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Urban and air pollution: a multi‑city 
study of long‑term effects of urban 
landscape patterns on air quality 
trends
Lu Liang1* & Peng Gong2,3,4

Most air pollution research has focused on assessing the urban landscape effects of pollutants in 
megacities, little is known about their associations in small- to mid-sized cities. Considering that the 
biggest urban growth is projected to occur in these smaller-scale cities, this empirical study identifies 
the key urban form determinants of decadal-long fine particulate matter (PM2.5) trends in all 626 
Chinese cities at the county level and above. As the first study of its kind, this study comprehensively 
examines the urban form effects on air quality in cities of different population sizes, at different 
development levels, and in different spatial-autocorrelation positions. Results demonstrate that the 
urban form evolution has long-term effects on PM2.5 level, but the dominant factors shift over the 
urbanization stages: area metrics play a role in PM2.5 trends of small-sized cities at the early urban 
development stage, whereas aggregation metrics determine such trends mostly in mid-sized cities. 
For large cities exhibiting a higher degree of urbanization, the spatial connectedness of urban patches 
is positively associated with long-term PM2.5 level increases. We suggest that, depending on the city’s 
developmental stage, different aspects of the urban form should be emphasized to achieve long-term 
clean air goals.

Air pollution represents a prominent threat to global society by causing cascading effects on individuals1, medi-
cal systems2, ecosystem health3, and economies4 in both developing and developed countries5–8. About 90% 
of global citizens lived in areas that exceed the safe level in the World Health Organization (WHO) air quality 
guidelines9. Among all types of ecosystems, urban produce roughly 78% of carbon emissions and substantial 
airborne pollutants that adversely affect over 50% of the world’s population living in them5,10. While air pollution 
affects all regions, there exhibits substantial regional variation in air pollution levels11. For instance, the annual 
mean concentration of fine particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) in the 
most polluted cities is nearly 20 times higher than the cleanest city according to a survey of 499 global cities12. 
Many factors can influence the regional air quality, including emissions, meteorology, and physicochemical 
transformations. Another non-negligible driver is urbanization—a process that alters the size, structure, and 
growth of cities in response to the population explosion and further leads to lasting air quality challenges13–15.

With the global trend of urbanization16, the spatial composition, configuration, and density of urban land 
uses (refer to as urban form) will continue to evolve13. The investigation of urban form impacts on air quality 
has been emerging in both empirical17 and theoretical18 research. While the area and density of artificial surface 
areas have well documented positive relationship with air pollution19–21, the effects of urban fragmentation on 
air quality have been controversial. In theory, compact cities promote high residential density with mixed land 
uses and thus reduce auto dependence and increase the usage of public transit and walking21,22. The compact 
urban development has been proved effective in mitigating air pollution in some cities23,24. A survey of 83 global 
urban areas also found that those with highly contiguous built-up areas emitted less NO2

22. In contrast, dispersed 
urban form can decentralize industrial polluters, improve fuel efficiency with less traffic congestion, and alleviate 
street canyon effects25–28. Polycentric and dispersed cities support the decentralization of jobs that lead to less 
pollution emission than compact and monocentric cities29. The more open spaces in a dispersed city support 
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air dilution30. In contrast, compact cities are typically associated with stronger urban heat island effects31, which 
influence the availability and the advection of primary and secondary pollutants32.

The mixed evidence demonstrates the complex interplay between urban form and air pollution, which further 
implies that the inconsistent relationship may exist in cities at different urbanization levels and over different 
periods33. Few studies have attempted to investigate the urban form–air pollution relationship with cross-sec-
tional and time series data34–37. Most studies were conducted in one city or metropolitan region38,39 or even at the 
country level40. Furthermore, large cities or metropolitan areas draw the most attention in relevant studies5,41,42, 
and the small- and mid-sized cities, especially those in developing countries, are heavily underemphasized. 
However, virtually all world population growth43,44 and most global economic growth45,46 are expected to occur 
in those cities over the next several decades. Thus, an overlooked yet essential task is to account for various levels 
of cities, ranging from large metropolitan areas to less extensive urban area, in the analysis.

This study aims to improve the understanding of how the urban form evolution explains the decadal-long 
changes of the annual mean PM2.5 concentrations in 626 cities at the county-level and above in China. China has 
undergone unprecedented urbanization over the past few decades and manifested a high degree of heterogeneity 
in urban development47. Thus, Chinese cities serve as a good model for addressing the following questions: (1) 
whether the changes in urban landscape patterns affect trends in PM2.5 levels? And (2) if so, do the determinants 
vary by cities?

