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ABSTRACT Passengers travel in transport networks with diverse interests represented by linked points
of interest (POIs) and drive urban regions to group into network communities. Previous studies focused on
applying community detectionmethods (CDMs) to discover spatial mobility patterns or using POIs to explain
the decision making of human mobility, without comparing the effectiveness of CDMs for detecting network
communities. In this paper, we analyze the relationship between POIs and network communities of human
mobility over diverse CDMs. Taking the taxi systems of Shanghai and Beijing as case studies, we construct
transport networks with urban regions as nodes and the connections between them as links weighted by
mobility flows. The spatial communities are identified based on the movement strength among regions. POIs
are mapped into nodes in the network and are considered as independent variables for classifying the spatial
community categories. Our study suggests that communities detected with two specific CMDs (namely,
the Combo algorithm and the Walktrap algorithm) correlate to POIs, and the correlation of the Combo is
the best (R2 = 0.3 for Shanghai and R2 = 0.48 for Beijing). In this regard, this paper can provide valuable
insight into understanding the formation of spatial communities and assist in selecting reasonable CDMs.

INDEX TERMS Community detection, logistic regression, mobility flow, points of interest.

I. INTRODUCTION
People move around in a city, generating population mobility
flows in urban transport networks. Knowledge of the spatial
pattern of citizens’ travel in a city is particularly beneficial for
the convergence of applications, such as selecting locations
for retail stores to allow more customers to shop around,
and advertisement casting to capture as many consumers as
possible [1], [2].

To analyze the spatial variability of urban mobility flows,
we construct a transport network with partitioned urban
regions as nodes and the connections between them as links
weighted by the aggregated strengths of inter-region move-
ments [1], [3], [4]. The community in the transport network
is applied for further analysis of the spatial variability of
mobility flows as it offers a visual representation of the spatial
cluster features of mobility flows, where a spatial community
is a set of nodes with more connections among themselves

than with the remaining nodes [5]. Traditional CDMs based
on Newman’s modularity optimization, combined with the
representative CDMs of LPA [6], walktrap [7] and a high-
quality CDM called combo [8], are applied to detect spatial
communities of mobility flows. A brief description of
each CDM used in this research is provided in the third
section.

Actually, each trip between urban regions connects specific
POIs. For example, commuting trips connect a citizen’s
home and workplace. This means urban mobility flows are
rooted in people’s traveling activities (e.g., work or enter-
tainment) [9], [10], reflected by specific POIs. There-
fore, researching the inherent consistency between spatial
mobility communities and POIs provides new insight for
understanding the underlining mechanism of urban move-
ments. The main contribution of this study consists of three
points:
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(1) We construct transport networks with segmented
regions of the studied area as nodes and connections
between regions as links weighted by the volume of
mobility flows. Then, CDMs are applied to identify the
spatial community pattern of mobility flows.

(2) Further, POIs are mapped into nodes to characterize
the driving factors for generating spatial communities.
We consider this a multi-class classification problem
with the community categories as classification labels
and the POIs in a node as feature vectors, which is
solved by adopting a stepwise logistic regression.

(3) We evaluate the consistency between spatial commu-
nities and POIs using large-scale and real-world
datasets, containing POI datasets and taxi GPS trajec-
tory datasets of Beijing and Shanghai, China. Exper-
iment results show that combo is the best CDM suite
for acquiring POI motivated spatial communities of the
transport networks.

According to the research problems of our work presented
above, the rest of this paper is organized as follows:
Section 2 presents related works. Methods used in this paper
are shown in Section 3, including the construction of trans-
port networks, the description of representative CDMs, and
our proposed consistency estimation model. Experimental
datasets and result analysis are reported in Section 4. Finally,
the paper is concluded in Section 5.

II. RELATED WORKS
Technological advances allow for precise measurement of
mobility flows in large datasets, including taxi trajecto-
ries [11]–[13], mobile phone trajectories [4], [14], and trans-
port smart cards [9]. Retrospective studies of mobility flow
focus on modeling mobility flow from one place to another,
such as the universal model, called radiation model [15],
which is proposed and applied to predict human mobility
volume [16]. Although the model is parameter-free and only
requires population distribution as input, the spatial cluster
features of mobility flows are disregarded, meaning most
people travel in a specific range of regions instead of the
entire city and some citizens share a similar regional scope.

