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ABSTRACT The robustness is a crucial and essential problem of a subway network (SN), which can help
us improve the efficiency of a transportation system. Several existing researches have analyzed the SN
robustness based on the rail structure or the static distribution of passenger flow. However, the spatiotemporal
characteristic of passenger flow also plays an important role in the SN robustness, since it can trigger some
unexpected cascading failures in SN. Therefore, how to characterize the effect of this cascading failure on
the SN robustness still remains an important and open problem. In this paper, we address the above problem
as follows: (1) we propose a temporal subway network (TSN) to consider the dynamics of passenger flow
in SN; (2) we adopt the linear threshold (LT) model to simulate the cascading failure process of TSN and
propose a new robustness metric R(t) to evaluate the effect of this cascading failure on SN robustness. Based
on the Shanghai subway smart card data, we carry out extensive experiments to analyze the effects of the
cascading failure on the Shanghai SN robustness. Experiments show that the Shanghai TSN robustness varies
over time. More significantly, the large volume of passenger flow can increase the impact of failure modes
(i.e., random and malicious failure modes) on the Shanghai TSN robustness.

INDEX TERMS Subway network, robustness, dynamic passenger flow, cascading failure.

I. INTRODUCTION
Credited for the advantages of high speed, safety, environ-
mental protection, the urban rail transit has become the first
option of transportation [1], [2]. However, some incidents
(such as severe weather, sudden disaster, and terrorist attack)
may lead to the subway station disruption [3]–[5]. Therefore,
it is essential for us to investigate the robustness of subway
system, which can largely ensure the reliance and efficiency
of service that the subway system provides.

Based on the network science, the robustness analysis
of subway network (SN) has made great progress [6], [7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka .

Currently, there exists two types of methods for SN
robustness analysis, namely, the rail structure-based anal-
ysis [8]–[11] and passenger flow-based analysis [12]–[15].
The rail structure-based analysis focuses on the topologi-
cal properties of subway. For example, Derrible et al. have
studied the subway systems of 33 cities [9], through which
they have found the scale-free and small-world characteristics
of SN. They have also proposed some suggestions (such as
increasing additional transfer stations) to improve the SN
robustness. Mouronte et al. have analyzed the characteristics
of urban bus and subway networks of Madrid [10], through
which they have found the structure parameters (such as the
shortest distance between stations, betweenness and detection
of clusters) can help to improve the robustness of transport
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networks. Based on the FMECA method (i.e., failure mode,
effects and criticality analysis) [16], Deng et al. have pro-
posed a new framework, through which they can study the
physical vulnerability of subway system [11]. The results
show that train is the most vulnerable functional module in
subway system.

Considering the large volume of passenger flow in the
SN [17], [18], the network robustness is likely to go beyond
the issue of pure topology of rail structure. Therefore, the pas-
senger flow-based analysis pays much attention to the prop-
erties of SN with respect to the time and passenger flow. For
example, Sun et al. have addressed the issue of SN robustness
from the perspective of line operation by exemplifying the
Shanghai subway system [12]. The result shows that the sub-
way lines with a large passenger flow volume generally have
a significant impact on the network vulnerability. Xiao et al.
have proposed some new dynamic metrics that can reflect the
local and global features of node’s degree and betweenness,
through which they have found the heterogeneity and vul-
nerability of Beijing subway network vary over time when
passenger flow changes dynamically [13].

Furthermore, due to the spatiotemporal characteristic of
passenger flow in SN [19], the failure caused by the disrupted
stations will diffuse to the global SN or at least to a large
part of it [20]–[22], that is, the cascading failures occur in
the SN [23], [24]. In order to explore the cascading failure
caused by the passenger flow in SN, some cascading failure
models (such as the load capacity model [25], coupled map
lattice model [26] and linear threshold model [27], [28]) have
been improved to simulate this cascading failure process. For
example, both Ma et al. and Shen et al. have proposed an
improved coupled map lattices model to analyze the cascad-
ing failure process of Xi’an SN [14] and Nanjing SN during
a certain time period [15], respectively. Ma et al. have found
there is a two-stage cascading failure process of a network
under the condition of passenger flow overload. Shen et al.
have found that it is easy for the largest strength station
disruption to trigger a global network failure.