Data
City boundaries.  Our study period spans from the year 2000 to 2014 to keep the data completeness among 
all data sources. After excluding cities with invalid or missing PM2.5 or sociodemographic value, a total of 626 
cities, with 278 prefecture-level cities and 348 county-level cities, were selected. City boundaries are primarily 
based on the Global Rural–Urban Mapping Project (GRUMP) urban extent polygons that were defined by the 
extent of the nighttime lights48,49. Few adjustments were made. First, in the GRUMP dataset, large agglomera-
tions that include several cities were often described in one big polygon. We manually split those polygons into 
individual cities based on the China Administrative Regions GIS Data at 1:1 million scales50. Second, since the 
1978 economic reforms, China has significantly restructured its urban administrative/spatial system. Notice-
able changes are the abolishment of several prefectures and the promotion of many former county-level cities 
to prefecture-level cities51. Thus, all city names were cross-checked between the year 2000 and 2014, and the 
mismatched records were replaced with the latest names.

PM2.5 concentration data.  The annual mean PM2.5 surface concentration (micrograms per cubic meter) 
for each city over the study period was calculated from the Global Annual PM2.5 Grids at 0.01° resolution52. This 
data set combines Aerosol Optical Depth retrievals from multiple satellite instruments including the NASA 
Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), 
and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS). The global 3-D chemical transport model GEOS-
Chem is further applied to relate this total column measure of aerosol to near-surface PM2.5 concentration, and 
geographically weighted regression is finally used with global ground-based measurements to predict and adjust 
for the residual PM2.5 bias per grid cell in the initial satellite-derived values.

Human settlement layer.  The urban forms were quantified with the 40-year (1978–2017) record of 
annual impervious surface maps for both rural and urban areas in China47,53. This state-of-art product provides 
substantial spatial–temporal details on China’s human settlement changes. The annual impervious surface maps 
covering our study period were generated from 30-m resolution Landsat images acquired onboard Landsat 5, 7, 
and 8 using an automatic “Exclusion/Inclusion” mapping framework54,55. The output used here was the binary 
impervious surface mask, with the value of one indicating the presence of human settlement and the value of 
zero identifying non-residential areas. The product assessment concluded good performance. The cross-com-
parison against 2356 city or town locations in GeoNames proved an overall high agreement (88%) and approxi-
mately 80% agreement was achieved when compared against visually interpreted 650 urban extent areas in the 
year 1990, 2000, and 2010.

Control variables.  To provide a holistic assessment of the urban form effects, we included control variables 
that are regarded as important in influencing air quality to account for the confounding effects.

Four variables, separately population size, population density, and two economic measures, were acquired 
from the China City Statistical Yearbook56 (National Bureau of Statistics 2000–2014). Population size is used to 
control for the absolute level of pollution emissions41. Larger populations are associated with increased vehicle 
usage and vehicle-kilometers travels, and consequently boost tailpipes emissions5. Population density is a useful 
reflector of transportation demand and the fraction of emissions inhaled by people57. We also included gross 
regional product (GRP) and the proportion of GRP generated from the secondary sector (GRP2). The impact of 
economic development on air quality is significant but in a dynamic way58. The rising per capita income due to 
the concentration of manufacturing industrial activities can deteriorate air quality and vice versa if the stronger 
economy is the outcome of the concentration of less polluting high-tech industries. Meteorological conditions 
also have short- and long-term effects on the occurrence, transport, and dispersion of air pollutants59–61. Tem-
perature affects chemical reactions and atmospheric turbulence that determine the formation and diffusion of 
particles62. Low air humidity can lead to the accumulation of air pollutants due to it is conducive to the adhesion 
of atmospheric particulate matter on water vapor63. Whereas high humidity can lead to wet deposition processes 
that can remove air pollutants by rainfall. Wind speed is a crucial indicator of atmospheric activity by greatly 
affect air pollutant transport and dispersion. All meteorological variables were calculated based on China 1 km 
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raster layers of monthly relative humidity, temperature, and wind speed that are interpolated from over 800 
ground monitoring stations64. Based on the monthly layer, we calculated the annual mean of each variable for 
each year. Finally, all pixels falling inside of the city boundary were averaged to represent the overall meteoro-
logical condition of each city.

