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A B S T R A C T   

Wind tunnel tests and computational fluid dynamics (CFD) simulations remain the main modeling techniques in 
wind engineering despite being expensive, time-consuming, and requiring special facilities and expert knowl
edge. There is a clear need for a fast, accurate, but, at the same time, computationally economical substitute. This 
study proposes a Gaussian Process-based (GP-based) emulator to predict the pedestrian-level wind environment 
near a lift-up building – an isolated, unconventionally configured building. The proposed GP-based emulator 
transcends the limitations of previous emulators as it can handle many inputs (8) and output parameters (384) 
and a large dataset (150 CFD simulations). To increase computational efficiency, the current study proposes a 
data reduction method based on Principal Component Analysis (PCA) and a technique to estimate hyper- 
parameters based on optimization. The latter can efficiently compute 250 hyper-parameters and requires no 
prior knowledge of their probability distributions. The emulator is faster, by a factor of 107 than CFD simulations 
in predicting wind speeds, and its accuracy is substantiated using both qualitative and quantitative analyses, 
which reveal that the emulator’s predictions of all-prominent flow features near a building have no systematic 
bias, are highly accurate, and have great reproductivity.   

1. Introduction 

Knowledge of wind-building interactions is imperative when 
designing a building and its surrounding wind environment. On the one 
hand, wind-building interactions can threaten structural safety and 
affect the comfort of occupants, as wind can exert extreme wind loadings 
and induce excessive motions in the building [32,37,40,83]. On the 
other hand, the building amplifies the wind speed in its vicinity, dete
riorating the quality of the wind environment and causing wind 
discomfort for pedestrians [13,42,51,63,84,102,103]. Conventionally, 
the effects of wind-building interactions are modeled using one of two 
popular techniques: wind tunnel tests and computational fluid dynamics 
(CFD) simulations. Their popularity is based mostly on the abundance of 
experience using them, a well-established wealth of literature and 
well-organized databases, and the availability of best practice guide
lines. Nevertheless, conducting wind tunnel tests and CFD simulations is 

costly, time-consuming, and requires specific test facilities and expert 
knowledge, prompting engineers and researchers to find an economical, 
fast, and easy-to-use alternative. 

Emulators [45,68,86], also known as surrogate [6,52,73], meta- [21, 
48], or proxy-models [9,45,66], are a fitting substitute for conventional 
modeling techniques. They are different from simulators (e.g. wind 
tunnel tests and CFD simulations). Emulators are trained to mimic few 
required outputs, rather than having to model or calculate all associated 
parameters of the interested case [48]. Producing only limited outputs is 
not necessarily a drawback of using emulators for wind engineering 
applications, because most applications need either wind velocity, 
pressure, or building responses. In fact, having limited outputs enables 
faster emulators and more computationally economical than their 
simulator counterparts. Besides, producing outputs through mimicry of 
simulator’s results does not hamper the accuracy of the emulators, as 
they can estimate the uncertainty associated with predictions. More
over, emulators are suitable for tasks that need to be repeated many 
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times with minor differences in settings between iterations. This is 
where most simulators are found to be unfeasible [33,72]. Examples are: 
when assessing several building designs in the early design stage, when 
optimizing the configurations of a building, and when designing and 
disposing of buildings with standard layouts, such as cases of pre
fabricated and modular buildings. 

Wind engineering applications of emulators may yet be limited, but 
they have already been widely used in other branches of engineering for 
sensitivity analysis [26,53,75], model selection [58,71], uncertainty 
assessment [11,44,89,97], multi-scale modeling [8,16,25], model 
coupling [61,74,82], system design [5,17,60], and inverse identification 
[2,34,54,62]. In the few applications in wind engineering, emulators 
have mostly been developed based on an Artificial Neural Network 
(ANN) and used to optimize the shapes and aerodynamics of tall 
buildings [27,28,93], to predict dynamic responses of tall buildings [67, 
69], to model bridge aerodynamics [1,43,76,94], to estimate wind 
pressure on buildings [15,22,24], predict interference effects [29,46], 
wind speed forecast [41,79] and to estimate how the effect of topog
raphy features cause wind to speed up [10]. Besides, polynomial chaos 
expansion based emulators have been used to model the urban wind 
environment [80]; estimate uncertainty in CFD simulations [31,35,85] 
and to model how pollutants disperse [49]. Several studies have 
employed support vector regression as an emulator to forecast 
short-term wind speeds [19,47,55] and daily air pollutant concentra
tions [65,70,96]. Another set of emulators have been developed based 
on Gaussian Process-based (GP-based) regression to predict short- [39, 
99] and long-term [98] wind speeds, the power generation of wind 
turbines [20,57,78], and wind pressure prediction [56]. 

Moonen & Allegrini [64] have methodically introduced the GP-based 
emulator to wind engineering applications. They developed the 
GP-based emulator to predict the pedestrian-level wind environment 
(PLWE) in an urban-like setting. The urban setting consists of two 
rectangular and 12 square buildings forming a street canyon and its 
surroundings. The wind environment in this urban setting is evaluated 
for six wind directions: θ = 0◦, 20◦ 30◦, 35◦, 60◦, and 90◦, using CFD 
simulations and the emulator [64]. point out the great promise in saving 
computational resources that the GP-based emulator shows in wind 

engineering applications. Nevertheless, certain aspects of the emulator 
must be further explored, as discussed below: 

O’Hagan [68] points out that GP-based emulators are more efficient 
and flexible than other emulators despite their high computation costs 
handling large datasets [23,59]. This shortcoming can be overcome by 
employing a dimensional reduction-based approach [4]. Indeed, 
Moonen & Allegrini [64] employed such an approach to improve the 
efficiency of a GP-based emulator but it is ambivalent whether they have 
fully explored the potential of the emulator yet. The uncertainty arises 
from the simplicity of their case study, which has two input parameters – 
wind speed and direction – and carries out eight simulation runs – all 
combinations between two wind speeds and four wind directions – for a 
simple urban-like setting with rectangular and square buildings. 
Therefore, it is yet to be established how efficiently a GP-based emulator 
can handle many input parameters and a large dataset of many simu
lations conducted on unconventional building configurations. 

The current study further explores the potential of using a GP-based 
emulator to predict the PLWE near a building with an unconventional 
configuration. Such an unconventional configuration serves two pur
poses: first, it provides many inputs for the emulator in the form of 
design parameters; and second, the PLWE near that building with the 
unconventional configuration may have special flow features that are 
outright absent in the wind environment near a rectangular or square- 
shaped building [95,103]. These features make it possible to gauge 
how well the GP-based emulator can handle many input parameters, and 
how accurately it can predict flow characteristics in a complex wind 
field. In this study, the unconventional configuration is an isolated 
building with a lift-up design [88,100,101]. The particular selected 
configuration has eight design parameters, quadrupling the input pa
rameters used by Ref. [64]. The current study also investigates how 
efficiently a particular data reduction technique can develop the 
GP-based emulator by employing a large dataset based on 150 CFD 
simulations. In addition, a novel technique based on optimization to 
determine the magnitudes of hyper-parameters is proposed, as current 
practices are inefficient in estimating the magnitudes of hundreds of 
hyper-parameters arising from larger datasets and many input param
eters in cases such as those presented in the current study. 