However, it appears apparent that the cascading failure will
affect more people than that occurs at other time, if stations or
lines are disrupted at some time with a large passenger flow.
Therefore, it matters to investigate the impact of the cascading
failure occurring at different times on the SN robustness. In
this paper, we aim to answer two main questions as follows:

• How to reflect the spatiotemporal characteristics of pas-
senger flow in the SN?

• How can the dynamic effects of passenger flow on the
SN robustness be characterized?

In order to address the above research problems, we first
design a temporal subway network (TSN) to reflect the spa-
tiotemporal characteristic of passenger flow. More specif-
ically, we construct the TSN based on the L-Space
method [33]. A subway station is denoted as a node and
the pathway between two adjacent stations is formulated as
an edge. Each edge weight is calculated by estimating the

whole travel routes, and then assigning passenger flows to
each pathway at a specific time. Second, we adopt the linear
threshold (LT) model to simulate the cascading failure pro-
cess of TSNs at different times. Third, to evaluate the dynamic
effect of this cascading failure on the network robustness,
we propose a new robustness metrics R(t). Finally, we con-
struct the Shanghai TSN based on published subway datasets
(e.g., the rail structure, running data, traveling data based on
the smart card). Moreover, we simulate the cascading failure
process of Shanghai TSN by the LT model and analyze the
dynamic robustness of such network.

The main contributions of this paper can be listed as
follows:

1) We propose a temporal subway network (TSN) for char-
acterizing the dynamics of passenger flow.

2) We propose a new robustness metric R(t) to evaluate the
dynamic robustness of TSN.

3) We carry out extensive experiments to reveal the
dynamic robustness of Shanghai TSNs at different times
by the LT model and R(t).

The rest of this paper is organized as follows. Sec. II first
illustrates the formulation of TSN, and then introduces the
LT model and robustness metrics. Sec. III implements some
analyses to reveal the dynamic robustness of Shanghai TSN.
Finally, Sec. IV concludes this paper.

II. PRELIMINARIES
This section first introduces the formulation of temporal
subway network (TSN), followed by some node property
metrics of TSN in Sec. II-A. Then, Sec. II-B presents the
linear threshold (LT) model. Finally, Sec. II-C describes a
new robustness metric.

A. TEMPORAL SUBWAY NETWORK
1) FORMULATION OF TEMPORAL SUBWAY NETWORK
In this paper, a temporal subway network (TSN) is con-
structed by L-Space method [33], through which we can
display the connectivity feature and assign the passenger
flows to each pathway. More specifically, a station is denoted
as a node and the pathway between two adjacent stations
is formulated as an edge. Let N denote the total number of
stations. A denotes the adjacency matrix of TSN whose size
is N × N , with its elements defined as Eq. (1).

Aij =

{
1, there is an edge pointing from vj to vi
0, there is no edge pointing from vj to vi

(1)

Generally speaking, subways have upstream and down-
stream directions [34]. Based on this fact, Def. 1 defines the
TSN. A simple example of the TSNs at different times is
shown in Fig. 1.
Definition 1: The TSN is denoted as a directed and

weighted graph Gt = 〈V ,E,W 〉, where V = {vi|i ∈ [1,N ]}
and E = {eij = (vi, vj)|i 6= j} represent a set of nodes and a
set of edges, respectively. W = {wij(t)|i 6= j} denotes a set
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FIGURE 1. An example of the TSNs at different times. At different times,
the structure topologies of TSNs are the same, but the edge weights vary
over time.

of edge weights. wij(t) stands for the number of passengers
passing through eij at time t .
In order to assign passenger flows to each pathway at

time t , we first estimate the whole travel routes based on
the original-destination (OD) data of passengers taking the
subway. Such data consists of many OD pairs (vi, vj,wij) [35],
[36]. Each OD pair denotes there are wij passengers from vi
and vj. Generally, some factors (e.g., the length of a route,
the transfer time and the weather condition) may affect the
route choice of passengers [37], [38]. In this paper, if there
are more than one routes from vi to vj, the route will be
selected according to the behaviors and purposes of passenger
travel [39], [40], such as the shortest route [41], the minimum
number of transfer and the shortest transfer time. If there
are still more than one routes that meet the above screening
criteria, the route will be the one randomly selected from
them.

