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Abstract

Edge learning (EL), which uses edge computing as a platform to execute machine learning al-
gorithms, is able to fully exploit the massive sensing data generated by Internet of Things (IoT).
However, due to the limited transmit power at IoT devices, collecting the sensing data in EL systems
is a challenging task. To address this challenge, this paper proposes to integrate unmanned ground
vehicle (UGV) with EL. With such a scheme, the UGV could improve the communication quality by
approaching various IoT devices. However, different devices may transmit different data for different
machine learning jobs and a fundamental question is how to jointly plan the UGV path, the devices’
energy consumption, and the number of samples for different jobs? This paper further proposes a graph-
based path planning model, a network energy consumption model and a sample size planning model that
characterizes F-measure as a function of the minority class sample size. With these models, the joint
path, energy and sample size planning (JPESP) problem is formulated as a large-scale mixed integer

nonlinear programming (MINLP) problem, which is nontrivial to solve due to the high-dimensional
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discontinuous variables related to UGV movement. To this end, it is proved that each IoT device should
be served only once along the path, thus the problem dimension is significantly reduced. Furthermore,
to handle the discontinuous variables, a tabu search (TS) based algorithm is derived, which converges
in expectation to the optimal solution to the JPESP problem. Simulation results under different task

scenarios show that our optimization schemes outperform the fixed EL and the full path EL schemes.

Index Terms

Edge learning, Internet of Things, mixed integer nonlinear programming, unmanned ground vehicle.

I. INTRODUCTION

Edge learning (EL) is an emerging intelligent system that integrates ubiquitous sensing (e.g.,
camera, Lidar), wireless communication (e.g., cellular network, Wi-Fi), and machine learning
(e.g., regression, classification) [1]. In contrast to single-machine learning systems [2], [3] where
data needs to be centralized, EL does not have such drawbacks as sensing devices can share
resources with each other. With a growing number of participants, the learning performance
of EL can be improved. Furthermore, the EL system uses edge computing as a platform to
train and execute deep learning algorithms. Therefore, the enormous Internet of Things (IoT)
data and computing resources in the network become closer, which significantly reduces the
communication latency and loading to other part of the network. Based on the above reasons,
EL is envisioned as a necessary component in the sixth generation (6G) telecommunication
system [4], and is believed to accelerate the convergence of many relevant research fields
including industry electronics, unmanned systems, wireless communications, machine learning,

and automatic control.

A. Background

The development of EL is mainly based on the following techniques:

1) Internet of Things. The 10T is envisioned as a world-wide network infrastructure composed
of numerous embedded devices with sensors and electronics [5], [6]. In the IoT, the devices
are generally wireless-interconnected, and it is expected that the number of connected IoT
devices will exceed 50 billion by 2020 [7]. The gigantic quantities of 10T devices will

generate zillions Bytes of data, which consequently leads to a key challenge: The generated



2)

3)

massive data require intensive computation and energy resources for signal processing, while
the IoT devices are computation and energy limited [8].

Edge Computing. To address the challenges in IoT, edge computing (EC) deploys com-
puting servers at the edge of the network, which is in close proximity to the data source.
The vast available resources in the edge servers can be leveraged to provide elastic data
collection, storage, and processing power to support capability-constrained IoT devices [9],
[10]. Compared to the cloud computing paradigm, EC delivers several benefits, including
shortened service delay, reduced communication overhead, as well as increased security,
and is suitable for the scenarios involving delay-sensitive applications [11], [12].

Deep Learning. Recently, deep learning has been applied to many IoT applications, since
it can extract insights for high-quality decision making and trend prediction with the large-
scale data generated from enormous amount of IoT devices [13], [14]. In particular, with
the growing ubiquity of camera-enabled IoT devices, a huge volume of images are being
produced everyday, and convolutional neural networks (CNNs) have been considered as
the dominant strategy [15], [16]. However, the CNN models in existing research works are
mostly deployed at the cloud, and it is necessary to push the CNN models towards the edge

for IoT applications.

B. Challenges of EL and Proposed EL-UGV

In EL systems, there are three major challenges.

1y

2)

3)

Optimizing for Learning Performance. In traditional wireless communications, all data are
treated equally, and the objective is to maximize the system throughput under a variety
of budget constraints (e.g., power, time, bandwidth constraints). In contrast, wireless com-
munication in EL should maximize the learning performance. Therefore, it is necessary to
distinguish the value of data in the context of machine learning and transmit high-valued
data with priority.

Pathloss in Wireless Communications. In cloud learning systems, different devices are
connected via Internet. In contrast, the devices in EL are connected through wireless. Due
to signal attenuation during propagation of wireless signals, the performance of EL will be
limited by the pathloss and noises of wireless channels.

Limited Energy at IoT Devices. Due to the huge volume and the small size, most [oT devices

cannot employ large batteries. Therefore, their transmit powers are in the order of mW or



even uW, making it difficult to collect their data from far-away base stations.

In order to address the above challenges, this paper proposes a novel EL framework that
integrates unmanned ground vehicles (UGVs) into EL. The proposed framework is therefore
termed EL with UGV (EL-UGV). The EL-UGV consists of: 1) a sample size planning module
that collects more samples for difficult learning jobs and fewer samples for easy jobs; 2) a path
planning module that selects the target stopping points and the corresponding moving routes; 3)
an energy planning module that automatically finds the best trade-off between moving energy
and communicating energy. The three modules together contribute to a joint path, energy and
sample size planning (JPESP) optimization problem that maximizes the learning performance of
EL.

However, since the collected data samples could be imbalanced among different classes,
existing learning accuracy model in [17], [18] is not applicable. To maximize the learning
performance under imbalanced data, the proposed sample size model characterizes F-measure
as a function of the minority class sample size. On the other hand, a graph-based path planning
model and a network energy consumption model are used to describe the mobility of UGV
and the transmission costs at IoT. With the proposed models, the JPESP problem turns out to
be a large-scale mixed integer nonlinear programming (MINLP) problem, which is nontrivial
to solve due to the high-dimensional discontinuous variables related to UGV movement. To
this end, it is first proved that each 10T device should be served only once along the path, thus
allowing us to reduce the problem dimension by a factor of J (i.e., the number of UGV stopping
points). Furthermore, to handle the discontinuous variables, a tabu search (TS) based algorithm
is derived, which converges to the optimal solution of the JPESP problem. Simulation results
under different task scenarios verify our optimization scheme and show that the performance
outperforms other benchmark schemes such as the fixed EL and the full path EL schemes. To
sum up, the main contributions of the paper are listed as follows.

« First, we consider a novel UGV-enabled mobile EL communication (EL-UGV) system,
which supports multiple deep learning tasks and accesses the IoT devices via time division
multiple access (TDMA) protocol. To the best of the authors’ knowledge, currently there
is no research work focusing on the combination of UGV and EL.

« Next, considering the collected data samples are usually imbalanced, we use F-measure

instead of accuracy as the performance metric to evaluate the EL performance. Moreover, a



novel learning performance model that characterizes F-measure as a function of the minority
class sample size is proposed.

« Based on the proposed learning model, we then establish a JPESP problem that is maximiz-
ing the minimum F-measure for all tasks by jointly optimizing the UGV path, transmission
time, transmission power, and the minimum number of samples among all classes, subject
to constraints of communication capacity, total execution time, total energy consumption
and the graph mobility.

« Finally, to solve the challenging large-scale MINLP problem, we prove that each IoT device
should be served only once along the path and derive the TS-based algorithm to optimize

the UGV path. Simulation results are presented to validate our analysis.