Methods
Considering the dynamic urban form-air pollution relationship evidenced from the literature review, our hypoth-
esis is: the determinants of PM2.5 level trends are not the same for cities undergoing different levels of develop-
ment or in different geographic regions. To test this hypothesis, we first categorized city groups following (1) 
social-economic development level, (2) spatial autocorrelation relationship, and (3) population size. We then 
assessed the relationship between urban form and PM2.5 level trends by city groups. Finally, we applied the panel 
data models to different city groups for hypothesis testing and key determinant identification (Fig. 1).

Calculation of urban form metrics.  Based on the previous knowledge65–67, fifteen landscape metrics fall-
ing into three categories, separately area, shape, and aggregation, were selected. Those metrics quantify the com-
positional and configurational characteristics of the urban landscape, as represented by urban expansion, urban 
shape complexity, and compactness (Table 1).

Area metrics gives an overview of the urban extent and the size of urban patches that are correlated with 
PM2.5

20. As an indicator of the urbanization degree, total area (TA) typically increases constantly or remains 
stable, because the urbanization process is irreversible. Number of patches (NP) refers to the number of discrete 
parcels of urban settlement within a given urban extent and Mean Patch Size (AREA_MN) measures the average 
patch size. Patch density (PD) indicates the urbanization stages. It usually increases with urban diffusion until 
coalescence starts, after which decreases in number66. Largest Patch Index (LPI) measures the percentage of the 
landscape encompassed by the largest urban patch.

The shape complexity of urban patches was represented by Mean Patch Shape Index (SHAPE_MN), Mean 
Patch Fractal Dimension (FRAC_MN), and Mean Contiguity Index (CONTIG_MN). The greater irregularity 
the landscape shape, the larger the value of SHAPE_MN and FRAC_MN. CONTIG_MN is another method of 
assessing patch shape based on the spatial connectedness or contiguity of cells within a patch. Larger contiguous 
patches will result in larger CONTIG_MN.

Aggregation metrics measure the spatial compactness of urban land, which affects pollutant diffusion and 
dilution. Mean Euclidean nearest-neighbor distance (ENN_MN) quantifies the average distance between two 
patches within a landscape. It decreases as patches grow together and increases as the urban areas expand. 
Landscape Shape Index (LSI) indicates the divergence of the shape of a landscape patch that increases as the 
landscape becomes increasingly disaggregated68. Patch Cohesion Index (COHESION) is suggestive of the con-
nectedness degree of patches69. Splitting Index (SPLIT) and Landscape Division Index (DIVISION) increase as 
the separation of urban patches rises, whereas, Mesh Size (MESH) decreases as the landscape becomes more 
fragmented. Aggregation Index (AI) measures the degree of aggregation or clumping of urban patches. Higher 
values of continuity indicate higher building densities, which may have a stronger effect on pollution diffusion.

Figure 1.   Methodology workflow.
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The detailed descriptions of these indices are given by the FRAGSTATS user’s guide70. The calculation input 
is a layer of binary grids of urban/nonurban. The resulting output is a table containing one row for each city and 
multiple columns representing the individual metrics.

Division of cities.  Division based on the socioeconomic development level.  The socioeconomic develop-
ment level in China is uneven. The unequal development of the transportation system, descending in topogra-
phy from the west to the east, combined with variations in the availability of natural and human resources and 
industrial infrastructure, has produced significantly wide gaps in the regional economies of China. By taking 
both the economic development level and natural geography into account, China can be loosely classified into 
Eastern, Central, and Western regions. Eastern China is generally wealthier than the interior, resulting from 
closeness to coastlines and the Open-Door Policy favoring coastal regions. Western China is historically behind 
in economic development because of its high elevation and rugged topography, which creates barriers in the 
transportation infrastructure construction and scarcity of arable lands. Central China, echoing its name, is in the 
process of economic development. This region neither benefited from geographic convenience to the coast nor 
benefited from any preferential policies, such as the Western Development Campaign.

Division based on spatial autocorrelation relationship.  The second type of division follows the fact that adjacent 
cities are likely to form air pollution clusters due to the mixing and diluting nature of air pollutants71, i.e., cities 
share similar pollution levels as its neighbors. The underlying processes driving the formation of pollution hot 
spots and cold spots may differ. Thus, we further divided the city into groups based on the spatial clusters of 
PM2.5 level changes.

