensed.

Mainetti et al. (2017) re-examined the quantitative outcomes of partial disruption by
using multiple numerical hydrodynamic methods to study the precise impact parameter that
differentiates full disruption from partial disruption for γ = 4/3 and γ = 5/3 polytropes.
Figure 5 shows snapshots for the γ = 5/3 stellar models. As β increases, the surviving core
gets smaller and smaller while the mass and extent of the tidal tails grows. At β ≈ 0.9, the
star is entirely disrupted and no self-bound core remains. The results seen in this paper with
both discrete-mass and discrete-volume techniques are quantitatively close to each other
and those in Guillochon and Ramirez-Ruiz (2013), indicating a converged understanding of
polytropic stellar disruption in Newtonian gravity.

Hydrodynamic simulations of partial tidal disruptions have revealed the morphology and
dynamics of the gas around the surviving stellar core. Of the material stretched and distorted
into the tidal debris streams, some remains bound to the core. The core itself is distorted
by tides and may emerge from the encounter oscillating non-radially (typically dominated
by an l = m = 2 fundamental mode). The re-accretion of bound material from the debris
streams creates spiral shocks and vortices within the surviving core. These stages are clearly
visualized by the magnetohydrodynamic simulations of Bonnerot et al. (2017) and Guil-
lochon and McCourt (2017), these former of which are reproduced in Fig. 6. Both sets of
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Fig. 6 The configuration of magnetic field strength (shown color-coded, with a logarithmic color scale at
the bottom of the figure) in a simulated partial tidal disruption event at different snapshots in time. The top
left snapshot shows the star before disruption, the top middle snapshot shows the first episode of re-accretion
of the stripped gas, while later snapshots (with hours after disruption shown as white text labels) show the
formation of vortices in the surviving core. Figure reproduced from Bonnerot et al. (2017), their Fig. 5

magnetohydrodynamic simulations find that the initial magnetic field strength is amplified
by a factor famp ≈ 10 from vortex-driven dynamo activity, although in neither case does a
self-sustaining dynamo emerge. The final degree of amplification in each study is resolution-
dependent and unconverged, suggesting that these results may be lower limits on the true
magnetic field strength present in a surviving core following partial disruption. Bonnerot
et al. (2017) and Guillochon and McCourt (2017) both highlight the importance of repeated
partial disruptions, which arise naturally for stars deep in the empty loss cone regime. For
example, if a star undergoes N partial disruptions before a terminal full disruption, its initial
field will be amplified by a factor ∼ f N

amp, possibly producing enough magnetic flux for the
final disruption to power a strong, relativistic jet.

A partial disruption produces a distinctive temporal behaviour of the fall-back rate.
Guillochon and Ramirez-Ruiz (2013) find numerically that it asymptotically approaches
a power-law with index n∞ ≈ −9/4. Interestingly, this result can also be derived and under-
stood in the context of the impulse approximation. Coughlin and Nixon (2019) show that
the “frozen-in” spread in debris energies (e.g. Eqs. (24), (28)) will be modified by the grav-
itational influence of a surviving core embedded within the stream. Solving the Lagrangian
equation of motion for the combined stream-core-SMBH system, they find a late-time fall-
back rate that is a power law with index n∞ ≈ −1 − (

√
73 − 1)/6 ≈ −2.257, and which is

at leading order independent of the mass of the surviving core.
We close by noting that the processes of partial tidal disruption that we have described is

quite sensitive to the interior structure of the star. The discussion above has focused on poly-
tropic models. In the following section, we explore more closely how the basic principles
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of both full and partial disruption apply to realistically evolving stars with a more complex
internal structure.

5 Exploring Different Stellar Types

The stellar clusters that surround galactic center black holes are believed to consist of a wide
spectrum of stellar masses and evolutionary types. In our own Galactic Centre’s nuclear star
cluster, we observe light from giant-branch stars, substructures of young, massive stars, and
diffuse light from an old population of main sequence stars (e.g. Schödel et al. 2007). In
extragalactic nuclear clusters, there is also evidence for a diversity of stellar ages and types
(see, for example, the work on NGC 404 of Seth et al. 2010, or the wide range of star
formation histories seen in the nuclear star cluster sample of Georgiev and Böker 2014).
Each of these types of stars can be scattered into orbits that lead to their disruption. In this
section, we review the spectrum of possible stellar disruptions and the characteristics that
relate their unique stellar evolutionary state to the outcome of a close passage by the black
hole.

Differences in the disruption processes of different stellar types stem first of all from
their different tidal radii. The smallest pericenter for a non-plunging parabolic orbit around
a BH is the innermost bound spherical orbit (IBSO10). This latter depends on the BH mass,
spin, and orbital inclination, is 4GMBH/c2 for a non-spinning SMBH, and can be as small
as GMBH/c2 (for prograde orbits in the equatorial plane of a maximally-spinning SMBH).
Setting the tidal radius equal to this distance gives an approximate estimate of the maximum
black hole mass for tidal disruption to occur. This upper limit is usually called the Hills mass
(Hills 1975), and is

MH ∼ R
3/2
�

M
1/2
�

(
c2

4G

)3/2

= 4 × 107M�
(

R�

R�

)3/2 (
M�

M�

)−1/2

∝ ρ−1/2
� , (34)

for a non-spinning black hole.11 While the scalings in Eq. (34) are accurate, the prefactor
can only be trusted to within a factor of a few, because (i) general relativistic tides differ
from Newtonian tides in their strength (for example, compare Cij and Γij in §2, or see the
discussion in Gafton et al. 2015), and (ii) physical radii such as the IBSO are coordinate-
dependent quantities in general relativity. For these reasons, it is more accurate to perform
fully general relativistic calculations using the Kerr metric tidal tensor (Eq. (7)). This can be
done analytically (see Kesden 2012a, and also the discussion in the Rates Chapter) or with
hydrodynamical simulations performed in a Kerr metric tidal field (e.g. Ryu et al. 2020c).

Equation (34) shows that a variety of stellar types are needed in order to probe the
full range of SMBH masses. Exact relativistic calculations indicate that tidal disruptions of
main sequence (MS) stars by Schwarzschild black holes12 only happen for MBH � 108 M�

10Note that the IBSO is the tilted generalization of the familiar “marginally bound” (or unstable) circular
orbit in the equatorial plane (Bardeen et al. 1972).
11Many calculations in the literature equate the tidal radius to the Schwarzschild horizon radius, 2GMBH/c2,
rather than the IBSO radius (e.g. Hills 1975). For the reasons described above, no quasi-Newtonian calcu-
lation of the Hills mass is more trustworthy than a factor of a few, and it is better to use fully relativistic
results.
12We note, however, that MH is a strong function of SMBH spin χBH (Kesden 2012a), and a favorably
oriented orbit around a χBH ≈ 1 SMBH can increase the MS Hills mass almost to 109 M�, as in Leloudas
et al. (2016).
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(Kesden 2012a), while evolved stars can be disrupted by SMBHs with MBH � 108 M�.
Typical white dwarfs (WDs) can only be disrupted when MBH � 105 M�, although low-
mass helium WDs with extended hydrogen envelopes can be partially disrupted so lon gas
MBH � 107 M�. For the same stellar type, high-β events can only occur when MBH � MH.
The β − MBH parameter space where tidal disruptions can occur is often visualized with a
“TDE triangle” diagram (see e.g. Fig. 1 in Luminet and Pichon 1989a, or Fig. 1 in Stone
et al. 2019).

Figure 7 plots mass fallback rates against time seen in hydrodynamical simulations
(MacLeod et al. 2012; Guillochon and Ramirez-Ruiz 2013; Law-Smith et al. 2017a) for
several representative objects: a main-sequence star, a red giant at two different evolution-
ary stages, white dwarfs (He and CO/ONe), a brown dwarf, and a Jupiter-mass planet. The
peak fallback rates and timescales span several orders of magnitude. One can understand
this at the order-of-magnitude level without the need for hydrodynamical simulations, as
the characteristic timescale and fallback rate for a tidal disruption scale with the BH mass,
stellar mass, and stellar radius (Eqs. (26) and (27)). The fall-back rate Ṁ can range from
highly super-Eddington to highly sub-Eddington, with peak timescales ranging from less
than 1 day to more than 100 years. The way that the potential energy implicit in these mass
return rates is converted into radiation is still highly debated (see the Formation of the Ac-
cretion Flow Chapter, Accretion Disc Chapter, and Emission Mechanisms Chapter for more
details). In several—though not all—current models of accretion flow formation, the effi-
ciency with which Ṁ is converted into radiation is a strong function of the dimensionless
parameter Rp/Rg. In these models, luminous flares will arise predominantly from encoun-
ters with Rp � 10Rg, biasing observations towards only finding TDEs from {M�,MBH} pairs
where the SMBH mass is within a factor ≈ 10 of the Hills mass (Stone and Metzger 2016);
see Fig. 1 of Law-Smith et al. (2017a) for this phase space.