C. Outline

The rest of this paper is organized as follows. Section II presents the related works on path
planning, energy planning, and sample size planning. Section III introduces the system model
for the EL-UGV system, which consists of path planning model, energy planning model, and
sample size planning model. Section IV proposes the F-measure model and its curve fitting
procedure. Section V formulates the JPESP problem, derives the TS-based path design algorithm,
and considers the practical implementation. Simulation results are presented in Section VI and
conclusions are drawn in Section VII.

Notation. Symbol notations are summarized in Table 1.

II. RELATED WORKS
A. Path Planning

For UGV [19], due to the limitation of energy resources and the hostility of wireless channel,
its path greatly influences the efficiency of data gathering and consequently affects the system
performance. While the path planning problem is extremely difficult to solve as it is NP-hard
[20]-[22], fortunately, the meta-heuristic search algorithm is a promising way to handle the
problem [23], and several meta-heuristic algorithm based methods have been presented to design
UGV’s optimal path so far. Adam et al. [24] proposed a modified particle swarm optimizer
(PSO) to heuristically solve the Solar-Powered UGV motion planning problem that minimizes
the travel time while considering the net energy constraint. Mohammad et al. [25] developed an

ant colony optimization strategy called green ant for UGV path planning that jointly considers



TABLE 1
SUMMARY OF SYMBOL NOTATIONS

Variable Description

s; €{0,1} s; = 1 represents the vertex j appears in the routing path; s; = 0 otherwise.

B, €1{0,1} E,,,, = 1 represents the edge (r;,7;) being involved in the path; E, . = 0 otherwise.
tu,} € [0, T3] Time (in s) allocated to device v when UGV is stopping at the vertex ;.

Du,j € [0, Pae] | Transmit power (in Watt) allocated to device u when UGV is stopping at the vertex j.
Parameter Description

U Number of IoT devices.

R Number of steps.

M Number of tasks.

Cm Number of classes of image samples for task m.

A The data amount (in bits) for each image sample.

(w,b) Parameters of CNN model, where w is the weights and b is the biases.

J Set of J vertices standing for the possible stopping points.

L Set of directed edges standing for the feasible movement routes.

R Routing path.

D;; Distance between vertex 4 and vertex j.

(71,72) Parameters related to the weight of UGV.

v Constant speed (in m/s) of the UGV.

T; Duration when UGV stops at vertex j.

Poos Maximum transmit power at devices.

e€ (0,1) Hyper-parameter that balances the energy consumption between UGV and devices.
P j Uplink channel from device u to UGV.

Geom The set of all devices transmitting the samples for class c of task m.
(01.m,02.m,03.,) | Parameters to be determined by the data sets and CNN model.

T Completion time (in s) including UGV moving and data transmission.

Eu Energy budget (in Joule).

o? Receiver additive white Gaussian noise (AWGN) power noise power (in Watt).

the UGV energy consumption. You-Chiun ef al. [26] used a local search based efficient path
planning algorithm for mobile sink to realize reliable data gathering. However, no methodology

of UGV’s path planning has yet been considered in EL systems.

B. Energy Planning

An important issue for wireless communication systems is energy planning. So far researchers
have applied joint time and power optimization approaches and energy minimization techniques.
For example, Qingqing et al. [27] jointly optimized time allocation and power control for
maximization of the weighted sum of the user energy efficiencies for wireless powered communi-
cations system. Following this, for the same system, Qingqing et al. [28] maximized the weighted
sum rate of the devices in the consideration of downlink and uplink time allocation and the power
control at the devices. Bin et al. [29] proposed a joint time scheduling and power allocation

scheme to optimize the sum-rate for relay assisted batteryless IoT Networks. Qizhong et al. [30]



minimized overall downlink and uplink energy consumption in WET-enabled Networks. Thang
X et al. [31] considered a energy minimization technique for cache-assisted content delivery
networks with wireless backhaul. However, there have been no detailed studies about energy

planning for UGV-based EL, taking into account the motion energy and communication energy.

C. Sample Size Planning

For sample size planning, the overall/average accuracy (OA/AA) is commonly used to assess
the effect of the dataset size on learning performance. For example, Junghwan et al [32] employed
the AA to exam learning performance at given training sample size in CNN-based medical image
classification systems. However, in practice the collected data are typically imbalanced (i.e., the
number of training samples in one class may be much less than that in another), and OA/AA is
not suitable for this case since it neglects the minority class and is strongly biased towards the
majority class, which leads to misleading conclusions [33], [34]. F-measure is a more favorable
and meaningful performance measure than OA/AA for the imbalanced data and has been widely
used in classification performance of CNN models in recent works. For example, Guanbin et
al. [35] employed F-measure to evaluate the performance of the proposed multiscale deep CNN
features based visual saliency model. Minghui et al. [36] investigated a CNN-based end-to-end
trainable fast scene text detector, i.e., TextBoxes++, and used F-measure as the performance
measure to verify its accuracy and efficiency. Prashant er al. [37] proposed a compact end-to-
end deep CNN for moving object detection named MSFgNet, and used F-measure to evaluate

its performance. However, very limited research has been focused on F-measure in EL system.

III. SYSTEM MODEL

We consider an UGV-enabled mobile ELL communication (EL-UGV) system shown in Fig. 1,
which consists of a surveillance UGV and U 10T devices. In particular, the goal of the UGV is
to train m classification models for object recognition by collecting C,, classes of image samples
observed at the U devices (e.g., camera sensors). It is assumed that each device transmits one
class of images for one learning task and the samples from each device are independently and
identically distributed. In order to achieve a satisfactory learning performance, deep learning
technique (e.g., AlexNet shown in Fig. 1), which uses multiple layers of nonlinear processing
units such that the end-to-end model matches the data very well, is adopted. However, the

samples for tuning the deep learning models’ parameters are generated from IoT devices that
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Fig. 1. The EL-UGV system model.

could be far away from the UGV. Therefore, the UGV needs to complete two steps: 1) move
around to approach various devices and 2) collect samples to learn from the data. Below, we

present the details of the two steps.

A. Path Planning Model

To model the mobility of UGV, a directed graph (7,£) is adopted, where J = {1,...,J}
denotes the set of .J vertices standing for the possible stopping points, and £ denotes the set of

directed edges standing for the feasible movement routes. Based on this graph, the UGV needs

to determine a routing path R = (ry,...,rg) withr; € J forany i =1,--- R and (r;,7;41) € L
forany ¢ = 1,--- R — 1, where R stands for the number of steps to be taken. This path can
be equivalently described by a vertex selection variable s = [s1,--- ,s;]7 and a path selection
matrix
Eqq - By
E = : (1
Eja Ey,
where we use s; = 1 if vertex j appears in the R and s; = 0 otherwise, and E,, ., , = 1 with
1=1,---,R—1 and zero otherwise. The vertex section variable and the path selection matrix

should satisfy E € Q(s), where

J J
Qs)=4E:> E . => E., =5V (2a)
=1 i=1



J
i —nj + <Z Sp — 1> Erj,m-

r=1

J
+ (Z Sr — 3) Ey..,

r=1

J
< ZST—2+J0(2—Si—Sj),
r=1

Vi,j>2,1%# ], (2b)
P

55 <m; < (Z Sp — 1) 55, Vj > 2, (2¢)
r=1

B €{0,1},Vi,j, E. . =0,Vj, (2d)

s1 =1, sjE{O,l},VjEQ}. (2e)

The constraint (2a) guarantees that each vertex in the routing path must have one edge pointing
toward it and the other edge pointing away from it. The constraints (2b) and (2c) are subtour
elimination constraints, which guarantee that the path must be connected. The constraint (2d)
represents whether edge (7, r;) from candidate ; to r; belongs to the routing path, and constraint
(2e) represents whether candidate vertex j appears in the routing path. Notice that {n; } represent

slack variables to guarantee a connected trajectory and .J, is a constant set to J, = 10°.