Local indicators of spatial autocorrelation (LISA) was used to determine the local patterns of PM2.5 distribu-
tion by clustering cities with a significant association. In the presence of global spatial autocorrelation, LISA 
indicates whether a variable exhibits significant spatial dependence and heterogeneity at a given scale72. Practi-
cally, LISA relates each observation to its neighbors and assigns a value of significance level and degree of spatial 

Table 1.   Definition and description of the urban form metrics. A , total landscape area; aj , area of patch j ; 
Cjr , contiguity value for pixel r in patch j ; E ,  total length of the edge in landscape in terms of cell surfaces; gii , 
number of like adjacencies between pixels of urban patch i based on the single-count method; max → gii , 
maximum number of like adjacencies between pixels of urban patch;n , number of urban patches; pj , perimeter 
of patch j;v , sum of the values in a 3-by-3 cell template; . denotes p value < 0.1; *p value < 0.05; **p value < 0.01; 
***p value < 0.001. Cells in grey shadow show descriptive statistics of the corresponding variables in 2014.

Variables Acronym Unit Definition

Area metrics

Total area TA km2 The total area of the landscape

Largest patch index LPI Percent The area of the largest urban patch divided by total landscape area

Number of patches NP None Number of urban patches in the landscape

Patch density PD Number per hectares n
A × 10,000

Mean patch size AREA_MN km2 The average size of all urban patches

Shape metrics

Mean patch shape index SHAPE_MN None ∑n
j=1

0.25×Pj
√
aj

/n . It increases as patch shape becomes more irregular

Mean patch fractal dimension FRAC_MN None
∑n

j=1
2×ln(0.25×Pj)

ln(aj)
/n . FRAC increases with higher convoluted, plane-filling 

perimeters

Mean contiguity index CONTIG_MN None
∑n

j=1

[
∑z

r=1Cjz
aj

]

−1

v−1 /n . CONTIG equals 0 for a one-pixel patch and increases to a 
limit of 1 as patch contiguity increases

Aggregation metrics

Mean nearest neighbor distance ENN_MN meter ENN decreases as the distance to the nearest neighbor decreases

Landscape shape index LSI None
E

minE . LSI increases as landscape shape becomes more irregular or as the length 
of edge within the landscape increases

Patch cohesion index COHESION None

[

1−

∑n
j=1 p

∗

j
∑n

j=1 p
∗

j

√

a∗j

]

[1− 1
√

Z
]

−1
× 100

 . COHESION measures the physical con-
nectedness of the urban patch

Splitting index SPLIT None
A2

∑n
j=1 a

2
ij
 . SPLIT increases as the urban patches are subdivided into smaller 

patches and decreases in area

Landscape division index DIVISION Proportion [1−
∑n

j=1 (
aj
A )

2
)] . DIVISION approaches one, as the proportion of the land-

scape comprised of the urban patches decreases and patch size decreases

Effective mesh size MESH Hectares
∑n

j=1 a
2
ij

A ( 1
10,000 ) . MESH reaches the maximum when the landscape consists of 

one single patch

Aggregation index AI Percent
(

gii
max→gii

)

Pi × 100 . AI increases as the landscape is increasingly aggregated

Control variables Total population

POP 10,000

GDP 10,000 yuan

GDP2 10,000 yuan
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autocorrelation, which is calculated by the similarity in variable z between observation i and observation j in 
the neighborhood of i defined by a matrix of weights wij

7,73:

where Ii is the Moran’s I value for location i ; σ 2 is the variance of variable z ; z̄ is the average value of z with the 
sample number of n . The weight matrix wij is defined by the k-nearest neighbors distance measure, i.e., each 
object’s neighborhood consists of four closest cites.

The computation of Moran’s I enables the identification of hot spots and cold spots. The hot spots are high-
high clusters where the increase in the PM2.5 level is higher than the surrounding areas, whereas cold spots are 
low-low clusters with the presence of low values in a low-value neighborhood. A Moran scatterplot, with x-axis 
as the original variable and y-axis as the spatially lagged variable, reflects the spatial association pattern. The 
slope of the linear fit to the scatter plot is an estimation of the global Moran’s I72 (Fig. 2). The plot consists of four 
quadrants, each defining the relationship between an observation74. The upper right quadrant indicates hot spots 
and the lower left quadrant displays cold spots75.