5.1 Main Sequence Stars

The internal structure of MS stars changes with stellar mass: more massive MS stars are
more centrally concentrated. The effect of stellar structure on the disruption process was
first thoroughly studied by Lodato et al. (2009) and Guillochon and Ramirez-Ruiz (2013),
using polytropic stellar structure models (see Sect. 3 for discussion). While the polytropic
approximation has some validity, particularly at the two extremes of the zero-age main se-
quence mass spectrum, it does not self-consistently account for important components of
stellar physics (such as the changing structure of the star as it evolves in the MS) and has
difficulty modeling stars with 0.5 M� � M� � 1.0 M�. Compared to realistic stellar mod-
els, polytropic stars will have slightly different thresholds (in β) for the onset of partial mass
stripping, and also for the transition between partial and full TDEs.

Aside from “bulk” questions related to total mass loss, there are more subtle (but nonethe-
less observationally testable) predictions that can only be made with realistic stellar models.
As a star evolves along the MS, its composition profile changes, and this is reflected in
the composition of the debris returning to the SMBH. Since the late-time fallback rate is
dominated by material from the stellar core, and the early-time fallback rate is dominated
by material from the stellar envelope, the chemical composition of fallback material (which
may be reflected in emission line equivalent widths) will change over time if the progenitor
star is chemically differentiated (Kochanek 2016). Using a semi-analytic fallback frame-
work (Lodato et al. 2009, see also Eq. (28)), Gallegos-Garcia et al. (2018) calculated the
time evolution of the composition of the fallback material for MS stars of varying mass and
age. For most stars, they predict an enhancement in helium and nitrogen and a depletion in
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Fig. 7 Mass fallback rates Ṁ for six representative objects scaled to a single SMBH mass—MBH = 106 M�
is chosen for comparison, but note that a non-He WD cannot be disrupted outside the horizon of a
Schwarzschild black hole for this mass. We show a 0.6 M� non-He WD in red, a 0.17 M� He WD in
purple, a 0.6 M� MS star in blue, a 50 MJup brown dwarf in brown, a 1 MJup planet in green, and a 1.4 M�
red giant at 10 R� (RG1) and at 100 R� (RG2) in light blue. We show a β = 0.9 encounter (full disruption)
for the non-He WD, MS star, BD, and planet, and a β = 1.5 encounter for the giant stars. For the He WD,
we show two curves for comparison: the solid line shows a full disruption and the dashed line shows an en-
counter that strips only the low-mass hydrogen envelope. Time is relative to pericenter passage. Figure from
Law-Smith et al. (2017a), their Fig. 12

carbon (relative to solar) with time. The strength and timing of these abundance variations
in the mass fallback depend on the mass and age of the star, and can thus help determine the
properties of the victim star in an observed TDE.

Law-Smith et al. (2019) developed a simulation framework in which stars built using
MESA are used as inputs for tidal disruption calculations in the 3D adaptive-mesh code
FLASH (Fryxell et al. 2000) with the Helmholtz EOS. This framework uses accurate stellar
density profiles and tracks the chemical abundance of the debris for 49 elements. Law-Smith
et al. (2019) studied the tidal disruption of 1 M� and 3 M� stars at zero-age main sequence
(ZAMS), middle-age, and terminal-age main sequence (TAMS). They find that the initial
density structure of the star leads to different susceptibilities to disruption: e.g. for a ZAMS
star a β = 2 encounter is a full disruption, whereas for a TAMS star this is a grazing partial
disruption. In addition, significant differences in the fallback rate curves for a given stellar
age and mass have been found compared to results for polytropes. This is illustrated in
Fig. 8. In terms of the composition of the fallback material, the authors found that abundance
anomalies in nitrogen, carbon, and helium are present before the time of peak fallback rate
for some disruptions of MS stars. This proof-of-concept study was recently expanded to a
large parameter-space study of main sequence tidal disruptions, in the “Stellar TDEs with
Abundances and Realistic Structures” (STARS13) library of Law-Smith et al. (2020b).

Deviations between fallback curves for polytropic and realistic stellar models were also
found in the work of Golightly et al. (2019a), which simulated the disruption of 0.3 M�,
1 M� and 3 M� stars at three different ages (for β = 3 encounters). The authors find qualita-

13Tabulated results are accessible with the associated GitHub tool (Law-Smith et al. 2020a).
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Fig. 8 Mass fall-back rate to the
BH as a function of time for the
disruption of a 1 M� star at three
different ages for a β = 1
encounter with a 106 M� BH.
The result for a γ = 4/3
polytrope from Guillochon and
Ramirez-Ruiz (2013), scaled to
the radius of a ZAMS 1 M� star,
is in dotted black. The Eddington
limit for this BH is shown by the
dot-dashed line. Figure adapted
from Fig. 3 in Law-Smith et al.
(2019)

tive differences with polytropic TDEs, and use this comparisons to argue that determinations
of SMBH mass from TDE light-curve fitting using models with polytropic stellar structures
can be incorrect by as much as a factor of 5.

Goicovic et al. (2019) performed disruption simulations of a 1 M� ZAMS star con-
structed in the 1D stellar evolution code MESA (Paxton et al. 2011) for a range of β’s, using
the 3D moving-mesh code AREPO. Their ΔM vs. β and fallback-rate results agree relatively
well with the γ = 4/3 polytrope model from Guillochon and Ramirez-Ruiz (2013), which
is expected as a ZAMS 1 M� star is reasonably well approximated by a 4/3 polytrope.
Goicovic et al. (2019) also studied the internal dynamics of the stellar remnant following a
partial disruption.

Ryu et al. (2020a) very recently introduced fully relativistic simulations for a grid of stel-
lar masses, impact parameters, and SMBH masses, at a single stellar age (halfway through
the MS for each star, with models taken from MESA). They provide fitting formulae to de-
scribe the trends they find in several disruption parameters, such as the critical pericenter
distance for full disruption, the mass of the remnant, and the spread in the debris energy
distribution. For all partial disruptions, they find that mass loss continues for many stellar
dynamical times after pericenter passage.

5.2 Giant Stars

As stars evolve off the main sequence, their radii grow by factors of tens to hundreds. Giant
stars, therefore, are particularly vulnerable to tidal forces from a supermassive black hole
(recall from Eq. (1) that the tidal disruption periapsis distance scales linearly with stellar
radius). Also of importance in the context of TDEs is the stars’ internal structure: giant stars
posses a composite structure of dense core and low-density envelope.

5.2.1 Disruption of Giant Stars

The gas dynamics of the tidal disruption of giant stars was first examined extensively by
MacLeod et al. (2012). While the qualitative process of tidal disruption remains the same as
for main sequence stars, the composite structure of giant stars yields differing behavior for
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Fig. 9 Mass removed as a function of impact parameter, β , in four model giant stars. Here ΔM is normalized
to the total envelope mass Menv. Higher impact parameter encounters remove more of the envelope material,
but even relatively deeply plunging encounters with β � 2 do not remove the entire envelope. Further, models
with higher core masses retain more envelope mass, because contraction of the envelope around the core upon
mass loss shelters it from complete disruption. Here MS corresponds to an n = 3/2 polytrope (Guillochon
and Ramirez-Ruiz 2013), while RG I (ascending the red giant branch), RG II (tip of the red giant branch),
HB (horizontal branch), and AGB (tip of the asymptotic giant branch) correspond to various moments in the
evolution of an originally 1.4 M� stellar model. Adapted from MacLeod et al. (2012)’s Fig. 6, where we
refer for more information

an encounter with same impact parameter. Compared to a tidal disruption of a MS star, with
its less-differentiated internal structure, the tidal forces of the black hole tend to disturb only
the giant star’s outer envelope. Thus, the dense core generally survives the encounter, and
continues on an orbit similar to that on which it first encountered the black hole.

This intuitive picture has been tested by hydrodynamical simulations that reveal how
some surrounding envelope material is not lost to tides even in deeply-penetrating encoun-
ters, as is shown Fig. 9. MacLeod et al. (2012) argue that this resilience to disruption can
be attributed to the adiabatic change of the inner envelope on a dynamical timescale in re-
sponse to the removal of the overlying layers (Hjellming and Webbink 1987). While the
outermost layers of a giant star’s stellar structure tend to expand upon mass loss, when the
core becomes the dominant mass component, the remaining envelope material contracts as
mass is removed, self-sheltering from further mass loss in a given encounter. This change
occurs because removing overlying material reduces the compression (and pressure) of stel-
lar material at the base of the envelope, thus the pressure scale height must be smaller to
achieve a pressure gradient that balances gravity in the new hydrostatic equilibrium. An-
other factor that inhibits mass loss is the gravitational pull of the surviving core (only very
rare, deep encounters would fully disrupt a giant star) that promotes partial re-accretion of
the surrounding envelope material.