Nomenclature 

a corner modification parameter 
Ĉ matrix of truncated principle components 
D building depth 
d center core depth 
FAC2 the factor of two of observations 
FB fractional bias 
H building height 
h center core height 
ha amplitude length-scale hyperparameter 
I turbulence intensity 
Ir an r × r unit matrix 
K normalized mean wind speed ratio 
k turbulent kinetic energy 
lij characteristic length-scale hyperparameter 
NMSE normalized mean square error 
np number of parameters 
nq quantities of interest 
nt number of principal components after the truncation 
PCA principal component analysis 
pkj(plj) the jth setting corresponding to the simulation run k(l) 
PLWE pedestrian-level wind environment 
pmin,j, and pmax,j minimum and maximum of Praw[:,j] 
Praw matrix of unscaled parameters 

r number of simulation runs 
R Pearson correlation coefficient 
RANS Reynolds-Averaged Navier-Stokes [simulation] 
RMSE root mean square error 
t corner modification parameter 
t̃ an error term of emulator predictions 
U mean wind speed 
u longitudinal mean wind speed 
V̂ matrix of truncated eigen-vectors 
v lateral mean wind speed 
v1 first shape parameter of the center core 
v2 second shape parameter of the center core 
W building width 
w center core width 
Wraw matrix of unscaled quantities of interest (wind speed, nt ×

r) 
z, zref height above the ground, reference height 
α power-law exponent 
βij scaled characteristic length-scale hyperparameter 
ε turbulent kinetic energy dissipation rate 
θ building orientation/wind direction 
σi estimated noise 
μw̃i mean function of GP 
∑c̃i covariance matrix of GP  
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The overall framework for developing a GP-based emulator is briefly 
discussed in Section 2, and subsequent sections describe separately the 
main steps of the framework. Section 3 presents the details of the CFD 
simulations, including building models, computational domain, 
boundary conditions, solver settings, and the estimation of the accuracy 
of the CFD simulation. Section 4 demonstrates the dimensional 
reduction-based approach employed to reduce the size of the dataset of 
this study. Section 5 discusses the underlying theories and reasoning 
behind the selection of model parameters of the GP-based emulator. 
Section 6 evaluates the prediction accuracy of the emulator with respect 
to the data from the CFD simulations. Section 7 demonstrates the 
practical significance of the proposed GP-based emulator using several 
examples. Section 8 discusses some limitations of the current study, and 
Section 9 closes with some concluding remarks. 

2. Framework 

Fig. 1 shows the main steps in developing the GP-based emulator. 
The parallelograms are the main tasks of the process, and the rectangles 
are tools that are used to execute the tasks. The process starts with 
choosing design parameters for the emulator; in this study, they are the 
dimensions of a lift-up building and the mean wind speed at the 
pedestrian level near the building (Section 4.1). Eight dimensions — 
height (H) and width (W) of the elevated structure; height (h), width (w), 
depth (d), two shape parameters: v1 = t/d and v2 = a/t of the center core, 
and wind direction (θ) (or orientation of the building) — define the 
design of the building (Fig. 2). The output parameters are longitudinal 
(u) and lateral (v) mean wind speeds of 194 points at the pedestrian level 
(2-m height in full scale) near the building. A database that contains 
different combinations of design parameters as well as corresponding 
outputs is developed for training the emulator. 

In this study, Design of Experiment (DoE) is used to select the design 
parameters of different lift-up designs while the three-dimensional 
steady-state Reynolds-averaged Navier-Stokes equation-based simula
tion (3D SRANS) is employed to model the PLWE (Section 3.1). Gener
ally, the input and output data are inhomogeneous in terms of 
magnitude and units. This necessitates the next major task – data pre
processing, which eliminates the differences in design parameters and 
outputs. This study employs normalization and standardization as 
techniques for data preprocessing of the input and output (Section 4.3). 

In the next step, the preprocessed data are subjected to data reduction, 
which extracts all important variances in the output space using a 
smaller dataset than the database. Principal Component Analysis (PCA) 
is employed for data reduction in this study (Section 4.3). Nevertheless, 
any of the following techniques could have served the same purpose: low 
variance filter, high correlation filter, random forests/ensemble trees, 
backward feature elimination, forward feature construction [90]. The 
emulator is developed as a stochastic model based on the Gaussian 
Process (GP) to predict the mean wind speeds (Section 4.4). 
Hyper-parameters, whose individual values can be determined using 
prior knowledge of their probability distributions and predefined upper 
and lower bounds, form an essential part of the GP-based emulator [64]. 
In the current study, an optimization-based technique is used to estimate 
the hyper-parameters (Section 4.5). Unlike the method followed by 
Ref. [64]; the novel method does not require prior knowledge of the 
properties of the hyper-parameters. It is therefore advantageous for 
determining a large set of hyper-parameters, whose probability distri
butions are difficult to be determined in advance. In the last step, the 
accuracy of the GP-based emulator is estimated by conducting perfor
mance evaluation and sensitivity analysis. The performance evaluation 
has qualitative and quantitative components. In the qualitative analysis, 
visual differences are identified between the outputs of the emulator and 
the high-quality CFD simulations (Section 5.1). They are then quantified 
using statistical indices (Section 5.2) and validation metrics (Section 
5.3). The sensitivity analysis ensures that subjective decisions, such as 
the size of the database and degree of data reduction made during 
emulator development, do not affect the emulator’s predictions (Section 
6). If the results of the performance evaluation and sensitivity analysis 
are satisfactory, the emulator development process is complete, and the 
emulator is ready for use. 

3. CFD simulation 

The CFD simulation of this study is carried out using the commercial 
software package ANSYS FLUENT v.19.2 using three-dimensional 
steady-state Reynolds-averaged Navier-Stokes (3D SRANS) equations 
and a 2-equation turbulence closure model. The CFD simulations serve 
two purposes: first, pedestrian-level wind speed data from the CFD 
simulations form a database based on which the GP-based emulator will 
be developed; second, they offer an independent dataset for estimating 

Fig. 1. The framework for developing the GP-based emulator.  
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the accuracy of the emulator. Before creating the database, the accuracy 
of the CFD simulations is estimated using the pedestrian-level wind 
speed data from a wind tunnel test. The selected wind tunnel test 
modeled a reduced-scale model (1:200 length scale) of a lift-up building 
with dimensions H = 600 mm × W = 150 mm × D = 100 mm and h = 30 
mm × w = 75 mm × d = 50 mm in an atmospheric boundary layer wind 
flow. The mean wind speed averages data measured at 90 points at the 
pedestrian level (10 mm in model scale) near the lift-up building using 
Irwin sensors and thermistor wind speed sensors. Complete details of the 
wind tunnel test can be found in Ref. [88,101]; and [100]. 

The same lift-up building is modeled in CFD simulation using a 
computational domain with these dimensions: length = 13H × width =
6H × height = 4H, where H is the height of the building (600 mm) 
(Fig. 3). The lift-up building is located at distances of 3H and 10H from 
the inlet and outlet, and the lateral and top boundaries are 3H away from 
the nearest building walls. The blockage ratio of this setup is 1%, which 
satisfies the maximum allowable blockage ratio of 3% as recommended 
by the best practice guidelines [30,87]. Of note is that the current study 
did not attempt to simulate the wind tunnel’s test section as the 
computational domain because the dimensions of the test section (5 m 
× 4 m) were substantial compared to the largest building model (0.15 m 

Fig. 2. (a) Schematic diagram, (b) front elevation, (c) side elevation, and (d) plan view of a lift-up building.  

Fig. 3. The dimensions of the computational domain.  
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× 0.6 m) tested in the wind tunnel. Therefore, it is reasonable to assume 
that the wind fields near the buildings are free from the influence of the 
sidewalls and ceiling of the wind tunnel, and that conditions can be 
equated to the symmetry boundary condition used for the lateral and top 
boundaries of the computational domain. The computational domain is 
discretized into small hexahedral cells using the FLUENT MESHING tool, 
such that cell sizes gradually increase from smallest near the lift-up 
building to largest near the boundaries of the computational domain 
(Fig. 4). Five prism layers are created between the ground and the 
pedestrian level (10 mm height) to improve the accuracy of modeling 
wind flow close to the ground. 