Then, we estimate the time when passenger departs from
the first station of the whole travel routes. Generally, when
passengers enter the automatic fare gate, it takes a while
for them to walk to the platform and wait until the train
arrives [42], [43]. Passengers can only alight or board during
the dwell time of the train at the platform. Therefore, we cal-
culate the departure time of passengers (T d ) by Eq. (2).

Td
=

{
t in + twalk, if a train has arrived
tac + tdwell, if no train arrives

(2)

where t in denotes the check-in time of passenger. twalk

denotes the walking time span from an automatic fare gate
to a platform and tac denotes the closest arrival time of the
subway train which is greater than (t in+ twalk ). All the arrival
time in each station can be calculated based on the timetable
ofmetro system. tdwell denotes the dwell time span of the train
at the platform,which can also be collected from the timetable
of metro system. In this paper, when the passenger arrival
coincides with a train stop at the platform, we set tdwell = 0.
Finally, we estimate the time span when passengers pass-

ing through the pathway between any two adjacent stations.
Based on this, we can calculate themoments when passengers
arrive at each corresponding station of the whole travel route,

which starts from Td , so that the passenger flows can be
assigned to the corresponding pathway at time t . If passengers
need not transfer, this time information can be collected by
the timetable of metro system. If passengers need to trans-
fer, we should add the transfer time, which is calculated by
Eq. (3).

Tf
i(m, n) = α

DISi(m, n)
NWS

+ tdwell (3)

where DISi(m, n) denotes the distance from vi in Line m to
vi in Line n. NWS denotes the normal walk speed of passen-
gers [44]. α is the congestion coefficient. If passengers arrive
at the platform when a train has just stopped at the platform,
we set tdwell = 0.

2) NODE PROPERTY METRICS OF NETWORK
Lots of metrics have been proposed to estimate the centrality
of nodes in a network [45], [46]. In this paper, we utilize four
node property metrics (i.e., degree, betweenness, strength and
flow betweenness) to evaluate the property of node in the
TSN. The details of such metrics are as follows:

a: DEGREE
In Gt , vi has the incoming and outgoing degrees. Incoming
degree Dini denotes the number of edges that point to vi
and outgoing degree Douti denotes the number of edges from
vi to other nodes, which are given by Eq. (4) and Eq. (5),
respectively. In addition, the degree of vi is given by Eq. (6).

Dini =
N∑

j=1,j6=i

Aij (4)

Douti =

N∑
j=1,j6=i

Aji (5)

Di = Din
i + D

out
i (6)

b: BETWEENNESS
In Gt , the betweenness of vi (Bi) is defined as Eq. (7).

Bi =
∑

o,d∈V ,o6=d

σ odi

σ od
(7)

where σ odi is the number of the shortest paths from vo to
vd that pass through vi in Gt . σ od denotes the number of
the shortest paths from vo to vd . The larger Bi is, the more
important the connection role of vi in Gt becomes.

c: STRENGTH
The strength of a node vi (Si(t)) is the sum of the weight of
edges that vi shares with other nodes at time t . Therefore,
inGt , vi has the incoming and outgoing strengths. The incom-
ing strength S ini (t) denotes the sum of the weight of edges that
point to vi at time t and the outgoing strength Souti (t) denotes
the sum of the weight of edges that from vi to other nodes at
time t , which are given by Eq. (8) and Eq. (9), respectively.
In addition, the total strength of vi (Si(t)) is given by Eq. (10).
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A large Si(t) means that there are lots of passengers passing
through vi at time t .

S ini (t) =
N∑

j=1,j6=i

wij(t) (8)

Souti (t) =
N∑

j=1,j6=i

wji(t) (9)

Si(t) = S ini (t)+ S
out
i (t) (10)

d: FLOW BETWEENNESS
The flow betweenness of vi (F_Bi(t)) in Gt equals the pas-
senger flow ratio of the shortest paths from all nodes to all
other nodes that pass through vi in Gt at time t and is defined
as Eq. (11).

F_Bi(t) =
∑

o,d∈V ,o6=d

f σ odi
f σ od

(11)

where f σ odi is the sum of the passenger flow volume on the
shortest paths from vo to vd that pass through vi at time t .
f σ od denotes the sum of the passenger flow on the shortest
paths from vo to vd at time t . When F_Bi(t) is large, there are
lots of passengers on the shortest path that pass through vi at
time t .