In essence, this implies that all giant-star tidal disruption events are partial tidal disrup-
tions. Depending on the orbital dynamics, the star may return for further interactions with
the black hole, as was considered in detail by MacLeod et al. (2013). We discuss this pos-
sibility further in Sect. 8.3. Finally, Bogdanović et al. (2014) consider the related scenario
of a giant star disruption, where a surviving degenerate compact core dynamically evolves
because of tidal heating, as well as emission of gravitational waves. Its fate can be either
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a direct plunge into the massive > 106 M� black hole or disruption, if the tidal heating
succeeds in lifting the matter degeneracy and expanding the core.

5.2.2 Fall-Back to the Black Hole

One consequence of the extended radii and correspondingly large tidal disruption radii of
giant stars is that the characteristic timescales for the periapsis passage and fall-back of
material to the black hole are extended. Because the typical mass involved is of the same
order as a lower main sequence star, this implies lower fall-back rates toward the black hole.

The characteristic timescale for the encounter itself is the stellar dynamical time, because
Rt/vp ≈ √

R3
�/2GM� ∼ T�/

√
2. While a main sequence star might have a dynamical time

of hours, a giant of R� = 100 R� and 1 M� has a dynamical time on the order of 106

seconds, or a month. Thus, while the process of disruption is still rapid relative to the star, it
proceeds relatively slowly from a human perspective. Likewise, from Eq. (26), we can see
that the characteristic fall-back timescale tmin is ∼ 100 yr for a solar-mass, R� = 100 R�
giant star. This also carries implications for the peak fallback rate, Ṁ ∼ ΔM/tfb. Holding
fixed other properties, Ṁ ∝ R

−3/2
� . Therefore, TDEs of giant stars are unlikely to fuel the

rapid, powerful episodes of black hole accretion that we associate with “standard” TDEs.
Their characteristic properties are instead very extended duration, lower-level mass fallback
toward the black hole.

The key features of red giant TDE fallback are illustrated in Fig. 7, which shows results
from hydrodynamic simulations by MacLeod et al. (2012) and Law-Smith et al. (2017b).
The figure compares main sequence and white dwarf tidal disruptions to two characteristic
giant star phases. In comparison to their more compact counterparts, disruptions of giant
stars yield fallback to the black hole at lower rates spread over much longer durations. The
10 R� RG I model still feeds material to a 106 M� black hole above its Eddington limit (for
nearly 10 years), but the 100 R� RG 2 model peaks at approximately 10% of Eddington.

The dilute streams of material falling back to the black hole in the red giant TDE scenario
have led Bonnerot et al. (2016a) to argue that stream interaction with the gas surrounding the
quiescent supermassive black hole excites the Kelvin-Helmholtz instability. If this instability
develops, the debris will fragment and dissolve into the ambient medium before they can
return to the black hole, drastically decreasing the mass fall-back rate.

5.3 White Dwarfs

White dwarfs (WDs) have densities of ≈ 104–107 g/cm3 and can thus typically (for e.g.,
CO WDs) only be disrupted outside the event horizon for black holes of mass � 105 M�,
but low-mass helium WDs with hydrogen envelopes can extend this limit to ≈ 107 M�. The
tidal disruption of WDs can thus be a unique probe of intermediate mass black holes.

The gas hydrodynamics in a WD tidal disruption is similar to the behavior of a γ = 5/3
polytrope for all but the most massive WDs. WD tidal disruptions have been studied in
e.g. Rosswog et al. (2009), Cheng and Evans (2013), MacLeod et al. (2014, 2016), Law-
Smith et al. (2017a). WD tidal disruptions are expected to produce flares with characteristic
timescales of ≈ 102–105 s. Cheng and Evans (2013) and Haas et al. (2012b) have closely
examined the effects of passages close to the black hole horizon. Unlike in typical MS
star tidal disruptions, there is the possibility for detonation due to compression in highly-
penetrating encounters. The energy release in such a detonation can approach the luminosity
of a Type Ia supernova. This possibility, as well as the details of the disruption dynamics and
the relative rate of WD disruptions, are discussed in detail in the White Dwarf Chapter.
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WDs have an inverse mass-radius relationship, which means that it is the least massive
(and thus least dense) WDs that can be tidally disrupted by the highest mass BHs. Law-
Smith et al. (2017a) study the disruption of helium-core hydrogen-envelope white dwarfs.
These low-mass (� 0.5 M�) WDs extend the range of BH masses that can disrupt typical
WDs (see above), and offer flares with peak timescales (∼1–10 days) in between those of
typical WDs and MS stars. Because of their unique compositional structure, these objects
can also produce flares powered by hydrogen-only fall-back material for grazing encoun-
ters, or a transition from hydrogen-rich to helium-rich fall-back material for more deeply-
penetrating encounters. The fallback rate from the disruption of the hydrogen envelope alone
is shown in Fig. 7, and is significantly lower than that of the whole star because of this en-
velope’s small mass fraction.

6 Phenomenology of Highly Penetrating Encounters

A TDE is typically regarded as “highly penetrating” if β = Rt/Rp is significantly greater
than one. In this case, the severe compression experienced by the star will lead to the adia-
batic buildup of pressure, and the eventual reversal of the vertical collapse in a hydrodynamic
rebound near pericenter. Sometimes shocks are formed during this process. In Newtonian
gravity, the hydrodynamic pinch point is fixed in space at a true anomaly fc > 0, as de-
scribed in §2. This indicates that the collapse and rebound will occur shortly after pericenter
passage.

Stellar TDEs may also be highly penetrating in a different sense, if the parameter b =
Rg/Rp ∼ 1. In this case, the star’s center of mass orbit will deviate highly from that of a
closed Keplerian ellipse, as relativistic effects (such as precession and, at a higher order,
gravitational radiation reaction) will come into play. Unique phenomenology can emerge
from the combination of high β (i.e. � 1) and high b (i.e. ∼ 1). For example, in the stronger
tidal field of relativistic gravity, a star with Rp ∼ Rg may actually undergo two or more
vertical compressions and bounces, the first of which is prior to pericenter passage; Luminet
and Marck (1985) provide a simple geometric proof that the number of bounces is roughly
equal to the number of self-intersections of the center-of-mass geodesic inside the tidal
radius, a prediction that is roughly borne out by combining a relativistic tidal field with the
affine model (Luminet and Marck 1985) and one-dimensional hydrodynamic simulations
(Brassart and Luminet 2010).

In this section, we explore three somewhat speculative predictions of high-β and/or
high-b compression: high-energy shock breakout signals, gravitational wave emission, and
runaway thermonuclear reactions. At the time of writing, none of these predictions have
been clearly observed, but the detection of any would be of significant value for TDE sci-
ence goals. In particular, these detections would time the disruption, providing an essential
timeline for interpreting subsequent observations.

6.1 Shock Breakout and Prompt X-Rays

If an outgoing shock is launched near peak compression of the star, it may acquire a large
specific energy that is at most an order unity fraction of the total kinetic energy of compres-
sion, Uc ∼ β2GM2

� /R�. The timescale for the release of this energy is much longer than the
time of peak compression (Tc ∼ T�β

−4, for a γ = 5/3 polytrope) because the star does not
compress simultaneously; rather, the star acquires an “hourglass” shape as it passes through
the tidal pinch point, which is fixed in space, with leading portions of the star rebounding
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while trailing portions are still collapsing (see also §2). Assuming that each “column” of
the star begins tidally free falling at the moment it crosses into the tidal sphere, the du-
ration of shock breakout emission will be roughly the time it takes for the star to fully
cross, Tcr ≈ 2R�/

√
2GMBH/Rt ≈ √

2T�(MBH/M�)
−1/3. This estimate is equivalent to tak-

ing the time it takes the tidally distended stellar debris to cross pericenter: in the limit of
high β , the star’s long axis has a half-length ≈ β1/2R� (Stone et al. 2013), so we again find
Tcr ≈ 2β1/2R�/

√
GMBH/Rp ≈ √

2T�(MBH/M�)
−1/3.