The realizable k-ε turbulence model is selected as the turbulence 
closure model because of its superior performance in modeling mean 
flows pertaining to complex structures, flows that involve rotations, 
boundary layers under strong adverse pressure gradients, and flow 
separation and recirculation (Davis et al., 2012). The profiles of mean 
wind speed (U), turbulent kinetic energy (k), and turbulent kinetic en
ergy dissipation rate (ε) shown in Fig. 5 are defined as boundary con
ditions at the inlet. The derivations of these profiles follow Eqs. (1)–(3) 
and utilize mean profiles of wind speed and turbulence intensity 
measured in the wind tunnel. 

U(z)=Uref

(
z

zref

)α

(1)  

where Uref is the reference wind speed, Uref = 7.5 ms− 1 at the reference 
height zref = 0.6 m, and α is the power-law exponent, which equals 0.12. 

k(z) = 1.5 × (I(z)U(z))2 (2)  

where I(z) is the vertical profile of the turbulence intensity measured in 
the wind tunnel. 

ε(z)=C1/2
μ k(z)

Uref

zref
α
(

z
zref

)(α− 1)

(3)  

where Cμ is a constant that equals 0.09. 
The outflow boundary conditions ∂(u, v,w, k, ε) /∂x and 

∂(u, v,w, k, ε) /∂y = 0 are applied to the outlet, and the symmetry 
boundary conditions ∂(u, v,w, k, ε) /∂y and ∂(u, v,w, k, ε) /∂z = 0 are 
assigned for the lateral and top boundaries of the computational 
domain. The ground is modeled as a rough wall with the standard wall 
function [50] and the sand-grain equivalent roughness height [18] Ks =

0.27 mm with the roughness constant Cs = 0.5. The walls of the building 
are modeled as smooth walls. The semi-implicit method for pressure 
linked equations (SIMPLE) algorithm is used for pressure-velocity 
coupling, and the pressure interpolation is of second order. 
Second-order discretization schemes are used to solve for the convection 
and viscous terms in the governing equations. The results of the CFD 
simulations are considered to have converged when the residuals of 
iteration have reached these values: continuity – 10− 6, x-, y-, 

z-momentum – 10− 7, k – 10− 7, and ε – 10− 7, and show no further 
reduction as the number of iterations increased. 

A grid sensitivity test is conducted to select a suitable grid from 
Coarse, Intermediate, and Fine grids for the CFD simulation. The Coarse 
grid has 496,556 cells with a minimum cell size of 10 mm, while the 
Intermediate and Fine grids have 1,061,679 and 3,896,841 cells and 
minimum cell sizes of 8 mm and 5 mm, respectively. The grid inde
pendence results are assessed to calculate root-mean-square error 
(RSME) (Eq. (4)) using the K values at corresponding locations in any 
two grids. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
K1,i − K2,i

)2
√

(4)  

where K1,I, and K2,i are normalized wind speed ratios at similar locations 
in grid 1 and 2. The normalized mean wind speed ratio K is defined as: 

Normalized mean wind speed ratio (K)=
Ui,2m

Ui,2m,ambient
(5)  

where U2m is mean wind speed at location i at a 2 m height (pedestrian 
level) and Ui,2m, ambient is the mean wind speed at the same location and 
height but in the absence of the building. 

Fig. 6(a) shows the locations where K values are compared, and 
Fig. 6(b)–(d) compare the K values of the three grids. The differences in 
K values of the Coarse-Intermediate and the Corse-Fine grids are more 
than ±20%, and the corresponding RMSE values are higher than 0.2621 
and 0.2183, respectively. Conversely, the Fine and Intermediate grids 
have similar K values over a wide range where the difference is less than 
±10%, and the RSME value is 0.0837. Similar K values and smaller 
RMSE imply that the Intermediate grid can produce grid-independent 
results. Taking consideration of the accuracy and smaller computa
tional cost, this study uses the Intermediate grid for the rest of the CFD 
simulation. 

Fig. 7 shows the comparison of the pedestrian-level wind speeds 
between the CFD simulation and wind tunnel data. The wind speeds at 
the pedestrian-level (z = 10 mm) are extracted at 75 mm intervals on 11 
horizontal lines within 375 mm distances upstream and downstream of 
the building. The CFD and wind tunnel test data show good agreement in 
the area with high wind speeds (K ≥ 1), where their discrepancy is less 
than 15%. However, the discrepancy exceeds 15% downstream of the 
building, particularly in the wake of the building where wind speeds are 
low (K ≤ 1). CFD simulation tends to underpredict the wind speeds in 
the wake of the building because 3D SRANS cannot reproduce the vortex 
shedding that occurs behind the building, consequently underestimating 
the kinetic energy in the wake and overestimation of the wake of the 
building [12,87]. Barring this shortcoming, 3D SRANS is sufficiently 
accurate and computationally competent to build the pedestrian-level 
wind speed database for developing and validating the GP-based 
emulator. 

Fig. 4. The grid arrangement in the computational domain and around the lift-up building.  
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4. Emulator development 

4.1. Design space and input parameters 

The eight parameters of the lift-up design result in np = 8 unique 
simulation settings. Each input has its upper and lower bounds, which 
are similar to the largest and smallest dimensions of the lift-up buildings 
tested in the wind tunnel by Refs. [88,101]; and [100] (Table 1). 

A total of 150 CFD simulations (r = 150) are conducted, covering the 
upper and lower bounds of the eight parameters, to create the database 
(Fig. 8). The settings of each simulation follow a hybrid design of 
experiment (DoE) technique which combines Latin Hypercube Sampling 

(LHS) and random generation of settings. The database is subsequently 
divided into various sizes of design space ranging from 10 to 150 sim
ulations for training and testing the emulator. The following subsections 
detail the development of the emulator, and its results based on a design 
space of 50 simulations (r = 50). The impact of the size of the design 
space on emulator performance is discussed in detail in the sensitivity 
analysis (Section 6). 

4.2. Output space 

The output space contains the quantities of interest stored in an r × nq 
matrix Wraw, where nq denotes the number of quantities of interest, i.e., 

Fig. 5. Inflow boundary conditions of CFD simulations (a) mean wind speed profile (U), (b) turbulent kinetic energy (k) profile, (c) turbulent kinetic energy 
dissipation (ε) profile. 

Fig. 6. (a) 194 locations of K value extraction (in model scale), and the comparison of K value (b) Coarse – Intermediate grids, (c) Coarse-Fine grids, (d) Fine- 
Intermediate grids. 
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Wraw has r rows of nq quantities of interest extracted from an r number of 
CFD simulations. In this study, nq columns consist of u and v components 
of mean wind speed at the pedestrian level extracted from 194 points in 
a 240 m × 150 m area around the lift-up building (Fig. 6(a)). The 
parameter settings are stored in an r × np matrix Praw, where each row 
corresponds to the outputs in Wraw. 

4.3. Data preprocessing: standardization, normalization, and data 
reduction 

Data preprocessing increases the efficiency of the emulator by 
removing differences in units and order of magnitude and removes any 

bias in the input space. Data scaling, through normalization and stan
dardization, is employed to preprocessing the input and output spaces. 
Normalization is applied to the input space to map the data onto the 
interval [0, 1], as in Eq. (6): 

P[ :, j] =
Praw[ :, j] − pmin,j

pmax,j − pmin,j
(6)  

where Praw[:,j] is the vector of the unscaled values of the parameter j. 
pmin,j and pmax,j are the respective minimum and maximum of Praw[:,j]. 