Division based on population size.  The last division was based on population size, which is a proven factor in 
changing per capita emissions in a wide selection of global cities, even outperformed land urbanization rate77–79. 
We used the 2014 urban population to classify the cities into four groups based on United Nations definitions80: 
(1) large agglomerations with a total population larger than 1 million; (2) mid-sized cities, 500,000–1 million; 
(3) small cities, 250,000–500,000, and (4) very small cities, 100,000–250,000.

Panel data analysis.  The panel data analysis is an analytical method that deals with observations from 
multiple entities over multiple periods. Its capacity in analyzing the characteristics and changes from both 
the time-series and cross-section dimensions of data surpasses conventional models that purely focus on one 
dimension81,82. The estimation equation for the panel data model in this study is given as:

where the subscript i  and t  refer to city and year respectively. β0 is the intercept parameter and β1 − β18 are 
the estimates of slope coefficients. ε is the random error. All variables are transformed into natural logarithms.

Two methods can be used to obtain model estimates, separately fixed effects estimator and random effects 
estimator. The fixed effects estimator assumes that each subject has its specific characteristics due to inherent 
individual characteristic effects in the error term, thereby allowing differences to be intercepted between subjects. 

Ii =
zi − z̄

σ 2

n
∑

j=1,j �=i

[wij(zj − z̄)]

lnPM2.5it=β0 + β1 ln TAit+β2 ln LPIit+β3 ln NPit+β4 ln PDit+β5 ln AREA_MNit

+ β6 ln SHAPE_MNit+β7 ln FRAC_MNit+β8 ln CONTIG_MNit+β9 ln ENN_MNit

+ β10 ln LSIit+β11 ln COHESIONit+β12 ln SPLITit+β13 ln DIVISIONit+β14 ln MESHit

+ β15 ln AIit+β16 ln POPit+β17 ln GDPit+β18 ln GDP2it + εit

Figure 2.   Moran’s I scatterplot. Figure was produced by R 3.4.376.
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The random effects estimator assumes that the individual characteristic effect changes stochastically, and the 
differences in subjects are not fixed in time and are independent between subjects. To choose the right estimator, 
we run both models for each group of cities based on the Hausman specification test83. The null hypothesis is 
that random effects model yields consistent and efficient estimates84: H0:E(εi|Xit) = 0 . If the null hypothesis is 
rejected, the fixed effects model will be selected for further inferences. Once the better estimator was determined 
for each model, one optimal panel data model was fit to each city group of one division type. In total, six, four, 
and eight runs were conducted for socioeconomic, spatial autocorrelation, and population division separately 
and three, two, and four panel data models were finally selected.

Results
Spatial patterns of PM2.5 level changes.  During the period from 2000 to 2014, the annual mean PM2.5 
concentration of all cities increases from 27.78 to 42.34 µg/m3, both of which exceed the World Health Organi-
zation recommended annual mean standard (10 µg/m3). It is worth noting that the PM2.5 level in the year 2014 
also exceeds China’s air quality Class 2 standard (35 µg/m3) that applies to non-national park places, including 
urban and industrial areas. The standard deviation of annual mean PM2.5 values for all cities increases from 12.34 
to 16.71 µg/m3, which shows a higher variability of inter-urban PM2.5 pollution after a decadal period. The least 
and most heavily polluted cities in China are Delingha, Qinghai (3.01 µg/m3) and Jizhou, Hubei (64.15 µg/m3) 
in 2000 and Hami, Xinjiang (6.86 µg/m3) and Baoding, Hubei (86.72 µg/m3) in 2014.

Spatially, the changes in PM2.5 levels exhibit heterogeneous patterns across cities (Fig. 3b). According to the 
socioeconomic level division (Fig. 3a), the Eastern, Central, and Western region experienced a 38.6, 35.3, and 
25.5 µg/m3 increase in annual PM2.5 mean, separately, and the difference among regions is significant according 
to the analysis of variance (ANOVA) results (Fig. 4a). When stratified by spatial autocorrelation relationship 