Even if a large fraction of the total compressional energy budget Uc goes into shock-
heating the star, most of this will not be promptly radiated. Because the star has an optical
depth at peak compression

τc ∼ σTρczc

mp
∼ 3M�σT

4πR2
�mp

, (35)

that is far greater than unity, only a small fraction of the shock heating can emerge as a
prompt transient. Note that in Eq. (35), we have made use of the Thompson cross-section σT,
the proton mass mp, and have assumed that the star’s cross-sectional area at peak compres-
sion is ≈ 4πR2

� , as is motivated by Eqs. (31) and (32). Following Kobayashi et al. (2004),
we may estimate the maximum theoretically possible bolometric luminosity by (i) assuming
the shock deposits its energy uniformly through the vertical layers of the compressed star,
and (ii) that during the passage of the star through the pinch point, shock-heated thermal
energy diffuses out of the upper layers down to a depth

D ∼
√

cTcrzc

τc
, (36)

where we have assumed a random walk and made use of the height of the star at peak
compression, which for a γ = 5/3 polytrope is zc ∼ R�β

−3 (Eq. (21)). This is an upper
limit because in a steep stellar atmosphere, most of the shock energy will be lost in deeper
layers before it arrives near the dilute surface. Under these assumptions, the maximum peak
luminosity will be

Lmax
sh ∼ UcD

Tcrzc
≈ 5 × 1042 erg s−1 β7/2

(
M�

M�

)19/12 (
R�

R�

)−5/4 (
MBH

106 M�

)1/6

. (37)

This is the same upper limit as in Kobayashi et al. (2004), except that it also considers the
β-dependence of Uc. Actual estimates for the shock breakout luminosity were performed
by post-processing β = 7 hydrodynamical simulation results in Guillochon et al. (2009),
taking into account the realistic density profile of a stellar atmosphere (i.e. self-consistently
modeling the deposition of shock energy into layers of different density). This work found
luminosities roughly one order of magnitude smaller than this upper limit. However, it is
numerically challenging to resolve the breakout layer of the tidally compressed star, and un-
derresolution may cause an overestimate of the energy in the breakout shell. To account for
this, Yalinewich et al. (2019) used an analytic model incorporating a realistic stellar atmo-
sphere profile to derive the following, far more pessimistic estimate for the shock breakout
luminosity:

Lsh ≈ 9 × 1040 erg s−1β1.14

(
M�

M�

)0.87 (
R�

R�

)−0.34 (
MBH

106 M�

)0.33

, (38)
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where a γ = 5/3 polytrope has been assumed. If the shock is matter-dominated, the emitted
spectrum will be quasi-thermal with a blackbody temperature Tsh in the X-rays:

kBTsh ≈ Uc
mp

M�

≈ 1.9 keV β2

(
M�

M�

)(
R�

R�

)−1

. (39)

However, as was pointed out by Yalinewich et al. (2019), high-β events will generally find
themselves in either a radiation-dominated blackbody regime (which softens the growth
of temperature to Tsh ∝ β1/2) or a photon-starved regime in which the typical energy of
the non-thermal emission is set by a balance between pair production and annihilation, i.e.
kBT ≈ 50 keV.

The short durations and low luminosities of X-ray shock breakout signals from main se-
quence TDEs make their detection unlikely with current instrumentation. However, the less
frequent tidal disruption of red giant stars will produce optical/UV shock breakout flashes
of much longer duration Tcr, and LSST may detect these at a rate of 10−1 − 101 yr−1 (Ya-
linewich et al. 2019).

6.2 Gravitational Wave Emission During Disruption

Gravitational waves are produced when the quadrupolar moment of the mass distribution of
a source is changing with time, in an accelerated fashion. During the star’s closest approach,
there are contributions to the variation of the mass quadrupole moment from both the chang-
ing mass quadrupole of the star-black hole system and the internal mass quadrupole of the
star itself.14 In the first case, the binary components can be regarded as point masses orbiting
each other, and the ultimate source of energy is their orbital energy. This signal, which is
analogous to the classic “extreme mass ratio inspiral/burst” (Sigurdsson and Rees 1997), has
been investigated for both main sequence stars with SMBHs (Kobayashi et al. 2004) and for
white dwarfs with intermediate mass black holes (e.g. Sesana et al. 2008; Rosswog et al.
2009; Haas et al. 2012b; Anninos et al. 2018). Since the binary dynamical interaction is far
from the highly relativistic merger phase, a simpler analytical description of the observed
strain can be adopted:

h ≈ 1

d

4G

c2

Ekin

c2
, (40)

(e.g. Thorne 1998). This signal scales with the distance d of the source to Earth and it is
proportional to the non-spherical part of the source’s kinetic energy Ekin. Since most of the
emission occurs at the closest approach Rp = β−1Rt, and the large mass ratio leaves the
black hole still at the center of mass, we can substitute Ekin = M�

(
GMBH/Rp

)
in Eq. (40)

to estimate the strength of the signal

h ≈ β × RsRs�

RtdL

≈ 2β × 10−22

(
M�

M�

)4/3
R�
R�

(
MBH

106M�

)2/3 (
dL

16Mpc

)−1

, (41)

14Emission of gravitational waves during later stages of a TDE has been investigated by Toscani et al. (2019),
but in this section we will only report on gravitational wave emission linked to the disruption process.
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where Rs = 2GMBH/c2 and Rs� = 2GM�/c
2. This “point particle” description of the signal

was verified by numerical simulations, even in β � 1 encounters (Kobayashi et al. 2004).
The signal duration is roughly the orbital period T (Rp) at pericenter and the associated
frequency is fGW ∼ 1/T ,

fGW ≈ β3/2

2π

(
GMBH

R3
t

)1/2

≈ 10−4 Hzβ3/2

(
M�

M�

)1/2 (
R�

R�

)−3/2

. (42)

TDEs involving WDs are necessarily associated with smaller mass black holes (MBH ≤
105 M�), as otherwise disruption does not take place (see Eq. (34)). The involvement of a
lower mass black hole would cause by itself a suppression of the signal (all other conditions
the same), however WDs are also more compact than MS stars by a factor of ∼ 100: overall
the signal amplitude from a WD disruption can span from about one order of magnitude
above to one order of magnitude below the value reported in Eq. (41), when considering
black hole masses between 103 M� − 105 M�, and a WD with mass 0.5 M� and radius
0.01 R�. The signal duration decreases from ∼ 2.7β−3/2 hr for solar type stars down to
∼ 14β−3/2 sec or less for our fiducial WD, implying that WD signals should be expected
at higher frequencies, in the range ∼ 7 × 10−2 − 10 Hz for the parameters considered here.
These frequency and strain estimations suggest that disruption of WDs by intermediate mass
black holes are within detection reach of future space-based interferometers like the DECI-
hertz inteferometer Gravitational wave Observatory (DECIGO Sato et al. 2017) and ALIA
(Baker et al. 2019), but would remain subthreshold events for the Laser Interferometer Space
Antenna (LISA Amaro-Seoane et al. 2017) and TianQin (Luo et al. 2016). The much lower
frequency range for TDEs involving MS stars, on the other hand, precludes detection by any
planned mission.

We now turn our attention to the second source of gravitational wave emission: the time-
varying quadrupole moment of the star’s mass distribution, during the vertical compres-
sion/in-plane stretching of the star at pericenter (see Sect. 2, and Guillochon et al. 2009;
Stone et al. 2013). Under the assumption of simultaneous vertical collapse of all stellar lay-
ers to a “pancake” shape, the duration of the gravitational wave burst is roughly the duration
of maximal compression Tc ≈ 8.5T�β

−4 (for a γ = 5/3 polytrope), with a characteristic
frequency fGW ∼ 1/Tc,

fGW ≈ 4 × 10−5 Hz β4

(
M�

M�

)1/2 (
R�

R�

)−3/2

. (43)

For main sequence stars and grazing events, this frequency is too low for any planned space-
based interferometers and too high for the Pulsar Timing Array.15 However the strong de-
pendence on β implies that nearly plunging events would emit just within the LIGO/VIRGO
ground-based interferometer frequency band ∼ 10 Hz–10 kHz: e.g. fGW ≈ 15.6 Hz for
β = 25. Likewise, WDs with their smaller radius would produce events at higher fre-
quencies spanning from the LISA band (10−4 − 10−2 Hz) for β ∼ 1 to the LIGO/VIRGO
band for β > 1 (e.g. for16 β = 10, fGW ≈ 280 Hz). The rapid vertical collapse (vz/Tc ∝
15http://ipta4gw.org.
16Note that β > 6 for WDs is possible only for black hole masses smaller than 104 M�.

http://ipta4gw.org
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β5√GM�/R�/T�) causes an accelerated quadrupolar variation that produces a gravitational
wave strain highly dependent on β , with h ∝ β2 (Stone et al. 2013). If one instead considers
the less dramatic stretching of the star in the orbital plane that occurs on a slower time scale
–the orbital time T (rp), rather than the compression timescale Tc – then the dependence of
the strain on β is even steeper: h ∼ β3 (Guillochon et al. 2009). Let’s now elaborate further
on the former case, that produces emission at a frequency given by Eq. (43). When the strain
is computed under the assumption of synchronous vertical collapse to a stellar pancake, it
reads (Stone et al. 2013)

h � 2 × 10−27

(
M�

M�

)2 (
R�

R�

)−1

β2

(
dL

16Mpc

)−1

. (44)

This is a very weak signal for a MS star event, hardly detectable by LIGO/VIRGO even
when considering highly penetrating events (e.g. β = 25, h ∼ 10−24 at fGW ≈ 15.6 Hz). On
the other hand, the same nearly plunging (β � 1) events involving WDs would be boosted
to higher frequencies and strains (e.g. β = 10, h ∼ 5 × 10−24 at fGW ≈ 280 Hz), placing
them above the detection threshold for future ground-based facilities, such as the Einstein
Telescope.17

6.3 Nuclear Reactions

During high-β encounters, stars suffer large temperature and density increases from adi-
abatic compression. The degree of temperature and density increase can be even larger if
shocks form during either the compression or early on in the rebound. In this sense, a deeply
penetrating tidal disruption event is analogous to an inertial confinement fusion reactor,
where the inertia of an imploding plasma can – in principle – pin the plasma in place long
enough for dynamical thermonuclear fusion reactions to occur. On Earth, inertial confine-
ment fusion is achieved by using powerful lasers to compress fuel pellets, but in galactic
nuclei, the “tidal piston” of the SMBH may serve the same purpose.