B. Energy Planning Model

Having specified the path planing model, the next step is to model the energy consumption,
which consists of two parts, i.e., UGV motion energy and users’ transmission energy. To compute
UGV motion energy, the moving distance is computed as Tr(DTE), where D, ; is the distance

between vertex i and vertex j'. Therefore, the total motion energy in Joule is given by

O(E) = Tr(D"E) x (ﬂ + 72) , 3)
N —’ v

Distance

where v is the UGV speed in m/s, and (7, 72) are parameters related to the weight of UGV
(e.g., for the considered Pioneer 3DX robot, we have v, = 0.29 and v, = 7.4 [38, Sec. IV-C].

'Notice that D; ; = 0 if i = j and D; ; = +oo if there is no feasible route between 4 and j.



Accordingly, the total motion time of UGV along path R can be expressed as

Tr(DTE
toay(E) = % )

On the other hand, without loss of generality, we suppose that the UGV stops at a particular
vertex j € R for a duration of 7). Out of this 7}, the UGV allocates ¢, ; < T} to collect samples
from device u € [1,U], and the transmit power at the IoT device u for uploading its data is
denoted as p,, ; with p,, ; < Pyax, Where P,y 18 the maximum transmit power of the devices. As
a result, the total transmission energy at IoT is given by Z;le 25:1 Pu,jlu,;- The total network

energy is

J U
U (B, {tu;:pui}) = YD Pujtuj + €O(E), (5)

7=1 u=1

where € € (0, 1) is a hyper-parameter that weights the energy consumption at UGV and devices.

C. Sample Size Planning Model

Having specified the path and energy models, the next step is to model the sample size planning
procedure. In particular, the number of samples z,, ; being transmitted by device u at vertex j is
proportional to the transmission time, and is also determined by the quality of wireless channel

for device u. By adopting the Shannon capacity theorem, x,, ; is upper bounded as:

Ty < ty; X Blog, (1 + 55 % pu]g—W) /A, (6)
where B is the bandwidth available for the system, h, ; € C is the uplink channel from device
u to the UGV, o? is the AWGN noise power, and A is the data amount in bits for each training
sample. Notice that the channel condition {%,;} can be pre-determined using ray-tracing methods
[39].

Based on the above sample size planning model, the total number of samples y.,, obtained

for training the class c of task m is

J
>0 auy, (7

uegc,m .7:1

where G.,, denotes the set of all devices transmitting the samples for class ¢ of task m, with

c=1,--,Cpandm=1,---, M.



IV. MODELING LEARNING PERFORMANCE
A. F-Measure Model

With the path planning, energy planning and sample size planning models, the remaining
question is how to model the learning performance of classifiers. While existing works mostly
focus on the OA/AA, these metrics are not applicable to the considered UGV edge deep learning
system. This is because the OA/AA merely reflects the overall/average classification performance
of all classes, and ignores the performance of the minority class (i.e., the class having the
minimum number of training samples). But since the UGV moves according to the planned
path, it is close to a part of devices while far from the others. As a result, the number of
samples can vary significantly for different classes, leading to imbalanced learning performance.

To account for the imbalanced samples, with the confusion matrix shown in Table II presented

in Appendix A, the F-measure ®,, is defined as:

2P, R,
b, = —— . 8
P+ R, (®)
where P,,, R,, represents precision and recall, respectively, and they are given by
TP
p =__ "™
™= Tp + Fp €)
TP
_ m ) 10
Fm TP,, + FN,, (10)

Now, to model the relationship between the samples size {y.,} and the F-measure, it is
necessary to develop a F-measure model. However, to the best of the authors’ knowledge,
currently there is no analytical model for predicting the F-measure given a certain dataset.
To this end, based on the definition in (8), it is observed that the F-measure has the following

features:
o ®,, is a monotonically increasing function of TP,,, which is proportional to the minimum
number of samples min, y.,, among all classes.
e O, is bounded as 0 < ®,, <1 as it represents a percentage.
o As min.y,.,, increases, V®,, would decrease and approach zero if min. y. ,, — +o0c.
Based on the above features, this paper proposes a nonlinear F-measure model as:

92,m
(Dm ({yc,m}) - Hl,m X ( min yc,m> + 03,m7 (11)

=1, :Cm



where (61 1,, 02.m, 05.,) are parameters to be determined by the data sets and deep leaning model.
Particularly, 0, ,, is expected to be positive, parameters ¢, ,,, and parameters ¢, have the same
sign, especially, when 6; ,,, > 0, 0 < 6,,, < 1. Notice that in contrast to the learning accuracy
model in [32], the proposed model in (11) adopts min.—; ... ¢,, Yem as the input of function,

thus allowing us to analyze the imbalanced data set.

B. Curve Fitting of F-measure

To verify the proposed model (11), we use the AlexNet [40] to fulfill two deep learning tasks,
and then fit the corresponding experimental data to the model (11). More specifically, our first
task is to classify 10 different categories (including airplane, birds, and etc.) in the CIFAR-10
dataset consisting of 60,000 32 x 32 color labeled images. On the other hand, our second task is
to classify 10 different categories (including T-shirts, trousers, and etc.) in the Fashion-MNIST
dataset consisting of 70,000 28 x 28 gray-scale labeled images. Without loss of generality,
the class “airplane” in CIFAR-10 and the class “T-shirt” in Fashion-MNIST are chosen as the
minority class, respectively. In particular, we consider the minority classes (i.e., airplane and
T-shirt) ranges from 50 to 2600, while the number of samples for the other classes is set to
2600. In both experiments, for training the AlexNet model, we take 80% of the data samples as
training data to learn the parameters (w, b), where w and b are weights and biases of the model
respectively, and take the remaining 20% as the validation data to finetune hyperparameters
and guide the design of proper network architectures. Accordingly, we use a batch size of 32,
a weight decay of 0.0005, a momentum rate of 0.9, and a learning rate of 0.005 for 10000
iterations. Furthermore, graphic processing units (GPUs) are used in order to speed up the
training procedure.

Under the above settings, the F-measure versus the number of samples for the minority class
(i.e., the red and blue solid line, and the red and blue points) is shown in Fig. 2 (a). The
corresponding coefficients of the F-measure model for task 1 is given by ¢, 1 = —3.742, 05 =
—0.3957 and 63, = 1.04. And that for task 2 is given by ¢, o = —0.9465, 0,5 = —0.3852 and
052 = 0.955. It can be seen that the proposed nonlinear F-measure model (i.e. red and blue solid
line) matches the experimental data (i.e., red and blue points) very well, no matter we use the
CIFAR-10 or Fashion-MNIST dataset. On the other hand, all curves increase significantly with

the the number of samples for the minority class. This corroborates the discussions in Section
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II-C that the F-measure is determined by the minority class instead of the average sample size
(notice that all the other classes have fixed number of samples).
Remark. One may also adopt the OA model when the numbers of samples for different

classes of task m are the same:

By ({Yern}) = CLm¥i + Cam, (12)

where {Ci.m, Com,(3m} are parameters to be fitted. To verify the proposed model (12), we
consider the same learning model and hyper-parameters in Section IV-B. By ranging the number
of samples for each class from 50 to 2600, we compute the OA =,, as:

_ TP,, + TN,,
- TP,, + TN,, + FP,, + FN,,,’

—_

(13)



where {TP,,, TN,,, FP,,, FN,,,} are defined in Table II. By fitting the model (12) to the experi-
mental data, the parameters in the OA model are given by (1 1, (2.1, (31) = (—1.64, —0.1803, 1.263)
for task 1, and ((y.92, (22, (32) = (—0.5914, —0.1927,1.05) for task 2. The OA versus the number
of samples for each class is shown in Fig. 2 (b). It can be seen that the proposed OA model

matches the experimental data of both tasks very well.

