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Identification of superspreading 
environment under COVID‑19 
through human mobility data
Becky P. Y. Loo1,2,3, Ka Ho Tsoi1,3, Paulina P. Y. Wong4,5 & Poh Chin Lai1,2*

COVID-19 reaffirms the vital role of superspreaders in a pandemic. We propose to broaden the research 
on superspreaders through integrating human mobility data and geographical factors to identify 
superspreading environment. Six types of popular public facilities were selected: bars, shopping 
centres, karaoke/cinemas, mega shopping malls, public libraries, and sports centres. A historical 
dataset on mobility was used to calculate the generalized activity space and space–time prism of 
individuals during a pre-pandemic period. Analysis of geographic interconnections of public facilities 
yielded locations by different classes of potential spatial risk. These risk surfaces were weighed and 
integrated into a “risk map of superspreading environment” (SE-risk map) at the city level. Overall, 
the proposed method can estimate empirical hot spots of superspreading environment with statistical 
accuracy. The SE-risk map of Hong Kong can pre-identify areas that overlap with the actual disease 
clusters of bar-related transmission. Our study presents first-of-its-kind research that combines 
data on facility location and human mobility to identify superspreading environment. The resultant 
SE-risk map steers the investigation away from pure human focus to include geographic environment, 
thereby enabling more differentiated non-pharmaceutical interventions and exit strategies to target 
some places more than others when complete city lockdown is not practicable.

In medical science, epidemiologists called someone who infected an especially large number of other people 
“superspreaders”1. The existence of superspreaders is notable as they can accelerate the rates of new infection in 
a pandemic. With COVID-19 declared a global pandemic by the World Health Organization (WHO) on March 
11, 2020, scientists have closely monitored and continuously updated estimates of the effective reproduction 
number (Rt), “which represents the mean number of secondary infections that result from a primary case of 
infection at time t”2. Such research is necessary because Rt is an indicator of the transmission potential of a dis-
ease. A pandemic signals a declining trend only when Rt is below one. More cases are expected when Rt exceeds 
one. The higher the value of Rt, the faster the transmission and the more alarming the public health risk. Rt 
for COVID-19 was estimated to be between two and three in early 20203, but recent research suggests a higher 
number in the range of 4.4 to 11.74. Yet, there is great inter-personal variability of disease transmission with 
much higher transmissibility risk of a primary case by a superspreader5,6. A superspreader in Wuhan infected 14 
healthcare workers that resulted in one death while an individual in Chicago who attended a dinner, a funeral 
and a birthday party was responsible for 15 new infections1. Hence, research on identifying, tracing and treating 
superspreaders is highly important to pandemic control.

Thus far, the focus of research on superspreaders has primarily been aspatial1,6,7. In this paper, we propose 
to broaden research on superspreaders through geographical modelling of the pandemic spread8. Figure 1 is 
an illustration using a hypothetical example of a city with 100 sub-divisions/zones and with each zone carry-
ing a population of 1,000. Two scenarios of spatial spread could result, assuming that 80% of all infected cases 
was caused by superspreaders1, and the transmission rates of super versus non-super spreaders were modelled 
at ten and two respectively; where these values may be adjusted according to updated and realistic estimates 
gathered from field data. Scenario A assumes the presence of a superspreader in a non-superspreading environ-
ment whereas the superspreader in scenario B exists in a superspreading environment. With infectivity yielding 
similar number of newly infected cases at each time period, the spatial patterns of infection for the two scenarios 
look very different because of the geographical setting populated by people at two extreme ends of mobility. 
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Figure 1.   Transmission patterns under the non-superspreading and superspreading environment.
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A non-superspreading environment (Scenario A) is characterised by people at the low end of mobility while a 
superspreading environment (Scenario B) has highly mobile individuals, including long-distance commuters 
and those who regularly travel from place to place beyond their local communities.