This possibility, first proposed by Carter and Luminet (1982), was first investigated quan-
titatively (in the context of the affine model) by Luminet and Pichon (1989b). This early
study found that only a small fraction of a MS star’s mass could undergo fusion, even for
extreme parameter choices, and that the energetics of the resulting radioisotopes would be
subdominant to the impulsive disruption energy spread, ΔE. These conclusions have been
qualitatively confirmed by a handful of subsequent hydrodynamical simulations that inves-
tigated thermonuclear reactions in high-β TDEs in greater detail (Guillochon et al. 2009).
Thermonuclear burning does not achieve dynamical importance in MS TDEs because the
primary reactions at peak compression are those on the hot CNO cycle, which is β-decay
limited. The short duration of peak compression is therefore an insurmountable bottleneck
to a thermonuclear runaway for stars with H-dominated interiors.

Runaway fusion appears more promising, however, in the compression of WDs, where
the burning can, depending on composition, proceed via either the triple-α reaction or car-
bon/oxygen reactions (processes not limited by the need for β decays). Studies using both
the affine model (Luminet and Pichon 1989a) and hydrodynamical simulations (Rosswog
et al. 2009) have found evidence for thermonuclear detonation waves that burn an order
unity fraction of the star, substantially alter the spread in debris energy, and synthesize suf-
ficient quantities of radioisotopes to power a radioactive transient in the unbound ejecta.

17http://www.et-gw.eu/.

http://www.et-gw.eu/
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However, more recent high-resolution studies have shown that the formation of shocks that
generate detonation waves during WD compression is highly sensitive to numerical resolu-
tion (Tanikawa et al. 2017), and may be artificially triggered by spurious heating produced
by underresolution of the tidal compression phase. While the most recent sets of WD dis-
ruption simulations indicate a broad parameter space for ignition and thermonuclear burning
(Tanikawa 2018; Anninos et al. 2018; Kawana et al. 2018), the exact parameters required to
tidally detonate a WD remain contested. These issues are addressed in greater detail in the
White Dwarf Chapter.

7 Unbound Debris

As mentioned earlier, part of the stellar debris acquires a positive orbital energy and leaves
the vicinity of the black hole on unbound orbits. The exact unbound fraction of stellar mass
depends on whether the disruption was total or partial (Sect. 4), and on the initial stellar
orbit – or equivalently on the initial star’s orbital energy E�. For a star approaching on a
parabolic orbit (E� = 0) that is completely disrupted, half of the debris is expected to gain
energy and be lost from the system. For the same fully disrupted star approaching instead
on either an elliptical or a hyperbolic orbit, the unbound fraction would depend on the ratio
|ΔE/E�| between the tidal energy spread ΔE (Eq. (22)) and the orbital energy. For instance,
for |ΔE/E�| � 1, the whole debris remains respectively bound for E� < 0 and unbound for
E� > 0. These considerations have been explored both in the context of tidal separation of
stellar binaries and tidal disruption of a single star (Kobayashi et al. 2012; Hayasaki et al.
2013, 2018; Park and Hayasaki 2020).

Because effectively parabolic encounters are expected to dominate overall TDE rates (see
e.g. the Rates Chapter), we discuss the canonical case of a star with mass M�, on a parabolic
orbit with pericenter equal to the tidal radius Rp = Rt, that undergoes a complete disruption.
We will also first assume a constant specific energy distribution dE/dM = ΔE/(M�/2)

between −ΔE and +ΔE (Eq. (24)). A simple estimate of the maximum terminal velocity
is then

vmax = √
2ΔE ≈ 8,000 km s−1

(
M�

M�

)1/3 (
R�

R�

)−1/2 (
MBH

4 × 106 M�

)1/6

, (45)

where we consider a SMBH with mass similar to that of Sagittarius A* (a.k.a Sgr A*), the
SMBH in the Centre of our Galaxy. If not specified otherwise, these will be our fiducial pa-
rameters for this section. For such a system the tidal radius is Rt ≈ 1013 cm. Some fraction
of the unbound debris then escapes at a few percent of the speed of light, comparable to the
speed of a supernova blastwave. Likewise, the total available kinetic energy and momentum
are � (1/2)v2

max(M�/2) ≈ 3 × 1050 erg and � vmax(M�/2) ≈ 8 × 1041 g cm s−1. This sig-
nificant reservoir of energy and momentum stimulated the studies that we are summarizing
here, as it is intriguing to explore whether they can produce observable signatures when de-
posited into the ambient medium. Special attention has been given to observable signatures
in the Galactic Centre (Khokhlov and Melia 1996; Guillochon et al. 2016), because of the
unique possibility to directly image a “remnant” of this event and because of the presence
of Sagittarius A East, a radio source with unclear origin that engulfs Sgr A*’s gravitational
sphere of influence.

Deceleration of the debris as it expands into the black hole surroundings and sweeps up
the intervening gas is a possible way to tap its kinetic energy and convert it into radiation, in
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analogy with supernova remnants. The effective deceleration or “stopping” length Rst can
be defined as the distance from the black hole at which the debris velocity is half of its initial
value. This is equivalent to the distance within which an amount of gas equal to the debris’s
mass has been swept up along the way, i.e. M�/2 = ρism(4π/3)R3

st(Ω/4π), where ρism is the
interstellar medium mass density, which has been assumed constant. Re-arranging the mass
equality to evaluate the deceleration length yields

Rst

Rt
≈ q−1/3

( 〈ρ〉
ρism

)1/3 ( π

Ω

)1/3
, (46)

where the mean stellar density is 〈ρ〉 = 3ρ�/4π and the mass ratio is defined as q =
MBH/M∗. Assuming radial expansion into a constant solid angle equal to that under which
the star is seen by the black hole Ω ≈ π(R�/Rt)

2 ≡ πθ2
� ≈ πq−2/3, we get a stopping length

of ≈ 70 pc for the mean density of the Sun (〈ρ〉 = 1.4 g cm−3) and the canonical ISM mean
density (1 particle cm−3).18

In fact, debris with positive energy does not move radially outward but on hyperbolic or-
bits with a range of energies. This causes the streams to spread in the orbital plane and trace
a “fan” shape. The sweeping area is therefore larger than in the radial case and the stopping
length consequently smaller. We can simply estimate it by assuming that the black hole’s
gravity is the only force in place and ignoring relativistic effects. The true anomaly θ∞ of
the stream’s orbits at r � Rt obeys cos(θ∞) = −1/e, where e is the orbital eccentricity. The
maximum eccentricity of the unbound streams, corresponding to a specific energy +ΔE, is
emax = 1 + 2q−1/3, therefore θ∞ = arccos (−1/(1 + 2q−1/3)) ≈ π − √

2q−1/6. On the other
hand, the funnel of debris should continuously connect to material moving on a parabolic
orbit with e = 1 (and θ∞ = π ) and the overall opening angle in the orbital plane is roughly
θφ ≈ √

2q−1/6. The cross-sectional area of the “fan” is therefore an ellips and its solid angle
can be estimated as Ω ≈ πθφθ∗. The increase in the sweeping area by θφ/θ∗ = √

2q1/6 ≈ 20
gives a shorter stopping length of a few parsecs for our fiducial parameters. So the expecta-
tion is that unbound debris streams deposit ≈ 1050 erg at and beyond the black hole’s sphere
of influence after Rst/vmax � 103 yr.

This approximate picture should, however, be verified in more realistic conditions. In-
deed, the above estimates neglect several physical ingredients. First of all, the shape of the
unbound debris “fan” should be reconsidered to include the effect of self-gravity within
the debris, which may be important in both the shallow-penetration and deep-penetration
regimes (Kochanek 1994; Coughlin and Nixon 2015; Coughlin et al. 2016; Steinberg et al.
2019). The self-confinement of most of the mass in the stream may lead to a lower sweep-
ing area and therefore to a longer deceleration scale with respect to the ballistic case. The
situation may be most favourable in highly penetrating events, when an order unity fraction
of the unbound debris stream remains unconstrained by self-gravity (Steinberg et al. 2019;
Yalinewich et al. 2019). However, self-gravity may not play an important role in setting the
deceleration scale, if suppressed at an earlier stage by the energy released in the streams
from hydrogen recombination weeks to months after disruption (Kasen and Ramirez-Ruiz
2010; Guillochon et al. 2016). In addition, the shape of the energy distribution within the
debris is not truly flat, but instead it depends on both the stellar internal structure and the
penetration factor (see Sects. 2.2 and 3). Finally, partial disruptions would see less massive
unbound ejecta, which would result in both a shorter free-expansion phase (when r < Rst)
and, on the other hand, less energy deposited upon deceleration.