V. JOINT PATH, ENERGY AND SAMPLE SIZE PLANNING
A. Problem Formulation

With the F-measure model, we establish a JPESP problem focusing on a max-min fairness
F-measure design. The considered problem is to maximize the minimum F-measure @4, ..., ®,,
for all tasks by planning the UGV path (including vertex selection variable s and selection
matrix E), scheduling the wireless resources (including transmission time {¢,, ;} and transmission
power {p, ;}), and the minimum number of samples among all classes {min.y.,,}, subjecting
to constraints of communication capacity, total execution time, total energy consumption and the

graph mobility. To this end, an optimization problem is formulated as:

Sva{am}
{tu,j»pu,j}

P1: max nvr/lin (91,,,104?,3”" + 037m>

. B
s.t. O{mg Z Ztu,jz

u€Ge,m j=1
u,J hu I
log, (1 + sﬁ#) ,  Ve,m, (14a)
o
E € Q(s), (14b)
J U
Tr(DTE
SN bt DE) 7, (14c)
j=1 u=1 v
v (Ea {tu,japud}) < Eally (14d)
(1= sj)tu; =0, Vu,j, (14e)
tu,j Z 07 pu,j 2 07 vumja (14f)

where «,, = min, Ye .
« The constraint (14a) is the capacity limitation; it means that the number of training samples

a,, should not be greater than the number of collected samples.



o The constraint (14b) is the mobility management constraint; it describes the constraint of
graph-based path [41].
o The constraint (14c¢) ensures that the execution including UGV moving and data transmission
to be completed in 77; seconds [42].
o The constraint (14d) guarantees that the total energy consumption of the UGV and the
devices cannot exceed the energy budget E,; [19], [42].
« The constraint (14e) ensures that if the vertex j is not visited, the transmission time {t,, ;}
must be zero.
o The constraint (14f) is the non-negativity constraints on the optimization variables.
However, problem P1 is a large-scale MINLP problem, which is nontrivial to solve due to the
discontinuity of (s, E). While a naive brute-force search can obtain the global optimal solution,
it involves exponential computational complexities. On the other hand, existing algorithms such
as local search [43] may lead to local optimum or on plateaus where many solutions are equally
fit. To this end, in the following, we will derive an efficient tabu search (TS) algorithm based

UGV’s path planning method that converges to the optimal solution to P1 with high probability.

B. Tabu Search Algorithm

To facilitate the derivation of TS-based algorithm, we need to reformulate P1 into a compact

form. By defining

Fuj = |h;—§‘2 (15)
and a function
Q(s) = {rg}nn (91%@5’37”1 + 93,m> : (14a) — (14f)}, (16)
problem P1 can be transformed into an equivalent problem only involving s:
P2: max Q(s)
st. sp=1,s;€{0,1},Vj>2 (17a)

Now, in order to address the challenge brought by the discontinuity of s in P2, this section
will consider a meta-heuristic algorithm termed TS [44], which is based on local search and a

tabu list Z. The idea of TS is to avoid getting stuck at a local optimal point by maintaining a



tabu list Z. The tabu list Z records the obtained local solutions that have tabu status and cannot
be visited currently (but may be visited after a chosen number of iterations). Moreover, the tabu
restriction of a solution can be overridden if the solution passes an aspiration level u, where p
is the objective value of the best solution that has been found so far [45].

Notice that the maximum tabu list size L of Z will affect the convergence speed and per-
formance of TS. More specifically, a larger L will prune more solutions, which results in slow
convergence of TS. On the other hand, a smaller L will cause cycling of solutions, which results
in suboptimal performance of TS. Therefore, the L is a hyper-parameter that needs to be tuned
carefully (e.g., L = 10 in this paper). Finally, given the list size L, the list content is not fixed,
meaning that it can either add or revoke an element based on the new solution produced in each
iteration.

Based on the above descriptions, the TS algorithm for solving P2 is as follows.

« Step 1. Generate an initial solution s, (e.g., sp = [1,0,...,0]7), and set the current solution

s. and the best solution s* as s, = s* = sg.

« Step 2. Select a neighboring solution within A/ (s,), which is the non-tabu solution yielding
the highest objective function value €2 or the tabu solution passing the aspiration level . To
reduce the computational complexity, this step can be implemented via random sampling.

o Step 3. Refresh the tabu list as well as s*.

o Step 4. Terminate the process if the maximum number of iterations iter has been reached
(or no improvement in s* has been found after a maximum number of iterations) and set
optimal s* = s*. Otherwise go to Step 2.

Notice that N (s.) in Step 2 is the neighborhood of s.. Since s is a binary variable, a natural

N (s.) can be defined as:
N(sc) ={s:|ls—slo < Z, sell}, (18)

where 7 is the size of its neighborhood and II is entire solution space. The detailed description

of the TS is shown in Algorithm 1.

C. Computing ) with Fixed s

To execute Algorithm 1, the remaining task is to compute Q(s) for s = s°, where s° is any

feasible solution to P2. Based on the expression of (s) in (16), computing €2 is equivalently to



Algorithm 1 Solve JPESP proplem via TS
1: Initialize iter = 0 and Z = (). Set L = 10 and Z = 3.

2. Initialize s, = s* = sq = [1,0,...,0]7.

3: Repeat:

4. Generate a set A with sufficiently large |.A| and each element randomly sampled from
N(s.).

5. For all xI"l in A:

6 Solve P3 with s = x"! to obtain EI"],

7: Solve P6 with s = x[ and E to obtain {ozﬁ ,tL"]],pul}

8 Compute Q(x") with x", EI", {al2) ¢ j, Pl J}

9:  Permute A into B = {x[1 ... x ‘A”} such that Q(x[1) > Q(x@) > ... QM)

10.  Forn=1to |A]

11: If Q(xI") > Q(s*): (Update Solution)

12: Set s* < x™. (Update UGV visiting points)

13: Set E* < E[”]. (Update UGV path)

14: Set {a*m — am } (Update sample size)

15: Set {t;, ; [ } (Update transmission time)

16: Set {pu e pu ]} (Update transmission energy)

17: If x"l ¢ T: (Update Tabu List)

18: If |Z| < L:

19: Update Z = Z |J{x™} and set s + x.

20: Else:

21: Find z = argming_; Q(x™).

22: Update Z =T \ {z} U{x} and set s, + x[".

23: End If

24: Else:

25: If Q(xI") > p:

26: Update 1 = Q(x).

27: Update Z = 7 \ {x["} and set s, < x",

28: End If

29: End If

30. End For

31:  Update iter <— iter + 1.

32: Until iter = iter.