Standardization scales the output space such that it has zero mean 
and unit variance. Standardization follows Eq. (7): 

W[ :, j] =
Wraw[ :, j] − wavg,j

wstd,j
(7)  

where Wraw[:, j] is the vector of the unscaled values of the quantity of 
interest j. wavg,j, and wstd,j are the average and standard deviations of 
Wraw[:, j], respectively. 

Principal Component Analysis (PCA) is employed for data reduction 
in this study. PCA decomposes W[r, nq] into a score matrix C[r, nq] of the 
principal components and a loading matrix V[nq, nq], whose columns are 
the eigenvectors of WTW such that W = CVT. PCA rearranges the orig
inal dataset by variance in descending order, i.e., the first principal 
component or the first column of C represents the largest variance of the 

Fig. 7. Comparison of normalized wind speed (K) at the pedestrian level in the wind tunnel test and CFD simulation (building not to scale).  

Table 1 
Design parameters and their upper and lower bounds.   

Design parameter Upper and lower bounds 

Building Height (H) 45 m < H < 120 m 
Width (W) 30 m < W < 90 m 

Center core Height (h) 3 m < h < 9 m 
Width (w) 9 m < w < W 
Depth (d) 6 m < d < min (20 m, w) 
v1 = t/d 0 < v1 < 1/3 
v2 = t/a − 1 < v2 < 0 

Orientation θ 0◦ < θ < 45◦

Fig. 8. Distributions of six design parameters: H, W, h, w, v1, and v2 of training (open markers) and evaluation (filled markers) datasets in the design space.  
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dataset. Fig. 9 shows the contribution of each principal component to 
the variance of the dataset, of which more than 98% is captured by the 
first 25 principal components (98.11%). As shown in Fig. 8, the first 
principal component reproduces more than 48.2% of the variance of the 
original dataset, and the contribution of the first 10 principal compo
nents is more than 91.79%. By using the first 25 principal components, 
the GP-based emulator achieves (388–25)/388 = 93.56% data reduction 
without losing more than 2% of the original dataset. To limit this loss to 
1% (i.e., covering 99% of the variance), the emulator needs to use the 
first 31 principal components. This leads to little information gain 
(0.91%) but a higher computation cost. Taking this extra computation 
cost into consideration, the study develops the emulator using the first 
25 principal components. The impact of the degree of data reduction is 
assessed in a sensitivity analysis (Section 6). 

The data reduction limits the number of PCA to nt < nq but in
troduces a truncation error to the emulator [81]. With the data reduc
tion and the truncation error, W can be rearranged as: 

W= ĈV̂
T
+ T̂ (8)  

where Ĉ is an r × nt truncated score matrix, V̂ is an nq × nt truncated 
loading matrix, and T̂ is an r × nq matrix of the truncation error. 

4.4. The emulator 

The objective of the emulator is to predict an output yem based on an 
unknown function of inputs, f(x), to estimate any uncertainty, ε, asso
ciated with the prediction. The most straightforward method is Bayesian 
Linear Regression (BLR) [14]. This process can be mathematically 
expressed as: 

yem =wxT + ε = f (x) + ε (9)  

where yem can be expressed as a product of the input x and weight 
matrix wT. Here, the unknown function f(x) can be anything from a 
simple linear regression function to a specific high-order, nonlinear 
regression. However, the selected function should be flexible enough to 
capture underlying trends in the input rather than fitting data to mimic 
the simulator. To deal with these highly nonlinear problems, an 
approach based on the BLR and kernel method (nonlinear trans
formation) is adopted for the current study. Inspired by the study of 
Moonen & Allegrini [64]; this study has selected the Gaussian Process 
(GP) as the stochastic process to determine the unknown function f(x). 
The GP defines a Gaussian-type probability distribution for each func
tion value, and its finite collection of function values is a multivariate 

normal distribution. Owing to these inherent characteristics, GP can be 
specified by a mean function and a covariance function. 

Since the current study adopts a data reduction approach, the GPs 
can be used to estimate the wind speed by constructing a statistic model 
as shown in Eqs. (10) and (11). 

w̃em = c̃V̂
T
+ t̃ (10)  

with c̃ = [c̃1, c̃2,…, c̃nt ] and 

c̃i =GP

⎛

⎝μc̃i ,
∑̃ci

⎞

⎠ (11)  

where w̃em is an r × nq matrix of the emulator’s results; ̃ci is the ith (i = 1, 
2, …, nt) independent GP with mean function μc̃i and covariance func

tion 
∑c̃i ; t̃ represents the error term to account for the approximation 

and truncation errors of the emulator, which will be in the estimation of 

c̃i as a zero-mean normal distribution with finite variance N(0,Σẽi ). In 

this study, Σẽi is estimated to be σiIr, and the estimation of σi is similar to 
other parameters, as discussed in Section 4.5. 

The term μc̃i is the mean value of GP, about which variations occur. 

The covariance function (
∑c̃i ) denotes the correlation of different 

simulation runs, and it is assumed to be in the form of: 

∑̃ci

= hi
a

∏np

j=1
exp

(
− lij

(
pkj − plj

)2) (12)  

where ha and lij are parameters that need to be estimated; pkj(plj) is the 
jth setting of the simulator run k(l). The selected covariance function 
may lead to a large or small value depending on the spatial correlation 
between the two sets of parameter settings for simulation runs k and l. 
The parameter lij controls the correlation decay rate and has values 
between 0 and infinity (li,j ∈ [0, + ∞]). The value of lij is determined 
using Eq. (13). 

lij = − 4 ln
(
ρij
)

(13)  

where ρij ∈ [0,1] and its values close to 1 indicate the weight ith prin
cipal component strongly depends on setting j. The extreme values of ρij, 
i.e., 0 and 1, indicate rapid changes in the emulator predictions and 
uncertainty, and irrelevant settings that exhibit no correlation with 
predictions, respectively. 

To complete the emulator development, the values of many model 

Fig. 9. The individual and cumulative contributions of principal components to the original dataset (r = 50).  
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parameters must be determined through model calibration. These pa
rameters, commonly known as hyper-parameters, consist of one ampli
tude length-scale hyper-parameter (ha) and np scaling parameters ρij for 
each of the principal components and a precision parameter that con
trols the variance of the error (σi). The total number of hyper-parameters 
of the proposed emulator is 250 as determined by the equation nt(2 +
np). It should be noted that the number of hyper-parameters in the 
current study (250) is significantly higher than that (16) of [64]. 
Determining their prior distributions is therefore a daunting task, as 
discussed in the following section. 

4.5. Calibration of hyper-parameters 

Moonen & Allegrini [64] used the Bayesian concept to calibrate the 
16 hyper-parameters by multiplying their joint prior distributions and 
likelihood. However, this method cannot be adopted for the current 
study because of the large number of hyper-parameters. Defining their 
prior distribution would be impractical. Alternatively, the marginal 
likelihood method is employed in this study because it does not require 
knowledge of the prior distributions of the hyper-parameters. Given a 
specific group of hyper-parameters, the marginal likelihood assumes a 
multi-variable normal distribution of the hyper-parameters (Williams 
and Rasmussen 2006) and can be calculated as: 

ML
(

c̃i

⃒
⃒
⃒
⃒P, hi

)

=
1

̅̅̅̅̅̅̅̅̅̅̅
(2π)r√ ⃒

⃒
⃒
∑c̃i |

1
2

e−

(
c̃i − μ

)(∑c̃i
)− 1

(
c̃i − μ

)

2 (14)  

where hi is the hyper-parameters for the covariance of the ith set of 
principal components c̃i, and P is the parameter matrix. μ is the mean 
value vector of principle components. Because of data standardization, μ 
is equal to zero. 