B. LINEAR THRESHOLD MODEL
In this paper, the cascading failure process of TSN is modeled
based on the linear threshold (LT) model [27], [28]. In detail,
each node vi has two states (i.e., the failed state and normal
state). Each node vi has a threshold θi which is selected
randomly in the interval [0,1] [29], [30]. vi is influenced by
its incoming neighbors vj based on the edge influence EIij.
The calculation of EIij is shown in Eq. (12).

EIij =
wij(t)

maxT∈[t1,t2,t3,......]{S
in
i (T )}

(12)

where maxT∈[t1,t2,t3,......]{S
in
i (T )} represents the maximum

incoming strength of SN at different times. In addition,∑
vj∈0(V ) EIij ≤ 1. Here, 0(V ) denotes a set of the incoming

neighbors. At time step t0, each currently normal node vi will
become failed at time step t0 + 1 if and only if the total edge
influence of its failed and incoming neighbors is at least θi,
that is,

∑
vj∈0t (V ) EIij ≥ θi. Here, 0t0 (V ) denotes a set of the

incoming neighbors of vi that are failed at time step t0. Fig. 2
illustrates an example of the above process.

For an initial set of failed nodes, the cascading failure
spreads out deterministically in discrete steps. Initial failure
nodes are used to simulate network under different failure
modes in real life [31], [32]. When there is no failed node
in Gt , such process will be terminated. Let F denote the total
number of failed nodes at this time. In this paper, we call F
as the cascading failure size of Gt .

FIGURE 2. An example of the cascading failure process based on the
linear threshold (LT) model. (a) vi and vj are initial failure nodes at time
step t0. vi and vj are the incoming neighbor node of vn and vm,
respectively. Both vi and vj are the incoming neighbor nodes of vk .
Therefore, the states of vn and vm are affected by vi and vj , respectively.
The state of vk is affected by vi and vj . (b) shows the results of the states
change of vn, vm and vk . Since, the edge influence EImj is greater than
the threshold θm, vm is failed at time step t0 + 1. Similarly, we can see vk
is failed at time step t0 + 1. However, EIni ≤ θn, so vn is still in normal
state at time t0 + 1.

C. EVALUATION OF ROBUSTNESS
In order to evaluate the dynamic effect of the cascading
failure caused by the passenger flow on the SN robustness,
we propose a robustness metrics R(t). R(t) couples the rel-
ative size of largest component [47], [53] and operational
efficiency [13], [48] by using a coupling coefficient ε, which
is given by Eq. (13).

R(t) = ε · LC+ (1− ε) ·
OE(t)− F−OE(t)

maxT∈[t1,t2,t3,......]{OE(T )}
(13)

where R(t) denotes the robustness of Gt . LC denotes the rel-
ative size of largest component, which is defined in Eq. (14).
OE(t) denotes the operational efficiency of Gt as defined
in Eq. (15). maxT∈[t1,t2,t3,......]{OE(T )} denotes the maximum
value of the operational efficiency at different times T . In par-
ticular, the networks at the time set [t1, t2, t3, . . . . . .] should
reflect the difference of passenger flow volume. F_OE(t)
denotes the operational efficiency ofGt when there are failed
nodes in Gt . ε is a coupling coefficient to evaluate the impor-
tance of the effect of network topology on the robustness of
Gt . (1 − ε) is used to evaluate the importance of the effect
of passenger flow on the robustness of Gt . In this paper, ε is
quantified as Eq. (16).

LC =
N ′

N
(14)

where N ′ is the number of nodes in the largest compo-
nent after some nodes are failed. N is the total number of
nodes. LC is used to characterize the robustness of Gt from
the perspective of network scale. The higher the value of
LC is, the more robust a network becomes when suffering
attack.

OE(t) =
1

N (N − 1)

N∑
i,j=1(i6=j)

wij(t)
dij

(15)
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FIGURE 3. The flowchart of evaluating the dynamic robustness of some real TSNs.

where OE(t) denotes the operational efficiency of Gt . dij is
the number of edges along the shortest path from vi to vj
in Gt . wij(t) denotes the weight of edges along the shortest
path from vi to vj at time t . OE(t) is used to estimate the
averaged passenger flow volume of edges on the shortest
path. The higher the value of OE(t) is, the more passengers
are transported in the pathway between two stations at time t .