33: Set optimal s* = s*, E* = E*, {a;, = ay,}, {5, =1, ;}, and {p;, ; = p ;}.
34: Output s*, E*, {a),,t; ., ps i}

handling the following problem related to the path selection matrix E and the wireless resources

{tu,japu,j}:

P3: max min <91,maf§’m + 937m>

E{am} Vm
{tu,j,Pu,j}



J
s.t. Oy < Z th-B/A

u€Ge,m j=1

logy (1+ 85 X Fujpu;), Ve,m, (19a)
E € Q(s%), (19b)
(1—)tu; =0, Vu,j, (19¢)
tu,j 2 O) pu,] Z 07 vu7j7 (19d)

J U

Tr(DTE

DY tuy L IDE) g (19)
7j=1 u=1

J U
ZZPU;tUJ +€@ ) all (19f)
7j=1 u=1

To solve P3, the first challenge comes from the discrete constraint of E in (19b). Fortunately,
it can be seen that the variable E is only involved in (19b), (19¢) and (19f). Furthermore,
decreasing Tr(DTE) in (19¢) would also decrease ©(E) in (19f), which enlarges the feasible
set of P3. As a result, the optimal solution E°® to P3 is given by:

E° = argmin {Tr(D'E) : E € Q(s°)}. (20)
E

Since the above problem (20) is a travelling salesman problem, E° can be efficiently found
by one-tree relaxation algorithm in the CVX Mosek solver [46]. With E = E°, the optimization

P3 can be transformed into the following problem involving {t, ;, pu.;, m }:

{am}, vm
{tu,j:pu,j}

P4: max min (917mafjvm + 6’37m>

J
st am < Y th-B/A

uegc,m j:l

log, (1 + s Fu]pu]) Ve, m, (21a)
tu;j >0, pu; >0, Vu,j, (21b)

J U
>N tugpu + €O(E) < Ea, 21c)
j=1 u=1

J U

Tr(DTE®

St s BOE) o 1)



(1= s{)tu; =0, Vu,j. (2le)

However, the dimension of variables in P4 is M + 2UJ, which is too large if the number of
vertices J is large. To this end, the following proposition is established to reduce the problem

dimension.

Theorem 1. The optimal {t; ;,p; ;} to P4 satisfies:

(1) Ift;; # 0, then pj, ; # 0.
(i) If j = argmax ;s7F,, then th’j # 0.
(iii) If j # argmax,c 787 Fy, then ty ; = 0.

Proof. See Appendix B [

Insights of Theorem 1. Part (i) of Theorem 1 indicates that the UGV should leave no blank
time, which is in contrast to the fixed EL systems that may have blank time for energy saving.
Part (ii) and (iii) of Theorem 1 indicates that each IoT device should be served only once along
the path, and the corresponding position has the best channel among all selected positions to
that device.

According to Theorem 1, we can add the following equality constraints to P4 without changing
the optimal solution:

ey, if j=argmax s/F,,

tu; = e : (22)

0, if j# argmax s7F,,
leg

and

fu, if j =argmax s;F,,
leg
Puj = ; (23)

0, if j# argmax s;F,,
leg
where e, > 0 according to (ii) of Theorem 1, and f, > 0 according to (i) of Theorem 1.
Theorem 1 indicates that for each m, the UGV only needs to allocate time to device u at

vertex j = argmaxc ;s; [, and should save transmission time and energy at other vertices.

Subsequently, by putting (22) and (23) into P7 (an equivalent form of P4, see proof of theorem



1 in appendix B), P4 is equivalently transformed into:

P5: max
{am}7

{eu >O,fu>0}

s.t.

(91,ma%’m + 93,m)

Oy, — Z euB/A
Uegc,m
logy (1 + M, (s°)fu) <0, Ye,m
U
> eufu+ O(E?)
u=1
EmEalla Vm

<
i Cy +——— DTEQ)

< ﬁ mTalh vm

e, >0, fu>0,

M M
Z BE,m =1 Z BT,m = ]-a
m=1 m=1

20

(24a)

(24b)

(24c¢)

(24d)

(24e)

where M, (s®) := max;sj F,;, which is a constant with s; = s{. However, the {e,, f,} optimiza-

tion problem in the form of P5 is still difficult to solve due to the nonlinear coupling between

e, and f, in (24a) and (24b). To address this problem, we replace {f,} with new variables {d,}

such that {0, := ¢, f,}. As such, the optimization problem P5 becomes:

P6 :

{eu>0,04 >0}

s.t.

log, (1 + 5—“Mu(s°)> <0, Ve,m
€y

U
Z 6u + €@(EO> < BE,mEallu ‘v’m,

Z . DTE°)

(25a)

(25b)
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< BT,mTalb Vm? (25C)

ey >0, 9,>0, (25d)
M M

> Bem=1 Y Brm=1, (25¢)
m=1 m=1

It can be seen that the variable dimension in problem P6 is only 2U + M, which is reduced by a
factor of J compared with the variable dimension in problem P4. Therefore, solving P6 requires a
complexity of O ([2U + M ]3'5) , which is significantly smaller than O ([2UJ + M ]3'5) for solving

P4. Meanwhile, the solutions {e?, 6, o } can be obtained by the following proposition.
Proposition 1. P6 is a convex optimization problem.

Proof. See Appendix C [

According to Proposition 1, P6 can be solved by the existing solvers, e.g. CVX [47]. After
obtaining the solutions {eg, 62}, the optimal {fo} to P6 can be computed by {fS = §5/ed}.

D. Practical Implementation

The entire procedure of EL at UGV is shown in Fig. 3. It can be seen from Fig. 3 that the
EL at UGV is divided into three phases: 1) parameter estimation phase; 2) data collection with
JPESP problem phase; and 3) model training at the edge phase. The AlexNet is used in phase
1 and phase 3.

During phase 1, one may wonder how could one obtain the fitted F-measure model before the
actual AlexNet model is being trained. This can be done via extrapolation [48]. More specifically,
in real-world applications, the data is being generated everyday at the [oT infrastructures [49].
For example, in Internet of vehicles [50], the on-board data (e.g., images, videos, LiDAR point
clouds) needs to be uploaded to the edge or cloud platform for big data analysis. In such a
scenario, it is not likely that the data is uploaded only once. Instead, the data is uploaded
multiple times [51] (e.g., twice a day/week). Therefore, there exist historical dataset samples at
the UGV edge and the F-measure can be obtained by fitting the corresponding coefficients to
the historical dataset. More specifically, by varying the samples sizes from 50 to 1700, we can
obtain (01,651,6031) = (—3.167,—0.3208, 1.149) for task 1 (the purple dashed line in Fig. 2
(a)) and (612, 60229,052) = (—1.035,—0.4193,0.9456) for task 2 (the black dashed line in Fig. 2

(a)). It can be seen from Fig. 2 (a) that the fitting performance based on small historical dataset
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Fig. 3. The entire procedure for practical implementation.
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(i.e. the purple and black dashed lines) is slightly worse than that based on full dataset (i.e. the

red and blue solid lines). But since our goal is to distinguish different task difficulties rather

than accurate prediction of the F-measure values, the extrapolation method can still guide the

JPESP design at the UGV and the IoT devices.

Notice that if there exist historical samples at the UGV, the total number of samples vy,

obtained for training the class ¢ of task m (7) is redefined as:

J
Yem = § § Loy, j + Qe m,

uegc,m ]:1

where a.,, is the number of historical samples for class c of task m at the UGV edge.

Accordingly, the first constraint of P1 becomes:

! B pu“hu"2
S

uegc,m j=1

o

Cm
+§ Ay, VC,M
c=1

(26)

27)

comparing (27) with the first constraint in P1, it can be seen that the only difference is the



23

additional constant term ZCC;”I c,m 10 (27). Therefore, the convexity of the problem is unchanged,

and the proposed Algorithm 1 is still applicable.