Figure 3.   (a) Division of cities in China by socioeconomic development level and the locations of provincial 
capitals; (b) Changes in annual mean PM2.5 concentrations between the year 2000 and 2014; (c) LISA cluster 
maps for PM2.5 changes at the city level; High-high indicates a statistically significant cluster of high PM2.5 level 
changes over the study period. Low-low indicates a cluster of low PM2.5 inter-annual variation; No high-low 
cluster is reported; Low–high represents cities with high PM2.5 inter-annual variation surrounded by cities with 
low variation; (d) Population level by cities in the year 2014. Maps were produced by ArcGIS 10.7.185.
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(Fig. 3c), the differences in PM2.5 changes among the spatial clusters are even more dramatic. The average PM2.5 
increase in cities belonging to the high-high cluster is approximately 25 µg/m3, as compared to 5 µg/m3 in the 
low-low clusters (Fig. 4b). Finally, cities at four different population levels have significant differences in the 
changes of PM2.5 concentration (Fig. 3d), except for the mid-sized cities and large city agglomeration (Fig. 4c).

The effects of urban forms on PM2.5 changes.  The Hausman specification test for fixed versus random 
effects yields a p value less than 0.05, suggesting that the fixed effects model has better performance. We fit one 
panel data model to each city group and built nine models in total. All models are statistically significant at the 
p < 0.05 level and have moderate to high predictive power with the R2 values ranging from 0.63 to 0.95, which 
implies that 63–95% of the variation in the PM2.5 concentration changes can be explained by the explanatory 
variables (Table 2).

The urban form—PM2.5 relationships differ distinctly in Eastern, Central, and Western China. All models 
reach high R2 values. Model for Eastern China (refer to hereafter as Eastern model) achieves the highest R2 
(0.90), and the model for the Western China (refer to hereafter as Western model) reaches the lowest R2 (0.83). 
The shape metrics FRAC and CONTIG are correlated with PM2.5 changes in the Eastern model, whereas the area 
metrics AREA demonstrates a positive effect in the Western model. In contrast to the significant associations 

Figure 4.   Boxplots of PM2.5 concentration changes between 2000 and 2014 for city groups that are formed 
according to (a) socioeconomic development level division, (b) LISA clusters, and (c) population level. Asterisk 
marks represent the p value of ANOVA significant test between the corresponding pair of groups. Note ns not 
significant; *p value < 0.05; **p value < 0.01; ***p value < 0.001; H–H high-high cluster, L–H low–high cluster, L–L 
denotes low–low cluster.
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between shape, area metrics and PM2.5 level changes in both Eastern and Western models, no such association 
was detected in the Central model. Nonetheless, two aggregation metrics, LSI and AI, play positive roles in 
determining the PM2.5 trends in the Central model.

For models built upon the LISA clusters, the H–H model (R2 = 0.95) reaches a higher fitting degree than 
the L–L model (R2 = 0.63). The estimated coefficients vary substantially. In the H–H model, the coefficient of 
CONTIG is positive, which indicates that an increase in CONTIG would increase PM2.5 pollution. In contrast, 
no shape metrics but one area metrics AREA is significant in the L–L model.

The results of the regression models built for cities at different population levels exhibit a distinct pattern. No 
urban form metrics was identified to have a significant relationship with the PM2.5 level changes in groups of very 
small and mid-sized cities. For small size cities, the aggregation metrics COHESION was positively associated 
whereas AI was negatively related. For mid-sized cities and large agglomerations, CONTIG is the only significant 
variable that is positively related to PM2.5 level changes.

Discussion
Urban form is an effective measure of long‑term PM2.5 trends.  All panel data models are statisti-
cally significant regardless of the data group they are built on, suggesting that the associations between urban 
form and ambient PM2.5 level changes are discernible at all city levels. Importantly, these relationships are 
found to hold when controlling for population size and gross domestic product, implying that the urban land-
scape patterns have effects on long-term PM2.5 trends that are independent of regional economic performance. 
These findings echo with the local, regional, and global evidence of urban form effect on various air pollution 
types5,14,21,22,24,39,78 .

Although all models demonstrate moderate to high predictive power, the way how different urban form 
metrics respond to the dependent variable varies. Of all the metrics tested, shape metrics, especially CONTIG 
has the strongest effect on PM2.5 trends in cities belonging to the high-high cluster, Eastern, and large urban 
agglomerations. All those regions have a strong economy and higher population density86. In the group of cities 
that are moderately developed, such as the Central region, as well as small- and mid-sized cities, aggregation 
metrics play a dominant negative role in PM2.5 level changes. In contrast, in the least developed cities belonging 
to the low-low cluster regions and Western China, the metrics describing size and number of urban patches are 
the strongest predictors. AREA and NP are positively related whereas TA is negatively associated.