ε =

∑
vi∈V Si(t)

maxT∈[t1,t2,t3,......] {
∑

vi∈V Si(T )}
(16)

where 6vi∈V Si(t) denotes the total sum of node strengths
in Gt . maxT∈[t1,t2,t3,.....]{

∑
vi∈V Si(T )} denotes the maximum

value of the total sum of node strengths in the TSNs at
different times.

Based on the above-mentioned works, Fig. 3 presents the
flowchart evaluating the dynamic robustness of a real TSN.
Specifically, we extract the OD data from our raw data firstly
by cleaning and processing it. Then, we use the OD data to
construct real TSNs at different times based on the formula-
tion of TSN in Sec. II-A1. In addition, we use the LT model
to simulate the cascading failure of these real TSNs. Finally,
we evaluate the effect of the cascading failure on these real
TSNs robustness based on the proposed metric R(t).

III. SIMULATION AND ANALYSIS
In this section, we first introduce the datasets and statistical
analysis in Sec. III-A. Then, following the construction of
a Shanghai TSN in Sec. III-B, we carry out some experi-
ments to explore the dynamic robustness of Shanghai TSN
in Sec. III-C.

A. DATASETS AND STATISTICAL ANALYSIS
1) DATASET
The contents datasets use in this work are (1) Shanghai sub-
way lines and stations data, (2) Shanghai subway running data
and (3) Shanghai subway smart card data. The details of the
three datasets are as follows.

FIGURE 4. The positions of Shanghai subway lines and stations, in which
each line is highlighted with different colors. There are 14 lines,
35 transfer stations and 254 non-transfer stations.

Dataset 1 (Shanghai Subway Lines and Stations Data):
This dataset is collected by the Shanghai Metro1 in
April 2015 and records the information of 14 subway lines
and stations. In addition, the subway stations are numbered.
More specifically, stations with the same name but in dif-
ferent lines are represented by the same ID. Conversely,
stations with different names are represented by different
ID. Due to the two Pudian Road are located on different
areas, they are seen as two different nodes and numbered
separately. Based on the latitude and longitude informa-
tion of all stations, Fig. 4 visualizes the rail structure of
Shanghai SN.
Dataset 2 (Shanghai Subway Running Data): This dataset

is collected by the Shanghai Metro1, which contains some
information of the train operations in April 2015. More
specifically, it records the number of trains in each line,
the departure station, the departure time of the departure
station in each line, the departure intervals, the dwell time

1http://service.shmetro.com/
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TABLE 1. Examples of three datasets. In Dataset 1, ‘‘Corresponding Lines’’ denotes the line a station belongs to. In Dataset 2, we list the departure
intervals, the dwell time and the arrival time of trains in two different departure stations. In Dataset3, Card_ID denotes the smart card number of
passengers; ‘‘In_’’ and ‘‘Out_’’ represent check in and check out, respectively.

FIGURE 5. The dynamics distribution of three-week passenger flow.
Week 1 is from April 6 to April 12, Week 2 is from April 13 to April 19, and
Week 3 is from April 20 to April 26. The statistics range of passenger flow
is from 6:00 to 24:00 every day. The correlation analyses show that
passenger travel mode is regular and similar every week.

of each train in each station, and the arrival time of each train
in each station.
Dataset 3 (Shanghai Subway Smart Card Data): This

dataset is collected by the Shanghai Public Transportation
Card Co. Ltd and released by organizing committee of Shang-
hai Open Data Apps.2 Furthermore, this dataset includes
11 million passengers and 123 million trips’ records dur-
ing April 2015. Each trip record includes the check-in and
check-out date, time, station and so on.

As some existing examples from 13th April 2015 can
demonstrate the details of the above three datasets, we list
some ones in Table 1.

2) STATISTICAL ANALYSIS
Existing studies have shown the dynamic features of human
behaviors, such as the humanmobility [49] and online behav-
iors [50]. The spatiotemporal characteristic of passenger flow
greatly affects its own dynamic distribution [51], [52], which
can help us construct the Shanghai TSN. We select three
weeks’ data (i.e., April 6, 2015 to April 26, 2015) from
Dataset 3 for passenger flow statistics. As shown in Fig. 5,

2http://data.sh.gov.cn/

FIGURE 6. The distribution of passenger flow during different time
periods. The x-axis denotes 18 hours in a day and the range is from
6:00 to 24:00. The number on the x-axis is time period. For example,
6 denotes the time period 6:00-7:00. The y-axis denotes the passenger
flow volume. The result shows that the passenger flow during each time
period has obvious differences and there are two rush hours each day
(i.e., morning and evening rush hours).