VI. SIMULATION AND DISCUSSION

In this section, simulations are provided to evaluate the system performance of the EL-UGV
system. The simulation settings are set as follows unless specified otherwise. The time budget
T, and energy budget E,; are set to be 1,; = 300 s and E,; = 2000 Joule, respectively. The

data collection map is a 20m x 20m = 400 m?

square area. Within the map, J = 12 vertices
are uniformly scattered wherein j = 1 is chosen as the starting point of the UGV. The channel
h, ; from IoT device u to vertex j is modeled as ~ CAN (0, po(d.. ;/do) ) [52], where d; ; is the
distance between u to j and py = 1072 is the path-loss at dy = 1, and the channel bandwidth B
is set as 0.18 MHz. For comparison, two benchmark schemes are simulated: 1) Fixed EL (i.e.,

optimal solution to P1 with s = [1,0, ..., 0]"; 2) full path EL (i.e., optimal solution to P1 with
s=[L1,..,17D).

A. Verification of Theoretical Results

To verify the benefit brought by the F-measure model, we first simulate the fixed EL and full
path EL schemes with or without the F-measure model. For the schemes without the F-measure
model, the power and time resources are optimized for maximizing the minimum throughput
among all devices [53]. Fig. 4 (a) shows the learning performance versus the noise power o2. It
can be seen that the full path EL scheme achieves better performance that that of the fixed EL
scheme, and the gap quantifies the benefit by allowing the edge to move. Furthermore, no matter
the UGV is fixed at the starting point or moving around, the schemes based on the F-measure
model always achieves much higher learning performance than those without F-measure model.
This indicates that it is necessary to adopt the F-measure model for energy and sample size
planning .

Next, to verify the significance of Theorem 1, we consider the following schemes: 1) TS
scheme based on PG6; 2) TS scheme based on P4 for running time comparison using Matlab on a
computer equipped with Intel Core E5-26200 2GB, and 32GB RAM memory. Fig. 4 (b) shows
the running time of the two schemes versus the number of iterations, with each point in Fig.

4 (b) averaged over 10 independent channel realizations. From Fig. 4 (b), it is observed that
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Fig. 4. Verification of theoretical results. (a) is the comparison between schemes with and without the F-measure model. (b) is
running time versus the number of iterations for TS scheme based on P4 and P6.

TS scheme based on P6 takes less running time than that based on P4 at the same number of
iterations. On the other hand, since P4 is equivalent to P6, the TS scheme based on P4 and P6
would require the same number of iterations for convergence. Therefore, TS scheme based on
P6 is faster than that based on P4. Moreover, the gap of running time between the two schemes
significantly increases as the number of iterations increase. This corroborates the fact that the

variable dimension of P6 is reduced by using Theorem 1.

B. Single-Task Scenario

Now, we consider a single-task scenario with total U = 10 IoT devices, and classify 10
different categories using CIFAR-10 dataset. Fig. 5 (a) shows the F-measure versus the noise
power o2. It can be observed from Fig. 5 (a) that the performance of all schemes decreases when
the noise power increases, as a larger noise leads to a smaller data-rate, which in turn decreases
the learning performance. Furthermore, the proposed UGV-based TS algorithm achieves the

best learning performance compared to the full path EL scheme and the fixed EL scheme. More
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Fig. 5. The system performance and optimal path for single-task scenario wherein U = 10, J = 12.

specifically, when o is small (e.g., -110 dBm), the UGV can easily collect data samples without
moving to far-away vertices (with the moving path being the red dashed line shown in Fig. 5 (b)),
which saves motion energy and time consumption compared to full path EL scheme. Therefore,
the proposed TS scheme collects more training samples and achieves a higher F-measure. On
the other hand, when o2 is large (e.g., -80 dBm), the proposed scheme allows the UGV to move
closer to far-away IoT devices (with the moving path being the black line shown in Fig. 5 (b)),
which combats against the noisy channel by reducing the path-loss. Therefore, the proposed TS
scheme also collects more training samples and outperforms the fixed EL scheme.

To further evaluate the performance of the proposed algorithm, practical items including the
the sample size, F-measure, the total transmission time, and the overall transmission energy of
the three schemes are shown in Fig. 5 (c). It can be seen from Fig. 5 (c) that the proposed
scheme achieves the highest F-measure score (0.865). This is because the proposed algorithm
can automatically determine whether to move and how far to move, and find the best trade-off
between moving and communicating. Therefore, with the proposed algorithm, the edge collects

the most samples (2260) for the minority class.

C. Two-Task Scenario

In such scenario, we consider the case of U = 20 and M = 2. The first task is to classify
the CIFAR-10 dataset into 10 categories, and the second task is to classify the MNIST fashion
dataset into 10 categories. The 20 categories are distributed at the data of these 20 devices,
with each device providing the training samples of a particular category. We adopt the values of

{601 m, 02.m,03.m }M_, in Section IV-B.
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Fig. 6. The system performance and optimal path for two-task scenario when U = 20, J = 12.

To evaluate the superiority of the proposed algorithm, we compare the total F-measure (i.e.
we first compute F-measure of task 1 and F-measure of task 2 respectively, and then take the
minimum of the two F-measures as the total F-measure) of different schemes. The performance
brought by total F-measure model is demonstrated in Figure 6 (a). It can be seen from Fig. 6
(a) that the proposed algorithm still achieves the largest F-measure over a wide range of noise
power. Similar to the single-task case, the UGV should increase its path length when the noise
power increases as shown in Fig. 6 (b). However, in addition to the above feature, the proposed
TS scheme always chooses the positions that are closer to the IoT devices of task 1 (as shown
in Fig. 6 (b)). This is because the task 1 needs to classify the CIFAR-10 dataset, which is much
more challenging than the MNIST dataset in task 2. As a result, in order to achieves the best
F-measure learning performance, more time and energy resources need to be allocated to task 1
(the total transmission time is 209.48 s and the overall transmission energy is 2.09 Joule shown
in Fig. 6 (c)) to collect more samples of it (1526). This indicates that the proposed TS scheme
can not only find the best trade-off between moving and communicating, but also can adapt to
the difficulty and importance of different tasks. Furthermore, it can be seen from Fig. 6 (c),
for the two-task scenario, the proposed scheme achieves the highest F-measure of 0.86, and the
sample sizes of it for both task 1 and task 2 are also the largest (1526 for task 1 and 210 for
task 2).

D. Comparison with Related Works

Existing works have studied the energy planning problem [55] or the UGV path planning

problem [56]. While [55], [56] aim to maximize the communication throughput instead of the
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learning performance (e.g., F-measure adopted in this paper), they have employed the same
multiple access scheme (i.e., time division multiple access (TDMA)) as our EL system. Therefore,
the two algorithms can be applied to our considered UGV edge learning system with some minor
modifications. Specifically,
« For problem (4a)-(4d) in [55], we set 7o = 0 in (4a)-(4d) and v, = py1|h.1|?0? in (4a),
and replace the constraint (4b) with Zszl prtr < Egy. Then the TDMA scheme in [55]
becomes the throughput maximization scheme with fixed UGV in our EL systems.

a

« For problem (7) in [56], we set ¢ = x¢/log2(x¢) in (7) and write the data amount xai
based on the Shannon information theory as z7 = t¢Blogs(1 + s*)p?|h?|?/o? (notice that
h{ = h, ;). Then the problem (7) in [56] becomes the throughput maximization scheme

with UGV path planning.