The impacts of urban form metrics on air quality vary by urbanization degree.  Based on the 
above observations, how urban form affects within-city PM2.5 level changes may differ over the urbanization 
stages. We conceptually summarized the pattern in Fig. 5: area metrics have the most substantial influence on 

Table 2.   Results of fix effected panel model. *Significance level of 0.05; **significance level of 0.01; 
***significance level of 0.001.

LISA Moran I Socioeconomic development Population (10 k people)

High-high Low-low Eastern Central Western 10–25 25–50 50–100  > 100

Area metrics

TA − 1786 − 5045 − 9064 2643 1038 − 5235 − 1150 604.42 2290

NP 1786 5045 9065 − 2643 − 1038 5236 1151 − 604.3 − 2290

PD 1696 − 2355 − 1932 1321 1102 − 4925 − 1122 292.85 20.14

AREA 3482 2699** 7132 − 1322 639** 3107 28.69 − 311.56 − 2270

Shape metrics

SHAPE 0.87 1.24 4.76 4.75 19.54 − 36.04 2.57 1.11 1.89

FRAC​ − 15.66 0.29 − 60.18* − 31.35 − 119 224.75 − 20.29 − 12.24 − 32.64

CONTIG 0.67** 0.13 1.24** − 0.43 0.29 − 2.89 0.43 0.64** 0.84**

Aggregation metrics

LSI 10.02 − 0.05 − 0.83 0.07* − 2.26 1.22 − 0.12 − 0.36 0.02

COHESION − 5.8 − 0.92 − 8.50 − 7.38 6.36 10.85 2.97* − 0.05 − 9.10

MESH 0.07 − 0.09 − 0.09 − 0.06 − 0.15 − 1.28 − 0.03 0.15 0.01

AI − 0.62 0.45 − 3.58 3.78** − 5.32 − 4.7 − 3.09* − 1.50 2.79

Control variables

POP 0.02 0.04 − 0.09 − 0.14 − 0.16 0.32 − 0.07 0.02 − 0.07

PopDen 0.03 0.05 − 0.07 − 0.20 − 0.05 0.40 − 0.05 0.03 − 0.09

GDP 0.00 0.00 − 0.04 0.15* − 0.04 0.00 0.00 0.00* 0.001

GDP2 0.14*** 0.04* 0.05 0.01 − 0.14 0.12 0.11*** 0.12*** 0.13***

TEMP 0.02 − 0.01 0.02** 0.02 − 0.002 − 0.04* 0.001 0.02*** 0.01**

RH 1.45 − 0.39 1.12 2.81 0.58 − 0.09 0.63 2.26*** 1.61*

WindSpeed 0.18*** 0.1*** 0.17*** 0.06 0.12 0.34* 0.11*** 0.11*** 0.06

R2 0.95*** 0.63*** 0.90*** 0.87*** 0.83*** 0.80* 0.76*** 0.91*** 0.87***
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air pollution changes at the early urban development stage, and aggregation metrics emerge at the transition 
stage, whereas shape metrics affect the air quality trends at the terminal stage. The relationship between urban 
form and air pollution has rarely been explored with such a wide range of city selections. Most prior studies were 
focused on large urban agglomeration areas, and thus their conclusions are not representative towards small cit-
ies at the early or transition stage of urbanization.

Not surprisingly, the area metrics, which describe spatial grain of the landscape, exert a significant effect on 
PM2.5 level changes in small-sized cities. This could be explained by the unusual urbanization speed of small-sized 
cities in the Chinese context. Their thriving mostly benefited from the urbanization policy in the 1980s, which 
emphasized industrialization of rural, small- and mid-sized cities87. With the large rural-to-urban migration 
and growing public interest in investing real estate market, a side effect is that the massive housing construction 
that sometimes exceeds market demand. Residential activities decline in newly built areas of smaller cities in 
China, leading to what are known as ghost cities88. Although ghost cities do not exist for all cities, high rate of 
unoccupied dwellings is commonly seen in cities under the prefectural level. This partly explained the negative 
impacts of TA on PM2.5 level changes, as an expanded while unoccupied or non-industrialized urban zones 
may lower the average PM2.5 concentration within the city boundary, but it doesn’t necessarily mean that the air 
quality got improved in the city cores.