We argue that a community/district with mobile population must also possess certain amenities or services to 
turn it into a superspreading environment. This is analogous to Losch modified Christaller’s central place theory9, 
which suggests the locations of retail in urban areas attract people/consumers to purchase goods and services they 
need (see Supplemental Methods S1.1). Moreover, retail locations in urban versus rural districts exhibit different 
retail centrality, which is a measure of the retail drawing power or attraction of a given location10. The density 
of streets or transport networks also plays an important role in shaping variations of retail and service intensi-
ties within a city11,12. Compared with suburban locations, urban cores or central business districts where both 
high- and low-order retail and transport facilities tend to cluster favour the formation of “attractors” in the set-
tlement layout, exerting a strong pull on consumers living nearby and further away in the region. Consequently, 
the combined characteristics of higher spatial agglomeration of retail activities and expanse transportation can 
serve as a proxy for superspreading environment.

Consider the varying spatial patterns of disease transmission under a superspreading environment, we sug-
gest that non-pharmaceutical interventions (NPIs) for disease containment must step beyond the conventional 
practice of focussing on home and workplace of the infected. Unlike the traditional spatial analysis that associates 
patients to their home locations13–15, this study identifies candidate areas with a heavy concentration of retail and 
public facilities as potential spreading environments. Our approach aims to predefine high-risk areas of disease 
spread such that these locations can be targeted to receive more stringent and timely disease prevention and 
control measures before or during an outbreak. Research on pandemic control have involved scientific studies 
about the host, pathogen and the environment. Under COVID-19, scientific research on the pathogen (such as 
the genetic sequences of SARS-CoV-2) has been ongoing at full steam although effective drugs and vaccines to 
protect human beings are still being tested. It is also noted that a period of at least two days of pre-symptomatic 
transmission in the community is particularly challenging2. Without an effective means of tracking asymptomatic 
individuals, NPIs are essential components in public health response to the COVID-19 pandemic.

There is recent evidence to suggest that NPIs have been effective in China and beyond2,16,17. Specifically, the 
COVID-19 cases in China could be 67 times higher without NPIs2,18. Notwithstanding that these studies have 
bundled all confinement or lockdown measures as NPIs, they recognized that the effectiveness of different inter-
ventions might vary. It is also realised that the economic and social costs of lockdowns can be enormous19, as 
people are confined to homes without being allowed to participate in social, entertainment and leisure activities 
good for their physical and/or mental health. Knowing that a complete city lockdown incurs enormous economic 
and social costs, as well as related knock-on effects on physical/mental health and interpersonal violence, it may 
be beneficial to continue operation of some public facilities deemed important for maintaining people’s daily life 
and wellbeing. Studies have suggested that permitting limited access to sports centres, libraries, dinning out, and 
shopping for local residents can be managed with proper disease prevention measures, such as frequent disin-
fection, mandatory face-masks and physical distancing20,21. Under COVID-19, these public facilities have often 
been targeted for indiscriminate and complete close-down. Referring to NPIs included in the Oxford database22, 
closing of these public facilities may be considered as the intermediate step following school and workplace 
closures, but before the most drastic measures of stay home order and complete city lockdown.

This paper extends beyond current research that focuses on the pathogen (e.g. characteristics of SARS-CoV-2) 
or individuals (i.e. the hosts) with a high risk to be superspreaders. It does not focus on biological characteristics 
of infected persons (e.g. in relation to their immune system) but to examine the environment/space posing dif-
ferent health risks of a transmissible disease. It, therefore, supplements the traditional public health concerns 
of medical science and microbiology with the spatial dimension of people-environment dynamics. Against this 
background, this research uses geospatial statistical methods, originated from time geography23, to differentiate 
between exceptionally “high-risk superspreading facilities” covering wider spatial catchment areas that attract 
users from distant locations and those spending substantial periods of time out-of-home, and “local facilities of 
the same type” but with smaller spatial catchment areas that mainly attract local residents and those spending 
shorter out-of-home time.