Based on the above descriptions, we simulate the two-task scenario and compare our proposed
EL-UGV scheme with the throughput maximization scheme with energy planning [55] and
the throughput maximization scheme with UGV path planning [56]. For the communication
procedure, we adopt the same parameters as those in Section VI but with the bandwidth B = 0.3
MHz. For the learning procedure, the AlexNet is trained with a batch size of 32, a weight decay of
0.0005, a momentum rate of 0.9, and a learning rate of 0.005. After training for 10000 iterations,
the trained AlexNet is tested on a dataset with 1000 unseen images (each class has 100 images).
The parameters of the F-measure model are estimated by using 1700 historical samples (the
number of historical samples of all classes is 1700), and they are given by (0;1,61,6031) =
(—1.961, —0.09712, 1.795) for task 1 (6 2,022,652) = (—0.755, —0.08913, 1.302) for task 2.

Under the above setting, the total transmission time, the total transmission energy and the
minimum sample size among all classes are obtained by executing Algorithm 1. For both deep
learning tasks, we train the AlexNet according to the sample sizes of all classes obtained from the
simulated algorithms (including Algorithm 1, [55] and [56]) and calculate the total F-measure
scores for all the schemes. It can be seen from Fig. 7 (a) that the proposed EL-UGV scheme
achieves the highest F-measure score. This is because the proposed scheme “learns” that the task
1 is more difficult than task 2, and allocates more transmission time and transmission energy
to task 1. In particular, with our proposed scheme, the transmission time for task 1 is 212.0 s
as in Fig. 7 (a)c and the transmission energy for task 1 is 2.08 Joule as in Fig. 7 (a)d. Both

values are the largest among all the simulated schemes. As a result, with the proposed scheme,
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the edge is able to collect more samples for training task 1 (collecting 4210 samples as shown
in Fig. 7 (a)b), and therefore the F-measure is significantly increased compared with [55] and
[56]. Notice that the proposed scheme achieves the smallest total transmission time (221.2 s)
and total transmission energy (2.18 Joule), meaning that the proposed scheme can also benefit

the energy saving at IoT devices.

VII. CONCLUSIONS

In this paper, UGV was considered in EL for collecting data and training the deep learning
models. In order to jointly plan the UGV path, the devices’ energy consumption, and the number
of training samples for different jobs, the graph-based path planning model, the network energy
consumption model and the sample size planning model that is based on F-measure and minority
class sample size were proposed. With these models, a JPESP problem that maximizes the
minimum F-measure for all tasks was established. Since the problem is a large-scale MINLP,
it was proved that each IoT device should be served only once along the path and a TS-based
algorithm for optimizing the UGV path was derived. Simulations demonstrated that the proposed
algorithm realizes a trade-off between moving and communicating, and adapts to the difficulty

and importance for various tasks.

APPENDIX A

CONFUSION MATRIX

TABLE 1I
Confusion Matrix

Truth / Prediction Positive Negative
Positive TP,, FN,,
Negative FP,, TN,,

In Table II, “positive” means “minority class” and “negative” means “other classes”. The
values (TP,,, FN,,,FP,,, TN,,) represent the number of samples under different combinations
for task m. For example, TP,, is the number of samples which belongs to the minority class
while being classified correctly; FN,, is the number of samples which belongs to the minority
class while being classified incorrectly; TN,, is the number of samples which belongs to other

classes while being classified correctly.
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APPENDIX B

PROOF OF THEOREM 1

We assume that o ,, = 0. To prove this theorem, we need the following lemma.

Lemma 1. There always exist {Bg.m, Br.m} with S0 Bom = 1 and SN Br, = 1 such

that P4 is equivalent to :

{tu,j:Pu,5}

J
s.t. oy, < Z thB/A

’U»egc,m Jj=1
log, (1 + stu,jpu,j) . Ve,m, (282)
tu; >0, puj >0, Vu,j, (28Db)
J U
Z Z tu,jPu; + €O(E?)
=1 u=1
< BemPan, Vm, (28¢)
& Tr(DTE®)
SO
X v
7=1 u=1
< BrwmTan,  Ym, (28d)
(1= s)tu; =0, Vu,j, (28e)

where (g, denotes the proportion of energy requirement for completing task m to Eq;, and

Br.m denotes the proportion of time requirement for completing task m to Tgy.

Proof. Assume an optimal solution {¢? . p5 .} to P7 with a particular (a,b) such that ¢, =t

and p;, = p®. As (tap,pap) = (t°,p") is optimal to P7, it must satisfy the constraints (28c)
and (28d) of P7, that is:

tApA + Cl S BE,mEallu \V/m, (29)

tA + 02 S BT,mTally vm7
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where

Ci=) > tujpu;+eO(E), (30)
(.4)#(a,b)
DTEO)
=22 tuit
(.4 #(a,b)

Since 0 < Bg,m <1 and 0 < B7,, <1 for any m, we have:

t°p® +Cy < Ean,  Vm, €19

tA + C(2 < Talla vVm.

That means the constraints (21c) and (21d) in P4 are hold. Moreover, assuming the optimal

solutions {a?, } to P7 such that {a’ } = {4 }, then we have
91 m( )92m + 03m > 91 ma92m + 93 ;M vm? (32)
which leads to

min (91 m(al)2m 4 gy ) > min (917maf§’m + 937m>. (33)

m

That means the objective function of P4 holds. Meanwhile, as the constraints (21a) and (21e)
of P4 are the same as the constrains (28a) and (28e) of P7, they always hold with the optimal
solutions {a?,, ¢ pa7b} of P7. In summary, the optimal solutions {a?,, tz,jypfhj} of P7 are also

m’ “a,b?

optimal to P4, which means P4 can be equivalently converted into P7. [

A. Proof of Part (i)

Then, we can prove this theorem based on P7. We first prove the first part. Since the optimal

solution {«,,} must activate the constraint (28a) of P7, which leads to:

J
Yy, = Z thjB/AlOgZ (]. + SjFu,jpu,j) ) ‘v’c,m (34)

Uegc,m j=1
then P7 can be re-expressed as:

J
PS8 ma>}§ (‘93,m + 81,m< Z Z tuJB/A

{am A
{tu,jPu,j} u€Ge,m J=1
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02,771
log2<1 + stu,jpu,j>) >,

s.t. (28b) — (28e). (35a)

Assume an optimal solution {t¢, .} to P8 with a particular (v,w) such that ¢, , = t#£0

u,j) Pl u,J
and the corresponding p; ,, = 0, where user v stores samples of class ¢ of task m. Consider the
following related problem by fixing all the variables to their optimal values except for (¢, ., Pv.w):

P9 : max_ (91,m (A1 + tywB/A X log, (1

ty,w,Pv,w >

o 92,m
+ SwFU,wpv,w>> + 03,m>7

s.t. A2 + tv,wpv,w S 5E,mEall; vm (363)
A3 + tv,w S 5T,mTalla vm (36b)
M M
Y Bem=1, Y Brm=1, (36¢)
m=1 m=1
where
ZZ te;B/A X log, (1+ 55 wpzyj) ,
(w,3)#(v,w)
= DD tuply + o),
(u.9)#(v,w)
=Y > 2, +Tr(D"E)/v.
(w,g)#(v,w)
As {t; ;,p; ;} is optimal to P8, it can be shown that (t,., Pvw) = (t,0) is optimal to P9.