April 6 is an exception, which is known as Tomb Sweeping
Festival, when the residents switch back and forth between
working mode (from Monday to Friday) and holiday mode
(from Saturday to Sunday) [53]. Moreover, we use the Pear-
son correlation coefficient [54] to analyze the correlation of
three weeks’ data. The results show that the correlation coef-
ficient of two weeks is 0.89, 0.86 and 0.95 between W1 and
W2, W1 and W3, W2 and W3, respectively. Based on this,
we can conclude that the distribution of weekly passenger
flow is regular and similar.

In particular, as shown in Fig 6, we use the box-whisker
plot to analyze the difference in the distribution of passenger
flow during different time periods on weekday. According to
the result, we observe the passenger flow data is close to its
mean or median, with few outliers. Therefore, the passen-
ger flow data among the three-week is similar. Obviously,
the distribution of passenger flow characterizes the morning
and evening rush hours on weekdays. Based on the above
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FIGURE 7. 36 Shanghai TSNs at different times on weekdays. (a), (b) and
(c) are constructing Shanghai TSN during the morning rush hour
(8:00-9:00), off-peak hour (12:00-13:00) and evening rush hour
(18:00-19:00), respectively. The result shows that the edge weights
change obviously during the rush hours.

analyses, this paper divides each weekday into several travel
periods [55], which is shown in Table 2.

B. SHANGHAI TEMPORAL SUBWAY NETWORK
Before constructing the Shanghai TSN, some relevant
assumptions are listed as follows to simplify the network
construction process:

1) The departure time of each departure station in each line
is 5:30 am.

2) The departure interval between two adjacent subway
trains during the rush hours is 3 minutes and during the
off-peak hours is 6 minutes.

TABLE 2. Travel periods partition on weekdays.

3) The dwell time span of each subway train at the platform
is 30 seconds.

4) The normal walking speed of each passenger is
60m/s [44].

5) When passengers enter the automatic fare gate, they will
immediately go to the platform to take the subway.

6) The congestion coefficient during the rush hours is
0.8 and during the off-peak hours is 1.

where 1) and 3) are the value with highest frequency in the
departure time of each departure station in each line and
the dwell time span of each subway train at the platform,
respectively. In 2), 3 minutes and 6 minutes are calculated
by rounding the average value of all the departure interval
between two adjacent stations during the rush hours and
off-peak hours, respectively.

As the distribution of passenger flow varies over time,
the TSN differs at different moment. Despite this, it is unre-
alistic and unnecessary for us to construct TSNs at every
moment. In Sec. III-A2, we have found that the changes of
passenger flows on weekdays can reflect the characteristics
of it. Therefore, with the partition of travel time periods
in Table 2, we construct a corresponding Shanghai TSN every
5minutes based on the data of 8:00-9:00 (morning rush hour),
12:00-13:00 (off-peak hour) and 18:00-19:00 (evening rush
hour) on April 13th (Monday) in the Dataset 3. Fig. 7 shows
36 Shanghai TSNs at different times on weekdays.

C. DYNAMIC ROBUSTNESS ANALYSIS
In order to trigger the linear threshold (LT) model, we first
define five kinds of failure modes based on the node property
metrics in Sec. II-A2, which are shown as follows.
(1) Degree failure mode is defined as selecting the failed

nodes from a network based on the descending order of
node degree.

(2) Betweenness failure mode is defined as selecting the
failed nodes from a network based on the descending
order of node betweenness.

(3) Strength failure mode is defined as selecting the failed
nodes from a network based on the descending order of
node strength.

(4) Flow betweenness failure mode is defined as selecting
the failed nodes from a network based on the descending
order of node flow betweenness.

(5) Random failure mode is defined as selecting the failed
nodes from a network randomly.
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FIGURE 8. (a)-(c), (d)-(f) and (g)-(i) show the results of the cascading failure size (F ) caused by 5, 10 and 30 initial failure
nodes for different failure modes at different failure times (Time), respectively. The result shows that different failure
modes have different effect on the cascading failure of Shanghai TSN.