18This is also the distance at which the mean density within the debris equal that of the surrounding medium
in this free expanding scenario.
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Other physical ingredients to reconsider pertain to the environment. The estimated stop-
ping radius is of the same order of magnitude of the black hole sphere of influence (e.g.
∼ 1 − 3 pc for Sgr A*) and therefore the stellar gravitational potential should be also be
taken into account along with the debris evolution. The density profile in the sphere of in-
fluence of a SMBH is far from constant, given the deep potential well, and may also be
aspherical if the SMBH harbours an accretion disc.

When analytically accounting for all of the above effects – modelling both the free ex-
pansion and the deceleration phases in a Galactic Centre type of environment – Guillochon
et al. (2016) found that the typical energy and momentum deposited in the ISM are 5 × 1049

ergs and 2 × 1041 cm g s−1 for a MS star and an order of magnitude less for a giant star
disruption. The typical stopping length is around Rst ∼ 20 pc for a MS star and nearly 10
times smaller for giants, while the transverse size Rstθφ is around a few parsecs. The free-
expansion, mostly adiabatic phase typically lasts ∼ 104 yr.

The energy and momentum deposited by the unbound debris streams can give rise to
observational signatures (“unbound debris remnants”), such as X-ray and radio emission
by the shocked interstellar medium, analogously to supernova remnants (Guillochon et al.
2016; Yalinewich et al. 2019; Krolik et al. 2016). The long energy deposition timescale of
several thousand years implies a peak bolometric luminosity of only � 1040 erg s−1, lim-
iting the prospects for an extragalactic detection. With radio observations of our Galactic
Centre, however one may constrain the TDE rates by detecting unbound debris remnants.
Guillochon et al. (2016) argue that a few such remnants should be present in our Galactic
Centre within the innermost ∼ 100 pc and that Sgr A East is in fact one of them. Beside the
aforementioned “supernova-like” emission, other observational signatures include the opti-
cal flare from hydrogen recombination (Kasen and Ramirez-Ruiz 2010) within the unbound
debris streams, and optical emission lines from the reprocessing of light coming from the
accreted bound material (Strubbe and Quataert 2009). A detailed description of all these
emission processes can be found in the Emission Mechanisms Chapter in this book.

8 Variations on the Classical Tune

In this section, we review works investigating variations of the classical study case explored
in the preceding sections, where a single star on a nearly parabolic orbit is fully or par-
tially tidally disrupted during a single pericenter passage. In particular, we will focus on the
physical implications of elliptic and circular orbits (Sects. 8.1 and 8.2), of recursive par-
tial disruption episodes for the same star (Sect. 8.3) and of stellar binarity (Sect. 8.4). The
conditions for these different scenarios are also discussed.

8.1 Disruption of Stars on Eccentric Orbits

In the standard loss cone theory, where only scatterings between stars (in vacuum) around a
SMBH are considered, a star typically enters the loss cone with marginal binding energy and
therefore is disrupted on a nearly parabolic orbit, with an orbital eccentricity 1 − e ∼ 10−6.
However, there are other channels which can supply stars to be disrupted from more tightly
bound orbits. When does a finite value of 1 − e begin to affect the dynamics of disruption?
We can determine the answer to this question by comparing two specific energy scales: the
frozen-in spread of debris specific energy, ΔE (see Eq. (22)), and the pre-disruption specific
orbital energy of the star, |E�| ≈ 1

2 GMBH/a0, where a0 is the semimajor axis of the star’s
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final orbit. Normally, |E�| � ΔE and the orbit can be treated as effectively parabolic, but
below a critical orbital eccentricity,

ecrit ≈ 1 − 2/β × (m�/MBH)1/3, (47)

|E�| � ΔE (Hayasaki et al. 2013), and we are in the qualitatively different regime of an
“eccentric” tidal disruption.19 For example, ecrit = 0.98 for a solar-type star disrupted by a
106 M� SMBH along an orbit with β = 1.

In an eccentric TDE, the debris fallback timescale decreases from years (e = 1) to weeks
(e = 0.99), days (e = 0.9), or even hours or minutes (e < 0.7), leading to a much higher
peak fallback rate and a time evolution dramatically deviating from the canonical t−5/3 pat-
tern (Hayasaki et al. 2013; Dai et al. 2013b). Eccentric TDEs feature steeper late-time slopes
because the shift in the dM/dE distribution means it is no longer centered on E = 0, and one
cannot assume dM/dE → 0 at late times (Hayasaki et al. 2018; Park and Hayasaki 2020).
Therefore, it is expected that flares produced in eccentric TDEs should evolve on timescales
faster than years. The accretion level should largely exceed that of standard parabolic TDEs,
though the luminosity may still be regulated by the Eddington limit. Also, when the eccen-
tricity of the initial stellar orbit is sufficiently small (less than ecrit), all the debris will be
bound so all of the stellar mass can, in principle, accrete onto the SMBH.

N-body simulations directly modeling stellar clusters around SMBHs generally confirm
the semi-analytic expectation that most stars are disrupted from effectively parabolic orbits,
if the main source of loss cone refueling is stellar two-body relaxation (Zhong et al. 2014;
Hayasaki et al. 2018). However, if there exists a massive perturber deep inside the SMBH
influence radius, such as an intermediate mass black hole, or if the TDE happens in a tight
binary SMBH system, then one encounter between the perturber and a very tightly-bound
star (one with specific orbital energy |E�| � ΔE) can remove enough angular momentum
from the star to create an eccentric TDE. Such encounters occur naturally during the final
stages of a SMBH binary inspiral (Chen et al. 2011), and the rate may be enhanced by
trapping of stars in mean-motion resonances (Seto and Muto 2010, 2011). A final burst
of such TDEs may occur following the merger of the SMBH with a secondary massive
black hole, when anisotropic gravitational wave emission provides a recoil kick that tilts
the phase space loss cone to overlap with the orbits of surviving, tightly bound stars (Stone
and Loeb 2011). Eccentric TDEs may also be produced following the tidal separation of
a binary stellar system by a SMBH. This process places one star on a tightly – although
initially highly eccentric – bound orbit (Sari et al. 2010), while ejecting the other star on a
hyperbolic (and hypervelocity) orbit. The bound star detached from its binary companion
will have a much larger |E�| than is typical in the stellar cusp, and a cluster of such stars
will be more favorable for generating eccentric TDEs (Amaro-Seoane et al. 2012).

Disruption of stars on eccentric orbits have also been simulated for understanding the
disk formation process in TDEs (e.g., Bonnerot et al. 2016b; Hayasaki et al. 2016). Due to
the reduced dynamical spread of the debris orbital energy, the normally prohibitive computa-
tional expense of simulating the long-term aftermath of tidal disruption by SMBHs is greatly
reduced (in comparison to the more astrophysically common case of a parabolic orbit TDE).
In the eccentric TDE limit, the hydrodynamical dissipation or nozzle shocks associated with
compression and shearing at the pericenter will be less energetically important compared

19For a similar discussion, impacting the amount of unbound debris, see beginning of Sect. 7. We also note
that an analogous criterion to Eq. (47) can be formulated to differentiate standard from “hyperbolic” tidal
disruptions, by replacing the − with a + (Hayasaki et al. 2018). Hyperbolic TDEs would have unusually low
luminosities and energy release, if any debris at all is bound.
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to standard parabolic TDEs. On the other hand, for eccentric TDEs the self-intersection of
the debris stream induced by GR apsidal precession will always happen close to the SMBH,
which promotes prompt disk formation, although the delays induced by the Lense-Thirring
effect have not yet been thoroughly studied (Dai et al. 2013b, Hayasaki et al. 2016 – but see
Liptai et al. 2019). We refer the readers to the Formation of the Accretion Flow Chapter in
this book for more details.

8.2 Roche-Lobe Overflow of Stars on Nearly Circular Orbits

Under certain circumstances a star can approach a massive black hole on a close orbit and
form an extreme-mass-ratio-inspiral (EMRI) system close to the SMBH (Miller et al. 2005;
Amaro-Seoane et al. 2012). The orbital radius and eccentricity of the stellar orbit can both
quickly decrease if gravitational radiation is sufficiently efficient, until the star eventually
fills its Roche lobe on a nearly circular orbit. The star will then keep orbiting the SMBH
for a long time while its envelope is steadily stripped by the tidal force from the black hole.
The stripped stellar material will then accrete onto the black hole producing quasi-periodic
X-ray signals.

Similar stable mass transfer processes between a star and a black hole via Roche lobe
overflow have been extensively studied in the context of normal X-ray binaries (e.g., Rappa-
port et al. 1982; Webbink et al. 1983). The effective radius RL of the Roche lobe of the star
has been calculated in Kopal (1959), Paczyński (1971), Eggleton (1983), and is the same as
the parabolic-encounter tidal radius Rt up to a factor of ≈ 2. Although much of the theoret-
ical formalism for X-ray binaries can be adopted to study the mass-transfer between a star
and a SMBH, the latter scenario is distinct in having a much more relativistic RL (i.e. RL is
a few or a few tens of SMBH gravitational radii) due to the extreme mass ratio. Therefore,
the dynamics and the evolution of the star–SMBH binary is more dramatically affected by
general relativity as compared to the case of normal X-ray binaries.