For ease of the mathematical operation, Eq. (14) is expressed in 
natural log, as shown in Eq. (15). 

logML
(

c̃i

⃒
⃒
⃒
⃒P,h

i
)

= −
1
2
c̃i

⎛

⎝
∑̃ci

⎞

⎠

− 1

c̃i −
1
2

log

⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑̃ci

⃒
⃒
⃒
⃒
⃒
⃒
⃒

−
r
2

log 2 π (15) 

Considering the noise of the model, 

logML
(

c̃i

⃒
⃒
⃒
⃒P,h

i
)

= −
1
2
c̃i

⎛

⎝
∑̃ci

+ σiIr

⎞

⎠

− 1

c̃i −
1
2

log

⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑̃ci

+ σiI

⃒
⃒
⃒
⃒
⃒
⃒
⃒

−
r
2

log 2 π

(16) 

In Eq. (16), 1
2c̃

T
i (
∑c̃i + σiIr)

− 1c̃i measures the data fit condition, 
1
2 log

⃒
⃒
⃒
∑c̃i +σiI

⃒
⃒
⃒ is the complexity penalty, r

2 log 2 π is a normalization 

constant, which can be neglected when maximizing the marginal like
lihood (Williams and Rasmussen 2006). The remnant part, which only 

depends on 
∑c̃i , is subsequently determined by the hyper-parameters. It 

should be noted that the current study does not determine the value of 
each hyper-parameter separately, but estimates their values as a certain 
combination to obtain the highest logarithmic marginal likelihood. This 
concept deduces the calculation process of hyper-parameters into opti
mization, which estimates the global optimal set of hyper-parameters to 
maximize the log marginal likelihood. 

The Genetic Algorithm (GA) is used as the optimization algorithm 
because of its ability to determine the global optimum solution without 
being trapped in local maxima. This superior ability of GA is attributed 
to three parameters: selection, crossover, and mutation, which enable it 
to produce offspring with excellent performance. The process starts by 
generating an initial population containing different hyper-parameters. 
After establishing the initial population in the binary system, GA creates 
generations using mutation and crossover to maximize the log marginal 

likelihood. The optimum numbers of mutation and crossover are esti
mated by trial and error, and the size of the population and the 
maximum number of iterations are set as 300 and 150, respectively. The 
optimal settings of the hyper-parameters are determined as the best- 
fitted set of offspring at the maximum number of iterations or the last 
iteration, after which point the value of the log marginal likelihood does 
not change even when the number of iterations continues to increase. 
The reliability of the optimization is ensured by running the optimiza
tion four times and obtaining identical optimal solutions across the runs. 

4.6. Posterior distribution 

With the hyper-parameters now known, the emulator can predict the 
posterior distribution of the object function. The construction of the 
covariance matrix of ith principal components can be done as follows: 

∑c̃i

*
= hi

a

∏np

j=1
exp

(
− lij

(
pt

kj − pp
lj

)2)
(17)  

where pt
kj represents the jth parameter in the kth simulation in the 

training database, and pp
ij represents the jth parameter in the lth setting 

of the parameters, which are required to predict the performance. 

⎡

⎣
c̃t

i

c̃p
i

⎤

⎦̃N

⎡

⎢
⎢
⎢
⎣

0
0 ,

∑̃ci

+ σiI
∑c̃i

*
⎛

⎝
∑c̃i

*

⎞

⎠

T
∑c̃i

**

⎤

⎥
⎥
⎥
⎦

(18)  

where 
∑c̃i

* is the covariance matrix of the training and prediction data, 
in which the columns represent the training parameters, and the rows 
are the settings that are supposed to be predicted. σiIr represents the r ×
r noise matrix. 

The prediction of the principal components should be: 

c̃p
i =

⎛

⎝
∑c̃i

*

⎞

⎠

T⎛

⎝
∑̃ci

+ σiI

⎞

⎠

− 1

c̃t
i (19) 

Then, the principal components can be transformed back to the 
standardized wind speed using the following equation:  

wp
em = c̃p V̂

T
(20)  

where c̃p consists of nt predicted principal components: 

c̃p
=
(

cp
1, c

p
2,…, cp

nt

)
(21) 

Next, the wind speed at location j can be estimated by: 

Wprediction( :, j)=wp
em( :, j)wstd,j + wavg,j (22)  

5. Emulator evaluation 

The accuracy of the proposed emulator is evaluated qualitatively and 
quantitatively in the following subsections. The training data set (150 
CFD simulations) and an evaluation dataset (nine CFD simulations) are 
subjected to qualitative and quantitative analyses. The evaluation 
dataset has lift-up designs that are completely different from the training 
dataset as shown in Fig. 8 and Table A1 in Appendix A. The qualitative 
analysis compares the velocity fields near the lift-up buildings obtained 
from the CFD simulations and as predicted by the emulator to identify 
any visible differences between the two wind fields. The quantitative 
analysis estimates the similarity between the two velocity fields by 
calculating statistical indices and validation metrics. 
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5.1. Qualitative evaluation 

Fig. 10 shows four cases of the wind field near a lift-up building, two 
of which are modeled by CFD simulations, and the other two are pre
dicted by the GP-based emulator: T1 and T2 stem from the training data 
of the emulator; E1 and E2 are from the independent dataset. These wind 
fields are carefully selected to represent the influence of the lift-up de
signs on the surroundings as the selected buildings have different 
building dimensions and center core designs. To identify the visible 
differences in the wind fields, the standard deviation of the emulator 
(3rd row) and absolute difference in wind speeds of the CFD simulations 
and the emulator (4th row) are shown in Fig. 10. The visual inspection 
suggests that the emulator captures all prominent flow features such as 
upstream and downstream low wind speed zones, corner streams as well 
as wind direction near the lift-up building and predicts wind fields that 
are similar to those of the CFD simulations. The standard deviation of the 
emulator (Emulator (std)) is considerably small (<0.5 m/s) over a large 
portion of the interrogated area even though some large discrepancies 
between the emulator and CFD predictions are observed locally in the 
evaluation cases. It should be noted that the absolute difference between 
the emulator and CFD predictions coincides with Emulator (std), thus 
the latter is a reliable indicator for estimating the uncertainty in the 
emulator predictions. It is noteworthy that the emulator on a typical 
desktop computer (Intel® Core™ i7-6700k CPU @ 4.00 GHz with 32 GB 
RAM and Windows10 64-bit operating system) requires about 0.02 s to 
predict the wind field near a lift-up building, while its CFD counterpart 
entails six CPU hours on the same desktop computer. Therefore, the 
emulator is faster by a factor of 107 than the CFD simulations. 

5.2. Statistical analysis 

Fig. 11 shows the comparison of longitudinal and lateral wind speeds 
(u and v) of the CFD simulation and the emulator for the training and 
evaluation datasets. In each case, u and v are measured in CFD simula
tion and predicted in the emulator at the same locations near the lift-up 
buildings and are paired up for comparison. The distribution of data 
points of the two datasets is approximately symmetrical about the di
agonal line, showing a perfect match between the CFD-simulated and 
emulator-predicted wind speeds. The symmetric distribution of the data 
points indicates the absence of systematic error in the emulator’s pre
dictions in both the training and evaluation datasets. Moreover, the 
similar distributions of data clusters in the two datasets prove that the 
emulator has successfully learned from the training dataset to predict 
wind speeds in the evaluation cases. The accuracy of the emulator is 
more than 91% of the training and 89% of the evaluation data, within a 
factor of 2 of the corresponding CFD simulation data. 