Then, we select 5, 10 and 30 initial failure nodes under each
failure mode to trigger the cascading failure in each Shanghai
TSN, respectively. In order to eliminate the influence of the
node threshold θi in the LT model, we repeat each cascading
failure experiment caused by one failure mode for 500 times.
The final result is the average of these 500 experiments.

Figure 8 compares the cascading failure size (F) of Shang-
hai TSNs under various failure modes at different failure
times. Figs. 8(a)-(f) show that the cascading failure size of
Shanghai TSN is smaller under the random failure mode
than other failure modes. This finding suggests that when
the number of initial failure nodes is relatively fewer (i.e.,
5 or 10 initial failure nodes), the cascading failure is unlikely
to occur under the random failure mode in Shanghai TSN,
but it is likely to occur under other failure modes instead.
However, as shown in Figs. 8(g)-(i), when the number of
initial failure nodes is large (e.g., 30 initial failure nodes),
the Shanghai TSN under random failure mode can also cause
larger cascading failure. Moreover, the gap of the cascading
failure size of the Shanghai TSN under the degree failure

mode and other failure modes becomes increasingly large.
According to this, we can conclude that with the initial failure
nodes increasing, the larger cascading failure in Shanghai
TSN is prone to occur under the degree failure mode. In
addition, when the initial failure nodes and failure modes
are identical, the cascading failure size of Shanghai TSN
during the rush hours is far greater than that during other
hours. Meanwhile, there also exists fluctuation among each
cascading failure size of Shanghai TSN during the rush hours.
In particular, during the morning rush hour, this fluctuation
range is relatively large. For example, the cascading failure
size of Shanghai TSN at 8:15 is larger than that at 8:40. These
results suggest that the effect of passenger flow on the cascad-
ing failure size of Shanghai TSN varies over time. The larger
volume of passenger flow is, the more likely the cascading
failure will occur when the network is under the same failure
modes.

Finally, we use the robustness metrics LC , OE(t) and R(t)
to evaluate the effect of the above cascading failures on the
Shanghai TSN robustness. More specifically, since the node
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FIGURE 9. (a)-(c) are the relationship between the different failure times (Time) and robustness metric LC , and (d)-(f) are
that between the different failure times (Time) and the metric OE(t). After removing the final failure nodes in the cascading
failure experiments where the initial failure nodes are 10, we find that both LC and OE(t) have their own limitations when
evaluating the Shanghai TSN robustness. LC cannot reflect the effects of passenger flow on Shanghai TSN robustness.
OE(t) cannot reflect the dynamic effects of passenger flow on the Shanghai TSN robustness at different failure times.

threshold θi is randomly selected in each experiment, the final
failure nodes may be different even if the network is under
the same failure mode. Therefore, we record the final fail-
ure nodes in each cascading failure experiment and sort the
nodes based on the frequency of each failure node in exper-
iments. Then, nodes are removed from the networks based
on the above sequence. Based on this, we can evaluate the
effect of the above cascading failures on the Shanghai TSN
robustness by analyzing the dynamic changes in robustness
metrics.

Figure 9 uses LC andOE(t) to compare the Shanghai TSN
robustness under various failure modes at different failure
times. The specific method we use is to remove the final
failure nodes in the cascading failure experiments where the
initial failure nodes are 10. According to the changes in
LC and OE(t), we find that different failure modes have
different effects on Shanghai TSN robustness. For example,
Figs. 9(a)-(f) show that the Shanghai TSN is more robust
under the random failure mode than other failure modes.
Therefore, this finding shows that both LC and OE(t) can
reflect the effects of failure modes on the network robustness
to a certain extent. However, even during the rush hours,
the changes in LC is unapparent when the network is under
the degree failure mode, strength failure mode or random
failure mode. This is because LC is used to evaluate the
network robustness from the perspective of network scale,
without considering the impact of passenger flows on the
network robustness. Actually, although the number of final

failure nodes is the same, the passenger flow volume is
changing with time. In particular, for some stations in spe-
cial functional areas (e.g., the working area), the passenger
flow may be concentrated at a certain moment. Therefore,
if these stations disrupt at certain times with a large pas-
senger flow, the network robustness will be more affected
than that at other times. OE(t) evaluates the network robust-
ness from the perspective of passenger flow. The higher the
value of OE(t) is, the more robust the network is at time t .
From the changes in OE(t), we can observe that OE(t) is
small during the off-peak hours. However, since the final
failure nodes during the off-peak hours are far fewer than
that during rush hours, the conclusion that the Shanghai
TSN is the most vulnerable during the off-peak hours is
against our normal cognition. Therefore, we propose a new
robustness metric R(t) to overcome the problems caused
by LC and OE(t) in evaluating the dynamic robustness of
Shanghai TSN.