Methods
This study quantifies and maps potential risk areas of superspreading tendencies in Hong Kong. It aims to illus-
trate the concept and methods of extracting spatial mobility data in an urban setting to enable the identification 
of superspreading environments. In the later part of this paper, we also crosschecked the validity of potential 
risk surface against the patterns of confirmed COVID-19 cases in the city. Two types of human mobility data 
were extracted from secondary data sources without direct experiments with human participants. Data applied 
to identify the superspreading environments came from the Travel Characteristics Survey 2011 (TCS-2011), 
obtained from and approved by the Transport Department of the Hong Kong SAR Government. The TCS-
2011 is a territory-wide survey that informs characteristics of trips made by Hong Kong residents on a typical 
working day. The fieldwork protocols are available in the final report (https​://www.td.gov.hk/filem​anage​r/en/
conte​nt_4652/tcs20​11_eng.pdf). The survey contains data of over 35,000 households about their household/
personal characteristics and mechanized trip information (e.g. origins/destinations, trip purpose, journey time 
and transport modes). Data of empirical cases database were publicly available data from the Centre for Health 
Protection (CHP) of the Hong Kong Government and crowd-sourced information came from local news reports 
and social media.

We identified six types of retail locations and public facilities where an agglomeration of people and services 
is likely to take place during a pandemic, viz. bars, shopping centres, karaoke & cinemas, mega shopping malls, 

https://www.td.gov.hk/filemanager/en/content_4652/tcs2011_eng.pdf
https://www.td.gov.hk/filemanager/en/content_4652/tcs2011_eng.pdf
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public libraries, and sports centres (see Supplemental Methods S1.2). These locations emerged as popular social 
gathering grounds associated with clusters of locally transmitted cases24–26. Locational data for all facilities except 
bars were readily extracted from the “GeoCommunity Database of Hong Kong”, available from the Survey and 
Mapping Office of the Lands Department (https​://www.lands​d.gov.hk/mappi​ng/en/lic/geoco​m.htm). As “bars” 
exist in a myriad of combinations (such as cocktail bar, café bar, restaurant-cocktail-bar, pubs, etc.), we searched 
for any liquor-licensed premises with “bar” in their names (both English and Chinese). Other crowded facilities 
and services such as places of worship, elderly homes, and restaurants may be chosen but there are operational 
difficulties due to data availability, privacy concerns, or numerousness of these locations.

We derived human mobility data based on travel-activity diaries from TCS-2011. Although TCS-2011 does 
not truly reflect movement situations during the pandemic, it is the latest and detailed territorial-wide travel 
characteristics data for the city. Additional pre-processing of TCS-2011 was necessary (see Supplemental Methods 
S1.2 & S1.3), as the travel diaries did not differentiate trip purpose for bars and restaurants. Here, we identified 
street blocks with a high density of bars that also contained three or more trip records in TCS-2011 and used 
them as a proxy for locating bars in Hong Kong. Bars in neighbouring street block(s) and with TCS trip records 
were also included for further analysis.

Space–time concept and measurements.  First, we introduce the space–time concept and a method 
of identifying high-risk public facilities that may give rise to a superspreading environment due not only to the 
physical locations (e.g. near the central business district) or the nature of facilities (e.g. being bars or shopping 
centres) but also the characteristics of users (e.g. whether they travel from a wider spatial catchment area and 
spend substantial out-of-home time with other users having similar lifestyles). Even for the same type of facility 
like bars, some bars may be more local “watering holes” (corresponding more to scenario A in Fig. 1) while oth-
ers can attract people from all over the city to hang out and socialize (resembling more to scenario B in Fig. 1).

We made use of time and space information on the mobility pattern of individuals in a city to aggregate the 
activity space (AS), space–time prism (STP), and the potential path area or potential risk surface for different 
types of activities (see Supplemental Methods S1.4–S1.6) associated with the selected public facilities27. As illus-
trated in the left panel of Fig. 2, an individual’s recollection of places of visit within a day (including home, all 
activity locations and transit stops) can be used to delineate a Standard Deviational Ellipse (SDE) which is used 
as the metric of his/her AS (see Supplemental Methods S1.4). For measuring mobility, we used the 2-dimensional 
rectangular area bounding the AS and multiply it by the time factor. This measure of STP is a proxy for how far 
(space) and how long (time) an individual has taken part in out-of-home activities during a day28. The AS and 

Figure 2.   An illustration of the space–time concept and spatial agglomeration.

https://www.landsd.gov.hk/mapping/en/lic/geocom.htm
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corresponding STP for all individuals who visited any of the six types of public facilities recorded in the TCS 
database were calculated.