Aggregation metrics at the landscape scale is often referred to as landscape texture that quantifies the tendency 
of patch types to be spatially aggregated; i.e., broadly speaking, aggregated or “contagious” distributions. This 
group of metrics is most effective in capturing the PM2.5 trends in mid-sized cities (population range 25–50 k) 
and Central China, where the urbanization process is still undergoing. The three significant variables that reflect 
the spatial property of dispersion, separately landscape shape index, patch cohesion index, and aggregation 
index, consistently indicate that more aggregated landscape results in a higher degree of PM2.5 level changes. 
Theoretically, the more compact urban form typically leads to less auto dependence and heavier reliance on the 
usage of public transit and walking, which contributes to air pollution mitigation89. This phenomenon has also 
been observed in China, as the vehicle-use intensity (kilometers traveled per vehicle per year, VKT) has been 
declining over recent years90. However, VKT only represents the travel intensity of one car and does not reflect 
the total distance traveled that cumulatively contribute to the local pollution. It should be noted that the private 
light-duty vehicle ownership in China has increased exponentially and is forecast to reach 23–42 million by 
2050, with the share of new-growth purchases representing 16–28%90. In this case, considering the increased 
total distance traveled, the less dispersed urban form can exert negative effects on air quality by concentrating 
vehicle pollution emissions in a limited space.

Finally, urban contiguity, observed as the most effective shape metric in indicating PM2.5 level changes, 
provides an assessment of spatial connectedness across all urban patches. Urban contiguity is found to have a 
positive effect on the long-term PM2.5 pollution changes in large cities. Urban contiguity reflects to which degree 
the urban landscape is fragmented. Large contiguous patches result in large CONTIG_MN values. Among the 
626 cities, only 11% of cities experience negative changes in urban contiguity. For example, Qingyang, Gansu is 
one of the cities-featuring leapfrogs and scattered development separated by vacant land that may later be filled 
in as the development continues (Fig. 6). Most Chinese cities experienced increased urban contiguity, with less 
fragmented and compacted landscape. A typical example is Shenzhou, Hebei, where CONTIG_MN rose from 
0.27 to 0.45 within the 14 years. Although the 13 counties in Shenzhou are very far scattered from each other, 
each county is growing intensively internally rather than sprawling further outside. And its urban layout is thus 
more compact (Fig. 6). The positive association revealed in this study contradicts a global study indicating that 

Figure 5.   The most influential metric of urban form in affecting PM2.5 level changes at different urbanization 
stages.
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cities with highly contiguous built-up areas have lower NO2 pollution22. We noticed that the principal emis-
sion sources of NO2 differ from that of PM2.5. NO2 is primarily emitted with the combustion of fossil fuels (e.g., 
industrial processes and power generation)6, whereas road traffic attributes more to PM2.5 emissions. Highly 
connected urban form is likely to cause traffic congestion and trap pollution inside the street canyon, which 
accumulates higher PM2.5 concentration. Computer simulation results also indicate that more compact cities 
improve urban air quality but are under the premise that mixed land use should be presented18. With more con-
nected impervious surfaces, it is merely impossible to expect increasing urban green spaces. If compact urban 
development does not contribute to a rising proportion of green areas, then such a development does not help 
mitigating air pollution41.

Conclusions
This study explores the regional land-use patterns and air quality in a country with an extraordinarily heteroge-
neous urbanization pattern. Our study is the first of its kind in investigating such a wide range selection of cities 
ranging from small-sized ones to large metropolitan areas spanning a long time frame, to gain a comprehensive 
insight into the varying effects of urban form on air quality trends. And the primary insight yielded from this 
study is the validation of the hypothesis that the determinants of PM2.5 level trends are not the same for cities 
at various developmental levels or in different geographic regions. Certain measures of urban form are robust 
predictors of air quality trends for a certain group of cities. Therefore, any planning strategy aimed at reducing 
air pollution should consider its current development status and based upon which, design its future plan. To 
this end, it is also important to emphasize the main shortcoming of this analysis, which is generally centered 
around the selection of control variables. This is largely constrained by the available information from the City 
Statistical Yearbook. It will be beneficial to further polish this study by including other important controlling 
factors, such as vehicle possession.
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