Then, putting (£,0) into the objective function of P9, we have 6, ,A,%™ + 6s,,. Considering
another solution (t,.,, p,.w) = (£,) and putting it into the same objective function, we have
61 .m (A1 +tB/A x log, (1 + stFvywﬁ))QZ’m + 05,,. Due to (ty ., Opw) = (£,0) is of optimal to

P9, we can obtain the following inequality:
Ay +1BJA x logy (1 + 85 F,wp) < Ay (37

But since s3,F, ., # 0 (as ¢, # 0, s, = 1 from (28e)), we have i x log, (1 + s, F, ,p) > 0,
which leads to A; +tB/A x log, (1 + 5% F, ,p) > Aj, and it contradicts to (37), that is to say
(to,w, Pow) = (£,0) cannot be optimal to P8. Therefore, pS,, # 0. Next, we prove the second
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part.

B. Proof of Part (ii)

<&
u

To prove (ii), we also assume {t j» P j} as an optimal solution to P8. Suppose that there exists

user v stored samples of class c¢ for task m such that 7 = 0 at vertex w = argmazic7s; Fuy,
then there must exist w’ # w such that o = t # 0 and Py =P #0.

Construct a new related problem of P8 by fixing all the variables to their optimal values

except for (tv,wv pv,wa tv,w’: pv,w’):

max <917m (All + tywB/A X log, (1
tv,w,pv,wzo
tv,w/ 7p'u,w, 20

+ SZ;Fv,wpv,w> + Zfv,w’B/AA
02,m
X 10g2 <1 + SZ]’ Fv,w’pv,w’))
+ O3 )
s.t. A12 + tv,w + tv,w’ S BT,mTalla vm (383.)

A13 + Zfv,wpv,w + Zfv,w’pv,w’

< BemEai, Ym (38b)
M M
> Brm=1, > Bem=1, (38¢)
m=1 m=1
where
An= > > £,B/Axlog, (1+siF.p5;) .

(u.9)&{(v,w),(v,w')}

A= Y.> &, +Tr(D"E)/o,

(u.9)E{(v,w), (v,w')}

Az = Z Z te iPu; + €O(E?).
(w,g)#{ (v,w), (v,w')}
Furthermore, under {t; ;,p; ;} with t;,, = 0, it can be seen that (ty,w, Pv,w: tv,u Pow) =
(0,15 > t,p) is optimal to problem in (38), then, (0, Py t,p) must satisfy constraints (38a) and
(38b), that is:

Ao+t < BrmTan, Az + 19 < BemBan- (39)
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Comparing (39) with (38a) and (38b), it is evident that (¢, v, Py w, to,ws Pow ) = (f, D, O,p&w,) is
also feasible for the two constraints. Then, substituting the two solutions (£, ., Dv.w; tvw's Po.w ) =
(0,954, £, D) and (., Pows towrs Pow) = (£, 5,0,5,,) into the objective function of problem

in (38), we can obtain:
O1.m (Any +EB/A x 10gy (1 + 55 Fy )™ + O.m, (40)

and

O1m (A1 + EB/A x 10gy (14 55 Fyf)) ™™ + O . (41)

Since (tyw, Dows to.w's Do) = (O,pﬁ,w,f, p) is optimal to problem in (38), the following
inequality is obtained from (40) and (41):

logy (1 + 55, Fywp) — logy (1 + 50 F, D) > 0. (42)
By using Jensens inequality, we have

logy (s Fyw D — SpFywD)

> log, (14 85, Fywp) — logy (1 + 5 F, wp) > 0, (43)

which leads to s°,F, .p > s, F,.p and subsequently results in s, F,, > siF,,, but it

contradicts to w = argmaxcys;F,;. Consequently, t;;w # 0 at vertex w = argmazess; Fy.

C. Proof of Part (iii)

To prove part (iii), we assume that there exists user v stored samples of class ¢ for task m,
such that 77, # 0 at vertex w’ # argmarezs;F,,. In addition, based on the part A of this
Appendix, we have 7, # 0 at vertex w = argmareys;F,,;. Accordingly, given part (i) of
Theorem 1, we also have p; ,/p; ., # 0.

Then, the partial Lagrangian of P7 corresponding to (%, ;, p, ;) under fixed s = s® and E = E°
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can be established as

L< {tu,jypu,j} {EC,mv R, X, gu,ju Tu,j, éu,j} )

J
= <917m&f3’m + 93,m) + Eem (am o Z Z t“:j

Uegc,m ]:1

B/A x log, (1 + stu,jpu,j» + R( Z Z bu,jDu,j

U (44)
+ 6@(EO) — 6E,mEall> + X(Z Z tu,j - BT,mTall

u=1 j=1
(=
T

U J U
- g § fu,jtu,j_ U:ij,ﬁ

=1
=1 j=1

+ Tr(DTE?) /v) n Z >
Sy

u=1 j=1
where {€¢m;, K, X; Sujs Tuj> u,j} are Lagrange multipliers. Because P7 is convex in {¢; ;} with
fixed {p;, ;} and vice visa, based on Karush-Kuhn-Tucker condition [54], the optimal primal-dual

point {t5 ;. p5 .} and {e,,, 5%, X%, <, 75, €5} must satisfy:

=0, =0, Yu,j (45a)

527mB/A x logs (1 + 3}) quZ’j) + 527]-

=k +T(1=s5) +X°Vj €T, Yu€Gem (45b)
- Bl g + Rt
"\A (1455 x Fyyps ) In2 7
— T, =0Vje€T, Vue€Gen. (45c¢)
Putting t7 1, 7 ., Py s Do 0O (45a), it follows that
T;}),w’ = T;iw = gw = S,w = 0. (46)

Plugging 7,7, = 0 from (46) into (45¢), the p; ,, can be obtained by
SaB 1

M e - . 47
Pow' = feing $o Fy @47

Since when t7 . # 0, s;, = 1 from (28e), putting &7, = 0 from (46) and s, = 1 into (45b),
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the following formula can be obtained

© BlAxlogy (F,femB ) _femB KT 48
cenBlAX10g2 | Four Areln2 ) Aln2 + Fow X 48)

With simple manipulations, (48) can be re-expressed as F'(so,F, ) = x°, where

F(z)=¢0,,B/A X logy | fem D - “oml3 + al (49)
- Tem P2\ " Arein2 Aln2 x’

with © # 0 (as s, = 1,57, F, . # 0).
With a similar procedure, by using 77, = &7, = 0 from (46), we have F' (s}, F,.) = X°. As
a results,

F (s Fow)=F (s, Fyuw). (50)

w

Deriving the first-order derivative of F'(x) and combining with (47), we have

1 1 1
V.(F) =~ (png,/{o LR (S<> — - E)) _ (51)

Since p;,, > 0, it is clear that V,(F) > 0 for any = € [s},F,u, 8, Fy 0] and F(z) is

a monotonically increasing function of x in the interval. By combining the conclusion with
(50), we can obtain that s°,F, ,, = s°F,, = argmax;cssyF,;. But this contradicts to w’ #

argmaxe sy Fy, ;. Consequently, t0 ., = 0 at vertex w’ # argmazic sy F,,.

APPENDIX C

PROOF OF PROPOSITION 1

In this appendix, we prove the joint-convexity of problem P6. Since V2 f(a,,) < 0, Ve, > 0,
the objective function 617maf§’m + 05 ,,, is concave with respect to ay,.

To verify the convexity of the constraint (25a), we first define a new affine function as:
f1(04) = €y + 0 M,(s%). (52)

Since logs (1/f1(d,)) is a convex function of &, [54], its perspective function e, X B/Alog, (€,/ f1(d4))
is convex with respective to e, and d,, and consequently (25a) is jointly convex with respect to
Qm, €, and 0, as its Hessian matrix is positive semi-definite.

Besides, since constraints (25b) and (25c) are affine, both of them are convex. Therefore,
the objective function is concave and all the constraints are convex, constituting a joint convex

optimization problem P6.
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