Spatial agglomeration and potential spatial risk (PSR).  We established two hypotheses in relation to 
the different mobility characteristics of facility users.

H1: Geographical agglomerations of the same type of facilities tend to attract users of higher mobility, as 
represented by larger total STP.

H2: Facilities in the core urban areas tend to be used by users with higher total STP.
To test the two hypotheses, the geographical agglomeration level (low vs. high) and the geographical loca-

tions (urban vs. suburb/new town) of each public facility were analysed. Difference-of-means test was used to 
see whether the differences of AS and total STP of their respective users were statistically significant at p = 0.05.

Based on the six major types of public facilities (i.e. bars, shopping centres, karaoke & cinemas, mega shop-
ping malls, public libraries, and sports centres) and catchment areas of users with a highly mobile lifestyle, we 
asked whether these combinations could be classified into different classes of “potential spatial risk (PSR)” to 
differentiate superspreading environments (see right panel of Fig. 2). With spatial agglomeration (high vs. low 
facility density and urban vs. suburb AS) as the x-axis and users’ total STP (high vs. low) as the y-axis, each 
facility of the same type was assigned into one of the four quadrants to indicate their PSR classes (see Group A 
and Group B tables in the right panel of Fig. 2).

If the above two hypotheses hold true which suggests agglomeration as a risk factor, the high-high quadrant 
presents the highest PSR in creating a superspreading environment (red quadrant in Group A, Fig. 2). However, 
some locations with few establishments (i.e. a lack of agglomeration or H1 is rejected) that are frequented by 
highly mobile individuals (i.e. H2 holds true) may also be candidates of a superspreading environment (red 
quadrant in Group B, Fig. 2). Class 2 PSR with high population density (orange sections for both Groups A & B 
in Fig. 2) signals potential locations of localized outbreaks because of low STP. The number of PSR classes will 
be determined based on the data construct. Our example used two classes (low vs. high) on each dimension to 
yield four quadrants in total (with the low-low quadrant split by high and low population densities).

To reflect the superspreader characteristics of much higher risks and transmission rates, we weighed the 
different PSR classes exponentially with a base of ten to standardise and differentiate risk levels. Finally, the 
risk surface of all six public facilities were integrated to produce a “risk map of superspreading environment” 
(hereafter referred to as the “SE-risk map”) for the entire city. The method can be adopted in other cities with 
reasonably well-established data on travel activities and public facilities.

Tracking AS and validation of the SE‑risk map.  The CHP hosts a map-centric dashboard showing key 
information about the pandemic, with daily updates (https​://chp-dashb​oard.geoda​ta.gov.hk/covid​-19/en.html). 
Each case of confirmed and suspected COVID-19 infection gets a unique case number, with the corresponding 
home location indicated. The CHP and various groups of scientific researchers have tracked infected individuals 
and identified different “clusters” of COVID-19 cases. At least 40 clusters have been identified as at July 13, 2020 
and Supplemental Table S1 lists the ten largest clusters. The top-ranked “bar and music band” cluster not only 
was the largest so far but also among the earliest in affecting the city.

We chose to focus on these clusters and attempted to obtain more detail about the infected cases from news 
media and press releases from the government. Many of the recounts of movement and activity by infected 
individuals were incomplete due to memory lapse and possible editing/word limitations set by local news media. 
The sequence of visiting different locations was often available from news report but the exact duration of each 
activity was not available. We could thus compute only the AS (but not total STP) in the validation analysis.

Generally speaking, the wider is the spatial extent of activities of the confirmed cases linked to hot spots iden-
tified by the SE-risk map, the higher is the value of the current method to pandemic control and public health. 
We reconstructed the AS space–time trajectories of the confirmed cases associated with some facilities of class 
1 PSR to check the consistency of the findings and establish the value of the SE-risk map in screening facilities 
based on historical travel-activity records from TCS-2011. To estimate the value of this approach, the empirical 
patterns of COVID-19 cases or disease clusters associated with these popular public facilities were compiled 
and the SDE representing AS mapped for geovisualization. Mann–Whitney U test statistics were computed to 
ascertain the degree of correspondence (p = 0.05) between the actual AS of confirmed cases and potential AS 
based on this approach.