5.3. Validation metrics 

The similarity between the emulator predictions and CFD simulation, 
i.e., the correlation between the two sets of data and degree of deviation 
between the emulator and CFD simulation results are estimated using 
validation metrics proposed by COST732 [77]. Four indices, namely, 
Factor of 2 of observations (FAC2), Normalized mean square error 
(NMSE), Fractional bias (FB), and Pearson correlation coefficient (R) are 
calculated as per Eqs. 23–26: 

Fig. 10. Comparison of pedestrian-level wind fields modeled by CFD simulation (1st row), predicted by the emulator (2nd row), prediction uncertainty of the 
emulator (3rd row), and absolute difference in wind speeds of CFD simulation and the emulator (4th row). 
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FAC2=
N
n
=

1
n
∑n

i=1
Ni with Ni =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for 0.5 ≤
CFDi

Emui
≤ 2

1 for Emui ≤ W and CFDi ≤ W

0 else
(23)  

where Ni is the number of data points that satisfy the specified criteria, n 
is the total number of data points, and W is a threshold wind speed. 

NMSE =
〈(Emu − CFD)

2〉
〈Emu〉〈CFD〉

(24) 

Here, the angular bracket denotes the average over all data points. 

FB=
〈Emu〉 − 〈CFD〉

0.5(〈Emu〉 + 〈CFD〉)
(25)  

R=

∑n
i=1(CFDi − 〈CFD〉)(Emui − 〈Emu〉)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(CFDi − 〈CFD〉)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Emui − 〈Emu〉)2
√ (26) 

The four indices serve different purposes in the model evaluation. 
For example, FAC2 evaluates the overall emulator performance, while 
NMSE estimates the average discrepancy between CFD simulation and 
emulator. FB is an indicator of systematic bias between modeled and 
predicted wind speeds, and R measures the degree of correlation be
tween the wind speeds from the CFD simulations and the emulator. In 
addition to these indications, threshold values are defined for the four 
indices to estimate whether the emulator performance is acceptable or 
not. This study adopts the following thresholds: FAC2 > 0.5, − 0.3 < FB 
< 0.3, NMSE <1.5, and R > 0.8 as recommended by Chang and Hanna 
[104], Goricsán et al. [105] and Moonen and Allegrini [64]. 

Table 2 shows the excellent performance of the emulator in pre
dicting the mean wind speeds in both the training and evaluation 
datasets. For instance, the validation metrics FAC2 and R are close to 1, 
and NMSE and FB are close to 0, indicating great reproductivity of the 
emulator. The validation metrics of the evaluation dataset are inferior 
compared to the training dataset but still confirm the competitiveness of 
the emulator in predicting pedestrian-level mean wind speeds near lift- 
up buildings. For example, more than 89% of the emulator’s prediction 

is within a factor of 2 of the simulation results with a high correlation of 
0.969. The emulator has no bias towards over- or under-estimating wind 
speeds, as indicated by the near-zero FB and NMSE values. Based on the 
selected acceptance criteria of the validation metrics, it can be 
concluded that the proposed GP-based emulator is an excellent substi
tute for CFD simulation in modeling PLWEs. 

6. Sensitivity analysis 

The sensitivity analysis investigates how two subjective decisions – 
the number of principal components, and the size of the training dataset 
– made during emulator development impact the accuracy of the emu
lator’s predictions. It is noteworthy that, except for the number of 
principal components and the size of the training dataset, all calcula
tions and calibration of the model parameters in the sensitivity analysis 
are similar to those described in Section 5. 

6.1. Number of principal components 

The data reduction using PCA entails a truncation error and induces 
uncertainty in the emulator predictions. It is prudent to assume that 
large data reduction results in a computationally efficient emulator but 
causes high uncertainty in the emulator’s predictions. However, it fails 
to determine the tradeoff point where sufficiently large data reduction 
can be achieved without compromising the accuracy of the emulator. 

Table 3 shows the validation metrics calculated for the emulator, 
which is developed using five different values of nt: 3, 5, 9, 30, and 50 in 
addition to the initial selection of nt = 25. The validation metrics show a 
steady improvement of prediction accuracy for both the training and 
evaluation datasets as nt increases from 3 to 25, indicating high accuracy 
of the emulator’s prediction for those with a sufficiently large number of 
nt. This trend is plausible as the number of nt defines the set of basic 
functions that represent the output space. If the number of basic func
tions is low, then the emulator cannot reproduce the simulator’s re
sponses, resulting in considerable deviations in validation metrics from 
their ideal values such as in the case nt = 3. However, increasing nt 
enlarges the size of the dataset handled by the emulator, and the number 
of hyper-parameters of the emulator. Moreover, the increase of nt does 
not significantly improve the emulator’s performance, as can be seen 

Fig. 11. Comparison of wind speeds (u and v) by the CFD simulation and the emulator for (a) training dataset, and (b) evaluation dataset.  

Table 2 
Validation metrics calculated for training and evaluation datasets for the emulator with settings (nt = 25, r = 50).   

Training dataset Evaluation dataset 

Metric FAC2 NMSE FB R FAC2 NMSE FB R 
Aim 1 0 0 1 1 0 0 1 
Range >0.5 <1.5 [-0.3,0.3] >0.8 >0.5 <1.5 [-0.3,0.3] >0.8 
Calculated 0.9104 0.0582 0.0186 0.9751 0.8910 0.0781 0.0600 0.9690  
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from the approximately similar validation metrics between the cases 
with nt = 25, 30, and 50. By considering the accuracy and computational 
cost, this study chose nt = 25 for the emulator developed in this study. 

6.2. Number of training datasets 

Table 4 shows the calculated validation metrics for the emulator 
developed using various sizes of datasets. It should be noted that each 
dataset is subjected to 98% data reduction via Principal Component 
Analysis, and all other emulator parameters are the same as the original 
emulator. The validation metrics in Table 4 show improvement as the 
size of the dataset increases, and this improvement is more noticeable 
than that obtained from increasing py in Section 6.1. The comparison of 
validation metrics in Tables 3 and 4 indicates that the accuracy of the 
emulator’s predictions strongly depends on the size of the training 
dataset, rather than on the degree of data reduction. If the training 
dataset is too small such as in the case r = 3, it cannot map the variations 
in the simulator outputs, resulting in significant deterioration of the 
accuracy of the emulator’s prediction. With the increase of the size of the 
dataset, the emulator improves the prediction accuracy in both the 
training and evaluation data sets, because more data points warrant 
capturing precisely the underlying trends in input and output spaces 
precisely. However, this gain is capped by the computational cost of 
running additional simulations. In the current study, each CFD simula
tion requires six CPU hours on a typical desktop computer. Given the 
computational cost and the accuracy of the emulator beyond the size of 
the dataset larger than 50 (r > 50), the current study limits the size of the 
training data set to r = 50, beyond which the rate of improvement of the 
validation metrics slows down considerably. 

7. Practical significance 

The proposed GP-based emulator can be used for practical purposes 
in various branches of engineering. The followings are three examples 
particularly related to the applications in environmental wind 
engineering.  