Stable Roche-lobe overflow in a star-SMBH binary was first explored by King and Done
(1993) and Hameury et al. (1994). Later, Dai and Blandford (2013) did a more rigorous cal-
culation including general relativistic effects. Since the mass transfer happens on a timescale
that is faster than the thermal (Kelvin–Helmholtz) timescale of the star but slower than the
dynamical timescale, the interior structure of the star evolves adiabatically as its envelope
is stripped (Dai et al. 2013a). The star fills its Roche lobe throughout this process, so from
Kepler’s law we see that its orbital period T ∝ R

3/2
t M

−1/2
BH ∝ 〈ρ〉−1/2, where 〈ρ〉 is the mean

density of the star being tidally stripped. Therefore, the evolution of the stellar orbit is con-
trolled by how the stellar mean density changes: low-mass stars will recede from the SMBH
during Roche-lobe overflow, while high-mass stars will first continue to spiral in for some
time after reaching the Roche limit, and later will spiral out.

If mass transfer is conservative (i.e. the angular momentum of the binary only changes
through the torque of gravitational radiation), one can calculate the mass transfer rate to be
∼ 1021−23 g s−1, depending on the exact black hole and stellar masses (Dai and Blandford
2013). The stripped stellar material will form an accretion disk around the SMBH, and the
stream of the stripped stellar material flowing through the inner Lagrange point L1 can
continuously hit this small accretion disk and produce a hot spot. The hot spot will then
orbit the black hole at the orbital frequency of the star and produce quasi-periodic signals,
likely in X-rays. Linial and Sari (2017) further consider the mass leakage through the outer
Lagrange point L2, and analytically estimate the conditions in which it is comparable to the
canonical mass transfer rate through the first Lagrange point L1, discussed so far.

Since a Roche-lobe filling star spends most of the time (at least hundreds of thousands of
years) receding from the SMBH, collisions can happen between one star in the slow outward
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Fig. 10 The kick velocity vkick delivered to the surviving core after partial disruption over the escape speed
from the core vesc as a function of the penetration factor β . The blue dashed line is an analytical fit to the
simulation results: the kick velocity is found to be dependent on β but largely independent of the black hole
to stellar mass ratio, probed here in the range 103 − 106 (see legend). This figure is from Manukian et al.
(2013) – their Fig. 3 – where a complete description of the hydrodynamical simulations that produced these
results can be found

migration and another star that enters the inspiral phase at a later time. Metzger and Stone
(2017) considered such colliding EMRIs and found that the timescale and the luminosity of
the flare produced during the collision are similar to those of TDEs. Therefore, such EMRI
collisions can serve as TDE imposters if the rate is high enough.

Gravitational waves emitted by star–SMBH Roche-lobe overflow systems would have a
strain given by Eq. (40) and frequency twice the orbital one, fGW = 2/T (Linial and Sari
2017). Contrary to classical single TDEs, these events will not be bursts of gravitational
radiation but rather persistent sources, and this fact might help detection by allowing to
accumulate the signal over many orbits observed with a spaced based interferometer. This
leads to a signal-to-noise enhancement by a factor of ≈ √

TobsfGW, which can reach ∼ 100
for a Tobs = 4 yr mission duration (e.g. the nominal mission duration of LISA). The emis-
sion frequency for MS stars remains is rather low, ∼ 10−4 Hz. Therefore – conditional on
the actual performances of LISA in the lower-frequency portion of its spectrum – the gravi-
tational radiation produced by these systems may be detectable from the Galactic Center or
from nearby galaxies, for example Andromeda.

8.3 Multiple Encounters

In certain scenarios a star may have multiple encounters with a black hole and thus experi-
ence multiple (partial) disruptions. For this to take place in practice, several conditions must
be met. On the first passage, the star must be only partially disrupted, and remain in a bound
orbit. This implies that any kick imparted to the core by mass-loss asymmetry (Manukian
et al. 2013; Gafton et al. 2015) must be small enough that the surviving core stays bound
to the black hole (see Fig. 10). The star cannot be scattered away from its disruptive orbit
by dynamical processes like two-body gravitational interactions. Finally, the mass–radius
relationship of the star must be such that the star becomes increasingly tidally vulnerable
(less dense) following mass loss, rather than more dense.

An argument long presented in favor of multiple encounters is the possible process of
capture into eccentric orbits by tidal dissipation (Fabian et al. 1975; Press and Teukolsky
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1977; Lee and Ostriker 1986). The specific case of tidal capture by SMBHs has been ex-
amined by Novikov et al. (1992), Kosovichev and Novikov (1992), Diener et al. (1995) in
the context of the affine model. Baumgardt et al. (2006) analyzed the related problem of
tidal captures by intermediate-mass black holes in N-body dynamical models. A key point
in these analyses – the spatial distribution of tidal dissipation within the star – was raised by
Podsiadlowski (1996): the supplied energy can be quickly radiated away if deposited in the
stellar atmosphere, while it does work and causes stellar expansion if deposited in deeper
layers. In this latter scenario, the star is increasingly susceptible to tidal interaction. These
details of tidal dissipation remain highly uncertain areas of active discussion, particularly in
the context of possible tidal captures of Hot Jupiters by their host stars (e.g. Wu 2018).

In the limit when Rp remains too large for even partial mass loss to occur, Alexander and
Morris (2003) predict the existence of “squeezars”: stars on highly eccentric orbits around a
SMBH, with luminosities approaching the star’s Eddington limit, that are powered by tidal
interactions with the black hole. These stars undergo orbital decay from tidal heating, and
the inspiral terminates in a tidal disruption once the star’s orbital energy exceeds its own
binding energy. Squeezar formation is estimated to occur at ∼ 5% of the TDE rate, but with
lifetimes of ∼ 105 yr, a mean number of 0.1–1 squeezars are likely orbiting our Galactic
Center SMBH.

While numerous uncertainties remain, there are several situations in which conditions
for repeated tidal-stripping encounters might be met. MS stars, especially low-mass stars
with isentropic structures, expand upon losing mass. If these are in a sufficiently bound
orbit that they are unlikely to be scattered by gravitational interactions, the star will expand
following each tidal mass loss episode and will undergo runaway disruption over several
orbits. Guillochon et al. (2011) discuss and simulate a very similar scenario with particular
focus on the slightly different science case of giant planets scattered close to their host stars.

Because giant stars are never completely disrupted in a single passage (see e.g. §5.2), they
have the opportunity to return for subsequent encounters, making them strong candidates for
multiple disruptive passages. Furthermore, because the loss cone angular momenta of giant
stars are larger than those of their more-compact companions (for a given semi-major axis),
these objects experience less scatter in β due to two-body relaxation over the course of an
orbit. This implies that they are more likely to return for a subsequent passage. The extreme
limit of this occurs when the orbit of a giant star is evolving so slowly that their radial
growth (from stellar evolution) controls the time evolution of Rp/Rt(t) (Syer and Ulmer
1999; MacLeod et al. 2013; Merritt 2013). Through hydrodynamic simulations and stellar
evolution modeling, MacLeod et al. (2013) find that giant stars on such orbits around a
SMBH produce low-level flares that repeat on the orbital timescale. This gradual, piece-
by-piece feeding of the SMBH is comparable to the feeding rate provided by stellar winds
from all stars in the surrounding nuclear star cluster. We further note that the dynamics of
these encounters are the high-mass ratio limit of the more-thoroughly considered scenario of
Roche lobe overflow in eccentric stellar binaries (e.g. Matese and Whitmire 1983; Hamers
and Dosopoulou 2019).

Finally, WDs may likewise undergo multiple passages while in an eccentric orbit (Za-
lamea et al. 2010; MacLeod et al. 2014). These systems can be captured or decay through
a combination of gravitational radiation and tidal interaction (Vick et al. 2017). A more
complete discussion of the possible phenomenology and implications for multi-messenger
detection is given in the White Dwarf Chapter.
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Fig. 11 The distribution – as a function of the binary semi-major axis a – of the outcomes of 1000 numer-
ical simulations of a stellar binary encounter with an SMBH performed by Mandel and Levin (2015) in the
full loss cone regime. From the top down, the outcomes are: a merger of the binary components, a double
tidal disruption, a single tidal disruption, and an uneventful fly-by. Tidal disruptions of both stars become
prominent for initial binary separations smaller than ∼ 100 R� , while mergers are common only for binary
separations smaller than ∼ 10 R� . Overall among these 1000 trials, 18% produced sequential tidal disrup-
tions of both stars, 5% resulted in single TDEs with typically the more massive star being disrupted, and
binary components merged in 6% of simulations before either was disrupted. This is Fig. 2, lower panel in
Mandel and Levin (2015)

8.4 Stellar Binary TDEs

When two stars in a binary of semimajor axis a and total mass Mb approach a massive black
hole to within the tidal separation radius20

Rts ≈ a

(
MBH

Mb

)1/3

, (48)

several outcomes are possible: (i) both stars may be sequentially disrupted by the black
hole; (ii) the stars may merge, with the merger product possibly being tidally disrupted
by the black hole; (iii) one star may be gravitationally captured by the black hole (possi-
bly to be subsequently tidally disrupted, in a TDE that may have observably non-parabolic
features) with the other ejected as a hypervelocity star (Mandel and Levin 2015; Bradnick
et al. 2017; Bonnerot and Rossi 2019). All three outcomes are potentially informative, with
unique signatures and opportunities to extract information about nuclear cluster dynamics,
tidal disruption events, and stellar evolution.