Results
Table 1 shows the summary results of difference-in-means tests for the six public facilities (see Supplemental 
Table S2 for detailed statistics). There is evidence to support both H1 and H2 for two types of public facilities: 
bars and small-medium shopping centers. These public facilities were associated with users with higher AS and 
STP, especially when they existed in high facility agglomerations and in urban areas (Class 1 PSR in Group A, 
Table 1). H1 is rejected for the other four types of public facilities: karaoke & cinemas, mega shopping malls, 
public libraries, and sports centres. Our results show that this second group of public facilities was associated 
with users of higher AS and STP but in areas with lower facility agglomeration (Class 1 PSR in Group B, Table 1), 
perhaps suggesting a lack of similar types of provision in the wider communities. Among the four types of public 
facilities, H2 is rejected for karaoke and cinemas and sports centres, suggesting that these facilities tended to 
attract more mobile users in suburbs compared to urban areas. Furthermore, our results show that the remaining 
public facilities (i.e., public libraries and mega shopping malls) frequented by highly mobile users tended to be 
the more isolated establishments or locations with low facility agglomeration in the urban setting.

https://chp-dashboard.geodata.gov.hk/covid-19/en.html
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Next, the full list of six types of public facilities was integrated and the resultant locations assigned into four 
PSR classes, as shown by Groups A & B in Fig. 2. These locations by PSR classes were visualized in Fig. 3a. Of 
particular interests are the red triangles and orange circles representing areas of superspreading environment 
and localized infectivity respectively. Figure 3b transformed Fig. 3a from the point symbol representation into 
a risk surface or the SE-risk map with darker shading denoting higher risks. The numbered locations represent 
empirical data of actual disease clusters occurring between February and July 2020 inclusive. By visual inspection, 
the actual disease clusters seem to fall in high-risk areas with identifiable hotspots in Fig. 3b.

To consider the empirical value of the analysis to inform policy makers, we identified two bars designated as 
class 1 PSR by our method and plotted the AS space–time trajectory based on TCS-2011 (Fig. 4a). Our method 
shows AS of wide coverage indicating patrons of bars were not limited to nearby residents. Then, we reconstructed 
the AS time–space trajectory of the infected cases from the same bars based on information from tracing studies 
conducted by the CHP and news reports from local media (Fig. 4b). The derived AS show a large spatial extent 
of comparable pattern. Mann–Whitney U test indicates no significant difference in the areal coverage of AS 
between our method and the actual occurrence (p = 0.76).

Discussion
Targeting the environment to complement superspreader research is needed. Our study illustrates the potential 
value of mapping hot spots of superspreading environment in an ex-ante manner by combining geographical 
settings with pre-pandemic human mobility data. The SE-risk map can serve as a useful reference for policy 
makers in targeting facilities for more differentiated NPIs. The wisdom of Dr John Snow more than 150 years ago 
has highlighted the importance of associating disease cases (that is, cholera) with the location of public facilities 
(that is, public water pumps)29. Given the challenge of a pandemic with no effective vaccine and cures, NPIs are 
necessary to “avoid peaks of cases that would overwhelm hospital and intensive care unit (ICU) capacity and 
result in hundreds of thousands of deaths”30(p 1).