• The emulator can be employed to predict the micro-wind climate in 
fully-developed urban areas based on the meteorological wind speed 
data from the nearest anemometer station. Based on the magnitude 

and direction of wind velocities, the emulator can quickly and 
accurately predict wind speeds at hundreds of locations in the urban 
area. The predicted wind speed data can be used for issuing safety 
warnings of the occurrence of high wind speeds, operating safety 
measures such as wind barriers at particular locations, and managing 
building-mounted wind turbines in the area [64]. have demonstrated 
a similar application of a GP-based emulator for predicting wind 
speeds in an idealized urban canyon.  

• Because the emulator is a fully computerized program, it can be 
easily integrated into other computer programs and computer-based 
processes. Optimization is such a process, in which the emulator can 
serve as a surrogate model to predict the values of objective functions 
in each iteration. The emulator can also perform calculations based 
on the input data received from another computer program. For 
example, the proposed GP-based emulator can be used to predict the 
thermal comfort of pedestrians passing by lift-up buildings based on 
the data from the online calculator of the Universal Thermal Climate 
Index (http://www.utci.org/utcineu/utcineu.php).  

• The emulator’s ability to handle many input and output parameters 
comes in handy in managing the wind environment in a site. Such a 
tool can predict the areas with wind discomfort, wind danger, out
door thermal discomfort due to lack of wind circulation in the site 
based on daily and extreme meteorological data (e.g. 10-min wind 
speed and typhoon track data), respectively. Besides, it can be used 
to manage window opening schedules of buildings and predict con
centration levels of stack emissions on the site. 

8. Discussion 

The current study demonstrates the development of a computation
ally economical GP-based emulator for assessing the PLWE near an 
isolated building with an unconventional configuration. Although the 
GP-based emulator shows promise in modeling the PLWE, the following 
facets should be considered during its development. 

• The developed emulator is indeed quicker by a factor of 107 in pre
dicting the PLWE compared with its CFD simulation counterpart. 
With the time required for the one-time emulator calibration, the 
speedup factor decreases to 102, but the emulator is still more than 
400 times faster than the CFD simulation. 

Table 3 
Validation metrics calculated for the training and evaluation datasets for the emulator with settings r = 50 and various numbers of nt.   

Training dataset Evaluation dataset 

Metric FAC2 NMSE FB R FAC2 NMSE FB R 
Aim 1 0 0 1 1 0 0 1 
Range >0.5 <1.5 [-0.3,0.3] >0.8 >0.5 <1.5 [-0.3,0.3] >0.8 
nt = 3 0.8916 0.0865 0.0180 0.9627 0.8807 0.0917 0.0672 0.9637 
nt = 5 0.9011 0.0696 0.0223 0.9703 0.8861 0.0871 0.0618 0.9652 
nt = 9 0.9064 0.0625 0.0198 0.9733 0.8874 0.0795 0.0615 0.9685 
nt = 25 0.9104 0.0582 0.0186 0.9751 0.8910 0.0781 0.0600 0.9690 
nt = 30 0.9110 0.0578 0.0185 0.9753 0.8933 0.0785 0.0598 0.9688 
nt = 50 0.9110 0.0576 0.0186 0.9753 0.8920 0.0785 0.0598 0.9688  

Table 4 
Validation metrics calculated for the training and evaluation datasets for the emulator with various sizes of datasets.   

Training dataset Evaluation dataset 

Metric FAC2 NMSE FB R FAC2 NMSE FB R 
Aim 1 0 0 1 1 0 0 1 
Range >0.5 <1.5 [-0.3,0.3] >0.8 >0.5 <1.5 [-0.3,0.3] >0.8 
r = 5 0.8110 0.1780 0.0046 0.9242 0.7912 0.2390 0.1003 0.9038 
r = 10 0.8726 0.1067 0.0027 0.9542 0.8428 0.1525 0.0821 0.9380 
r = 15 0.8875 0.0981 0.0020 0.9578 0.8678 0.1327 0.0591 0.9448 
r = 50 0.9105 0.0599 0.0018 0.9744 0.8920 0.0837 0.0599 0.9666 
r = 100 0.9312 0.0378 0.0012 0.9838 0.8984 0.0703 0.0531 0.9718 
r = 150 0.9447 0.0196 0.0011 0.9917 0.8995 0.0693 0.0512 0.9722  
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• The development of the emulator requires a substantial number of 
hours as its training and testing datasets are based on dozens or even 
hundreds of simulations. Therefore, the GP-based emulator is 
particularly beneficial for the cases, which require many simulations 
with similar input conditions. For instance, a GP-based emulator can 
be efficient in evaluating the PLWE in public housing estates in Hong 
Kong, where the residential high-rise buildings have standard 
building designs [92]. The emulator is also beneficial for assessing 
indoor and outdoor wind circulation near prefabricated or modular 
buildings, of which the designs have slight differences. Another 
strategy is to use a database based on existing experimental and 
numerical simulation data for emulator development as described by 
Ref. [36,38].  

• The emulator’s performance and accuracy can be significantly 
affected by the subjective decisions made in the selection of inputs, 
outputs, the size of training datasets, and the number of principal 
components as well as techniques used for data reduction and esti
mating hyper-parameters. Although this study has attempted to 
minimize the influence of subjective decisions by conducting a 
sensitivity analysis on the emulator predictions, another set of pa
rameters could develop an emulator with considerably different 
performance and accuracy to the one proposed in this study.  

• Similar to many other surrogate models, the proposed GP-based 
emulator has some limitations due to its kernel function, in
efficiency in performing calculations in high-dimensional spaces, 
inability to perform the non-parametric calculation. For example 
Alamaniotis et al. [3], tested four kernel functions: the Matérn, 
Neural Net, Gaussian, and Linear kernels for a GP-based regression 
model and found some dependencies of the output on the selected 
kernel function. Therefore, the results of the proposed GP-based 
emulator may depend on its kernel function – the squared expo
nential kernel. To minimize such a dependency, it is prudent to test a 
few other kernel functions such as rational quadratic, and Periodic 
kernels for the emulator. It is a well-observed fact that the Gaussian 
process results in high computational cost in handling large datasets 
[7]. This shortcoming can be minimized using the sparse GP method, 
which reduces the size of the training dataset by intelligently 
selecting a subset of the training dataset – the active set – for the 
calculation [91]. Because the Gaussian process is not 
non-parametric, it requires loading the whole training dataset to 
manipulate the kernel function before each calculation. This is a 
drawback of the Gaussian process compared to ANN, which can store 
all parameters in it after the first calculation. 

9. Concluding remarks 

This study transcends the knowledge of capacity, performance, and 

accuracy of GP-based emulators that can be employed for typical wind 
engineering applications. The knowledge is gained through developing a 
GP-based emulator to predict complex flow features near an isolated 
building with an unconventional building configuration. The develop
ment process indicates that the GP-based emulator can handle many 
input parameters, large datasets, and the possibility of data reduction 
using PCA for efficient computation. Furthermore, a novel technique 
based on optimization has been proposed to estimate 250 hyper- 
parameters of the GP-based emulator. The proposed technique is ad
vantageous because it does not require prior knowledge of the proba
bility distributions and lower and upper bounds of the individual hyper- 
parameters and is less vulnerable to any subjective decisions made on 
selecting the lower and upper bounds of the hyper-parameters. The ac
curacy of the emulator has been estimated qualitatively as well as 
quantitatively with respect to CFD simulations. The performance eval
uation reveals good agreement between the emulator’s results and the 
CFD simulations, and the former shows no systematic bias, great 
reproductivity, and high prediction accuracy. The emulator is quicker by 
a factor of 107 in mimicking the PLWE near an isolated building, 
compared with its counterpart, which needs more than six CPU hours on 
a typical desktop computer (Intel® Core™ i7-6700k CPU @ 4.00 GHz 
with 32 GB RAM and Windows10 64-bit operating system). 