Figure 10 uses R(t) to compare the Shanghai TSN robust-
ness under various failure modes at different failure times.
Compared with other failure modes, Shanghai TSN under
the random failure mode is the more robust. This find-
ing is understandable because the initial failure nodes in
other failure modes are either the hub nodes or the nodes
with large volume of passenger flow. In addition, with
the number of initial failure nodes increasing, the Shang-
hai TSN robustness downtrend under each failure mode
becomes more and more obvious. In particular, when the

45552 VOLUME 8, 2020



Y. Fan et al.: Dynamic Robustness Analysis for Subway Network With Spatiotemporal Characteristic of Passenger Flow

FIGURE 10. (a)–(i) are the relationship between the robustness metric (R(t)) and different failure times (Time) after
removing the failed nodes caused by different failure modes. The results show that during the rush hours, the Shanghai
TSN robustness is not only related to the failure modes but also to the dynamic distribution of passenger flow. However,
during the off-peak hours, the passenger flow has little impact on the Shanghai SN robustness.

number of initial nodes is 30, the Shanghai TSN robustness
under the degree failure mode appears the weakest.
Meanwhile, as shown in Figs. 10(a), (d), (g), (c), (f) and (i),
we can find that the changing trend of the Shanghai TSN
robustness varies over time during the rush hours. How-
ever, as shown in Figs. 10(b), (e) and (h), during the off-peak
hours, the changing trend of the Shanghai TSN robustness is
basically a straight line. Therefore, Shanghai TSN is the most
robust under the random failure modes during the off-peak
hours. These findings suggest that when the networks have a
large volume of passenger flow, the Shanghai TSN robust-
ness can vary over time apparently. However, when the
passenger flow volume in the networks is comparatively
small, the Shanghai TSN robustness basically depends on
the change of network topology [56]. Furthermore, through
comparing the Shanghai TSN robustness under the same
failure mode at different times, we find that the passenger
flow volume can increase the impact of failure modes on the
Shanghai TSN robustness. When the passenger flow volume
is large, it is tougher for Shanghai TSN to tolerate the cascad-
ing failure caused by each failure mode.

IV. CONCLUSION
To reflect the dynamic effect of passenger flow on the sub-
way network robustness, we first propose a temporal subway
network (TSN). Then, we take advantage of the linear thresh-
old (LT) model to characterize the cascading failure process
of TSN. In addition, we propose a new robustness metric R(t)
to evaluate the effect of this cascading failure on the TSN
robustness. By simulating the above methods to 36 Shanghai
TSNs, the main and practical findings of this paper are as
follows:
• Different failure modes will cause different cascading
failure. The cascading failure rarely occurs in the Shang-
hai TSN under the random failure mode, but easily
occurs under other malicious failure mode (i.e., degree,
betweenness, strength, flow betweenness oriented fail-
ure modes).

• Under the same failure mode, Shanghai TSN during the
rush hours will cause a larger cascading failure than that
during the off-peak hours.

• When the passenger flow volume is comparatively
small, the Shanghai TSN robustness basically depends
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on the change of network topology. Moreover, the large
volume of passenger flow can increase the influence of
failure modes on the Shanghai TSN robustness.

From the above findings, we state that at different times,
it is necessary for us to adopt different measures to manage
stations. We need to focus not only on the hub stations of
the subway system, but also the stations with a large volume
of passenger flow at a certain moment. In particular, during
the rush hours, due to the large passenger flow volume,
the SN robustness varies over time. Therefore, to improve the
SN robustness, we suggest that (1) updating the changes of
passenger flow in time to grasp the dynamics of passenger
travel patterns [57]; (2) increasing the travel routes between
two stations to decrease the edge influence EIij [58], so as to
reduce the cascading failure size; (3) identifying the priority
restoration stations based on the passenger flow volume and
rail structure [59].
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