The loss cone for tidal separation is characterised by a specific angular momentum of

lts ≈ √
2GMBHa

(
MBH

Mb

)1/6

. (49)

20Note that this is identical to Eq. (1), but with R� and M∗ replaced by a and Mb respectively, so that binary
tidal separation occurs when the binary is at least a few stellar tidal disruption radii away from the SMBH.
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The stellar binary will change its orbital angular momentum over time due to relaxational
interactions far from the black hole. If the binary’s typical per-orbit change in angular mo-
mentum Δl is large, i.e. Δl � lts, the binary is in the full loss cone regime, meaning that
the entire space of possible angular momenta is sampled. In this case, it is possible that the
binary plunges toward the black hole on a trajectory with a small impact parameter, coming
within the companion stars’ individual tidal disruption radii. This leads to a sequential tidal
disruption of two stars, outcome (i), which could produce an unusual double-peaked light-
curve or at least enhance interactions between tidal streams (Mandel and Levin 2015). In
fact, Bonnerot and Rossi (2019) analytically estimate that tidal streams from the two stellar
disruptions following the tidal separation of a binary will collide in nearly half of such en-
counters. The burst of radiation associated with shock heating from these stream collisions
may yield a detectable precursor to the TDE light curve (Bonnerot and Rossi 2019).

Full tidal separation loss cone encounters occasionally lead to outcome (ii), stellar merg-
ers (Mandel and Levin 2015). Figure 11 shows quantitatively that smaller initial binary sep-
arations are more conducive to mergers and double TDEs. Mergers are even more likely as
outcomes of empty loss cone encounters, in which the angular momentum is only gradually
perturbed during each orbit, Δl � lts. In this case, the binary passes by the massive black
hole on a very eccentric orbit, and is tidally perturbed over many periapsis passages with
Rp ∼ few ×Rts. Such encounters barely affect the semi-major axis (energy) of the stellar bi-
nary, but the exchange of angular momentum between the stellar binary and its orbit around
the black hole can significantly drive up the binary’s eccentricity (Bradnick et al. 2017).
Stellar tides can then decrease the internal binary separation while the binary is far from the
black hole. A sequence of eccentricity excitations and tidal damping further increases the
likelihood of merger as a possible outcome, particularly for initially close binaries (Brad-
nick et al. 2017). The likely outcome of an interaction is sensitive to the initial properties
of the binary (masses and separation) and the efficiency of binary tides in circularising the
orbit. Meanwhile, a key environmental factor is the efficiency of relaxation of the orbit of
the binary around the massive black hole.

Some of the merger products may subsequently approach the massive black hole closely
enough to be tidally disrupted. A recent merger remnant could have a much larger magnetic
field than would be typical for a single star; the subsequent disruption of such a magne-
tised object may make it easier to produce jets associated with some TDEs such as Swift
J164449.3+573451 (Mandel and Levin 2015; Bradnick et al. 2017).

Meanwhile, the tidal separation of a binary, outcome (iii), generally leads to the rapid
ejection of one of the companions. By analogy with Eq. (23), the velocity of the ejected star
with mass M� ∼ Mb/2 is of order

vej ∼
(

MBH

Mb

)1/6

vbin , (50)

where vbin ∼ √
GMb/a is the binary’s orbital velocity, of order 100 km s−1 for a compact

binary (two solar-type stars at ten solar radii). For a 106 M� black hole, the ejection velocity
is then of order vej, hvs ∼ 1000 km s−1: a hypervelocity star. Rossi et al. (2014, 2017) found
that the observed population of hypervelocity stars is missing a high-velocity tail expected
from models. Bradnick et al. (2017) conjectured that mergers of the most compact, high
orbital velocity binaries could be responsible for the observed dearth of particularly rapid
ejections.
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9 Conclusions

The process of stellar tidal disruption has been studied since the pioneering work of Hills
(1975). In the almost half-century of theoretical work since then, our understanding of the
central features of the disruption process has largely converged. The position-dependent tidal
field felt by an extended object can be written in closed form, both in Newtonian gravity and
also in the general relativistic gravity of the Schwarzschild and Kerr metrics (Eqs. (4) and
(7)). These tidal fields can then be used to build analytic, semi-analytic, or fully numerical
models for the dynamics of tidal disruption. Because the full process of disruption is a
nonlinear hydrodynamics problem, a numerical simulation – if/when adequate resolution
can be achieved – provides the most precise answers, but a variety of simpler models provide
useful physical intuition and some degree of accuracy.

We have reviewed these models in §2. The simplest ones can be constructed by assum-
ing impulsive disruption of the star at the moment it enters the tidal radius, with the star’s
fluid elements “freezing in” to ballistic, or geodesic, trajectories in the aftermath of this dis-
ruption; this approximation can be used to make predictions about the mass fallback rate
in a fully analytic way. Increasing accuracy comes from applying the free solutions to the
parabolic Hill equations (Eq. (33)), which also allows limited study of the process of tidal
compression; or from adding an integral equation to account for the internal structure of the
star (Eq. (28)). The semi-analytic “affine model” provides significantly greater physical re-
alism by using the tensor virial theorem (and simplifying geometrical assumptions) to model
the hydrodynamics of the disruption process, rather than neglecting hydrodynamics entirely
as in the impulse approximation. The affine model has been used extensively to study the
tidal compression suffered by stars undergoing high-β TDEs, and makes surprisingly accu-
rate predictions for mass lost in partial tidal disruptions.

We have also surveyed the extensive literature of numerical (magneto)-hydrodynamics
simulations of TDEs, the results of which are presented in §3, §4, and §5. At this point, the
tidal disruption of non-rotating polytropic stars in Newtonian gravity is a largely solved
problem: at least two large parameter studies employing different numerical techniques
(Guillochon and Ramirez-Ruiz 2013; Mainetti et al. 2017) are converged on the outcomes
of both full and partial disruptions under these assumptions. However, there are many active
frontiers of numerical disruption simulations that have not yet fully explored the parameter
space of real TDEs. While tidal disruption in general relativistic gravity has been simu-
lated since the work of Diener et al. (1997), broad parameter surveys have only recently
appeared (Ryu et al. 2020c), and comparatively few simulations have been done in the Kerr
(rather than Schwarzschild) metric. A full understanding of the energetics and dynamics of
a star disrupted on an inclined trajectory with respect to the SMBH’s spin is for instance
missing. Likewise, it is only very recently that a number of groups (Golightly et al. 2019a;
Law-Smith et al. 2019; Goicovic et al. 2019; Ryu et al. 2020a) have begun simulating the
disruption of stars generated with fully realistic internal structure (usually employing MESA
models). Pursuing these studies further would improve our understanding of how detectable
spectral lines – their strengths and temporal behaviour – can be used to explore the disrupted
star and gas thermodynamics during the time between disruption and spectral line observa-
tions. Likewise, recent – and few – investigations of the disruption of rotating (Golightly
et al. 2019b; Sacchi and Lodato 2019) or magnetised (Guillochon and McCourt 2017; Bon-
nerot et al. 2017) stars offer leads for more in depth analysis. The rapid progress of the last
two years seems promising for our future understanding of astrophysically realistic TDEs.

One of the original motivations for studying TDEs relates to the exotic phenomena that
may occur during extreme tidal compression in high-β events, as we discuss in §6. The
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onset of runaway nuclear fusion (particularly in WD TDEs), the emission of gravitational
waves, or the production of a bright shock breakout signal remain somewhat speculative
possibilities, largely due to the computational challenge of resolving severe compression
in high-β TDEs. If signals like these exist, however, they would pin down the precise mo-
ment of disruption, which might help to resolve open questions related to accretion flow
formation. Looking into the future, observation of GW signals are particularly promising,
but little work has been done so far in exploring the scientific gain from the synergy between
gravitational-wave and electromagnetic observations.

We further discuss in §7 the dynamics and possible signatures of the dynamically un-
bound half of the star; the current assessment is that its observability remains elusive. Even
if more exotic scenarios discussed in §8, such as repeated disruptions, binary disruptions,
e < 1 TDEs, or quasi-circular Roche-lobe overflow are intrinsically rare or hard to observe,
it seems plausible that the flood of data from upcoming time domain surveys may include
some of these variations on more typical TDE flares.
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