Although the performance of the proposed GP-based emulator is 
promising, it is prudent to further explore its compatibility in model 
coupling, for example, as a surrogate model in optimization (see 
Ref. [27,28,93]) and compare its accuracy with emulators developed 
based on other techniques such as Artificial Neural Network (ANN), 
Polynomial Chaos Expansion, or Support Vector Regression (SVR). 
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APPENDIX A 

Table A.1 
Dimensions of nine lift-up buildings of the evaluation dataset.  

Building H (m) W (m) h (m) w (m) d (m) v1 v2 θ (deg) 

1 86.934 89.399 8.483 45.667 8.497 0.252 − 0.167 40.454 
2 109.178 62.345 3.625 62.099 11.022 0.013 − 0.119 3.182 
3 71.002 72.445 7.473 27.865 6.786 0.026 − 0.228 10.910 
4 78.517 90.000 7.425 33.158 13.295 0.126 − 0.382 2.272 
5 94.749 57.896 6.583 12.954 8.918 0.146 − 0.153 40.455 
6 69.800 75.812 4.792 69.474 18.681 0.239 − 0.125 8.636 
7 112.485 79.178 3.806 16.660 15.455 0.263 − 0.162 4.091 
8 56.423 61.623 8.759 12.578 13.267 0.262 − 0.786 12.727 
9 66.042 57.415 4.443 19.849 19.214 0.229 − 0.322 30.455  
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[80] J. Sousa, C. García-Sánchez, C. Gorlé, Improving urban flow predictions through 
data assimilation, Build. Environ. 132 (2018) 282–290. 

[81] J. Spiegelberg, J. Rusz, Can we use PCA to detect small signals in noisy data? 
Ultramicroscopy 172 (2017) 40–46. 

[82] J. Sreekanth, B. Datta, Comparative evaluation of genetic programming and 
neural network as potential surrogate models for coastal aquifer management, 
Water Resour. Manag. 25 (13) (2011) 3201–3218. 

[83] T. Stathopoulos, Introduction to wind engineering, wind structure, wind-building 
interaction, in: Wind Effects on Buildings and Design of Wind-Sensitive 
Structures, Springer, Vienna, 2007, pp. 1–30. 

[84] T. Stathopoulos, B. Blocken, Pedestrian wind environment around tall buildings, 
in: Advanced Environmental Wind Engineering, Springer, Tokyo, 2016, 
pp. 101–127. 

[85] X. Sun, J. Park, J.I. Choi, G.H. Rhee, Uncertainty quantification of upstream wind 
effects on single-sided ventilation in a building using generalized polynomial 
chaos method, Build. Environ. 125 (2017) 153–167. 

[86] P.M. Tagade, B.M. Jeong, H.L. Choi, A Gaussian process emulator approach for 
rapid contaminant characterization with an integrated multizone-CFD model, 
Build. Environ. 70 (2013) 232–244. 

[87] Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, 
T. Shirasawa, AIJ guidelines for practical applications of CFD to pedestrian wind 
environment around buildings, J. Wind Eng. Ind. Aerod. 96 (10–11) (2008) 
1749–1761. 

[88] K.T. Tse, X. Zhang, A.U. Weerasuriya, S.W. Li, K.C. Kwok, C.M. Mak, J. Niu, 
Adopting ‘lift-up’ building design to improve the surrounding pedestrian-level 
wind environment, Build. Environ. 117 (2017) 154–165. 

[89] L. Uusitalo, A. Lehikoinen, I. Helle, K. Myrberg, An overview of methods to 
evaluate uncertainty of deterministic models in decision support, Environ. Model. 
Software 63 (2015) 24–31. 

[90] L. Van Der Maaten, E. Postma, J. Van den Herik, Dimensionality reduction: a 
comparative, J. Mach. Learn. Res. 10 (66–71) (2009) 13. 

[91] M. Van der Wilk, Sparse Gaussian Process Approximations and Applications, 
Doctoral dissertation, University of Cambridge, 2019. 

[92] A.U. Weerasuriya, X. Zhang, V.J. Gan, Y. Tan, A holistic framework to utilize 
natural ventilation to optimize energy performance of residential high-rise 
buildings, Build. Environ. 153 (2019) 218–232. 

[93] A.U. Weerasuriya, X. Zhang, B. Lu, K.T. Tse, C.H. Liu, Optimizing Lift-Up Design 
to Maximize Pedestrian Wind and Thermal Comfort in ‘Hot-Calm’and ‘Cold- 
Windy’Climates, Sustainable Cities and Society, 2020, p. 102146. 

[94] T. Wu, A. Kareem, Modeling hysteretic nonlinear behavior of bridge 
aerodynamics via cellular automata nested neural network, J. Wind Eng. Ind. 
Aerod. 99 (4) (2011) 378–388. 

[95] X. Xu, Q. Yang, A. Yoshida, Y. Tamura, Characteristics of pedestrian-level wind 
around super-tall buildings with various configurations, J. Wind Eng. Ind. Aerod. 
166 (2017) 61–73. 

[96] W. Yang, M. Deng, F. Xu, H. Wang, Prediction of hourly PM2. 5 using a space- 
time support vector regression model, Atmos. Environ. 181 (2018) 12–19. 

[97] J.J. Yu, X.S. Qin, O. Larsen, Uncertainty analysis of flood inundation modelling 
using GLUE with surrogate models in stochastic sampling, Hydrol. Process. 29 (6) 
(2015) 1267–1279. 

[98] J. Yu, K. Chen, J. Mori, M.M. Rashid, A Gaussian mixture copula model based 
localized Gaussian process regression approach for long-term wind speed 
prediction, Energy 61 (2013) 673–686. 

[99] C. Zhang, H. Wei, X. Zhao, T. Liu, K. Zhang, A Gaussian process regression based 
hybrid approach for short-term wind speed prediction, Energy Convers. Manag. 
126 (2016) 1084–1092. 

[100] X. Zhang, K.T. Tse, A.U. Weerasuriya, K.C.S. Kwok, J. Niu, Z. Lin, C.M. Mak, 
Pedestrian-level wind conditions in the space underneath lift-up buildings, 
J. Wind Eng. Ind. Aerod. 179 (2018) 58–69. 

[101] X. Zhang, K.T. Tse, A.U. Weerasuriya, S.W. Li, K.C. Kwok, C.M. Mak, Z. Lin, 
Evaluation of pedestrian wind comfort near ‘lift-up’ buildings with different 
aspect ratios and central core modifications, Build. Environ. 124 (2017) 245–257. 

[102] X. Zhang, A.U. Weerasuriya, B. Lu, K.T. Tse, C.H. Liu, Y. Tamura, Pedestrian-level 
wind environment near a super-tall building with unconventional configurations 
in a regular urban area, Build. Simulat. (2019) 1–18. Tsinghua University Press. 

[103] X. Zhang, A.U. Weerasuriya, X. Zhang, K.T. Tse, B. Lu, C.Y. Li, C.H. Liu, Pedestrian 
wind comfort near a super-tall building with various configurations in an urban- 
like setting, Build. Simulation (2020) 1, https://doi.org/10.1007/s12273-020- 
0658-6. Nature Publishing Group. 

[104] J.C. Chang, S.R. Hanna, Technical descriptions and user’s guide for the BOOT 
statistical model evaluation software package, version 2.0, George Mason 
University and Harvard School of Public Health, Fairfax, Virginia, USA, 2005. 
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