Current observations and the global trend have indicated that the COVID-19 pandemic is likely to last 
for some time. It has become increasingly difficult to enforce citywide lockdowns that carry serious politi-
cal, economic and social (including health) consequences. Identifying individuals with the disease (at the pre-
symptomatic stage), reducing the time for diagnosis and laboratory tests, proper isolation of the infected, and 
tracing of the whereabouts of the individuals that they have been in contact with, will remain critical in this 
fight against coronavirus. These persistent efforts have put pressure on people’s everyday life, and the already 
strained healthcare and laboratory resources worldwide. One major challenge in a pandemic is the rapid and 
unpredictable transmission of disease associated with superspreaders. Using the conceptual and methodologi-
cal framework of superspreading environment, our analysis has demonstrated the potential value of integrating 
geographical knowledge and human mobility patterns to predict the “origins” of disease clusters based on the 
activity type, facility features, and users’ travel-activity pattern. One limitation of the study is that we had to use 
travel characteristics survey data from 2011 to analyze a pandemic of 2020. Since that year, complex changes in 
people’s activity-travel patterns may have happened as the city’s urban form and transport system evolved. This 
issue may hinder the accuracy of the study. With more updated data, the results of the study would be more 
accurate. Despite this limitation, the usefulness of the technique was validated. Besides, the selection of public 
facilities conducive to disease spread and insights derived from the potential risk surface may be more applicable 
to COVID-19 in particular and other respiratory pathogens in general, and somewhat relevant to infectious dis-
eases with other modes of transmission. The generalizability of the potential risk surface may thus be constrained.

In terms of future research directions, more factors which are known to contribute to the formation of 
superspreading environment, such as poor indoor ventilation, can be considered and integrated into the current 
analysis. In parallel, there is a need to refine the research by considering more characteristics both about the users 
and the facilities. For the former, superspreaders of certain occupations working in a superspreading environment 
may result in even higher public health risk. For the latter, facilities located at mixed commercial-residential areas 

Table 1.   Results of difference-in-means tests for the six public facilities. a Bold letterings indicate groups with a 
higher mean score (sig. < 0.05).

Activity space (AS)a Space–time prism (STP)*

Group A: Agglomeration is a risk factor

Bars Urban vs. suburb
Low vs. high density

Urban vs. suburb
Low vs. high density

Small-medium shopping centres Urban vs. suburb
Low vs. high density

Urban vs. suburb
Low vs. high density

Group B: Lack of agglomeration is a risk factor

Karaoke & cinemas Urban vs. suburb
Low vs. high density

Urban vs. suburb
Low vs. high density

Mega shopping malls Urban vs. suburb
Low vs. high density

Urban vs. suburb
Low vs. high density

Public libraries Urban vs. suburb
Low vs. high density

Urban vs. suburb
Low vs. high density

Sports centres Urban vs. suburb
Low vs. high density

Urban vs. suburb
Low vs. high density
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can be an extra risk factor. In addition, our current study made use of historical travel characteristic data to com-
pute AS and STP of individuals. The widespread use of smart cards and mobile devices with self-tracking applica-
tions and big data analytic software can provide more refined mobility data to construct the SE-risk map using 
our proposed method31,32. Nonetheless, NPIs that focus on modified human behaviours from wearing masks 
and hand disinfection to reducing travel and social activities must go hand in hand in fighting the pandemic.

Figure 3.   Public facilities by potential spatial risk (PSR) (a) and risk map of superspreading environment 
(SE-risk map) (b). (a) Symbol locations correspond to four PSR classes as shown in the map legend. (b) Top 
ten locations of empirical local cluster infection (numbered 1–6) plotted against the SE-risk map, a generalized 
surface of potential superspreading risks with darker shadings indicating higher risks of infection. The empirical 
local cluster infection cases of COVID-19 shown above included the top 10 infected clusters with the highest 
number of cases recorded between February and July 2020. (Generated by ArcGIS 10.5, URL: http://www.esri.
com/softw​are/arcgi​s/arcgi​s-for-deskt​op).

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop


8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4699  | https://doi.org/10.1038/s41598-021-84089-w

www.nature.com/scientificreports/

Data availability
All data generated during this study are included in the main text and supplementary information. The mobil-
ity data from Travel Characteristics Survey 2011 (TCS-2011) used to support the findings in this study are not 
publicly available because the dataset is under a license from the data provider. Some aggregated information is 
publicly available online (https​://www.td.gov.hk/filem​anage​r/en/conte​nt_4652/tcs20​11_eng.pdf). The mobility 
data of empirical cases were compiled by the authors based on publicly available data from the Centre for Health 
Protection of the Hong Kong Government (https​://www.coron​aviru​s.gov.hk/ eng/index.html) and crowd-sourced 
information from local news reports and social media.
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