Combined with network techniques, applications based
on mobility flow are widely developed in the field of
urban computing [17], [18]. For example, the centrality
metrics of a network are used to estimate the importance
of road segments [11]. To determine the interaction between
regions, the studied area is segmented into disjointed regions,
and mobility flow between geographical regions is used to
discover the connectivity between regions and reveal new
latent links, thus determining the inadequacy of the existing
road network [19]. Using taxi trajectory data from Shanghai,
Liu et al. [13] built spatial networks to model intra-city
spatial interactions, revealing the hierarchical and polycentric
structure of Shanghai.

Studies mentioned above provide insights into using
emerging data sources to reveal mobility patterns and the
urban structure. However, the underlying mechanisms that

generate spatial patterns and urban structures from the
land-use aspects have not been researched. Complementary,
mobility flows in subway systems are combined with POIs to
research activity patterns and model the dynamic decision-
making process that shape individuals’ movements [9].
This research constructs a transport network with subway
stations as nodes and mobility flow from one station to
another as weights on the directed edge. When it comes
to researching the overall urban movements, the city area
is always segmented into regions. Segmented regions of
the city carry socio-economic functions because people live
in the regions and POIs exist in regions, and regions as the
origin and destination of a trip cause mobility flows [20].
The studies above indicate mobility flows are related to POIs
distributed among urban regions.

However, there is no research specializing in the consis-
tency between spatial communities and driving factors for
urban mobility flows. Existed CDMs are usually adopted
to mine the spatial mobility pattern, but determining the
appropriate CDM has not been researched. Both problems
are researched in this paper. Our work is different from the
research mentioned in the following aspects. First, we add the
POI feature to nodes in the spatial networks to characterize
the socio-economic factors that motivate mobility flows.
Moreover, based on the multi-class classification method
of stepwise logistic regression, we estimate the consistency
between spatial communities and POIs, further to determine
the appropriate CDMs suitable for detecting spatial commu-
nities in keeping with the distribution of POIs.

III. METHODS
To estimate the consistency between spatial communities of
mobility flows and POIs, we construct a transport network
for the study area and detect the spatial communities. Then,
POIs are mapped into corresponding nodes in the network to
characterize the driving factors of urban movements. Spatial
communities are used to classify the nodes in the network.
We adopt multi-class classification methods to classify the
nodes using the community as the classification label and
the POI feature of each node as the independent variable.
First, we depict the construction of the transport network, and
present the CDMs used to identify spatial communities. Then,
we depict the consistency estimation model, consisting of
the map matching and the classification method of stepwise
logistic regression.

A. NETWORKS AND CDMs
Mobility used in this paper is represented as a 2-tuple
< (xo, yo), (xd , yd ) >. Both (xo, yo) and (xd , yd ) are geo-
spatial positions, denoting the origin and destination of a
trip, respectively. In detail, the origin and destination (OD)
pair represents a trip starting at location (xo, yo) and arriving
at location (xd , yd ).

To construct the network in this research, the study area
is segmented into disjoint grids, and each grid gi is set as
a node ni, as illustrated in Fig. 1. Trips between two nodes

29730 VOLUME 6, 2018



L. Huang et al.: Comparing Community Detection Algorithms in Transport Networks via POIs

FIGURE 1. To construct a network based on mobility flows, the study area
is divided into small regions (a) each small region corresponds to a node
in the network. A directed edge or linkage exists between two nodes if
there are mobility flows between nodes. The weight of an edge equals
the volume of mobility flows represented in (b, c). Graphic (d) provides an
illustration of the communities detected from a network, which is divided
into four parts (depicted by four circles) in which the sub-networks have
relatively dense connections. The community detection result
corresponds to closely connected sub-regions (e).

indicate the existence of an edge or a linkage. After extracting
mobility flows from the travel trajectory datasets, the volume
of mobility flows originating from gi and ending at gj is set as
the weight wij from ni to nj. Thus, the network is constructed.

As shown in Fig. 1, some nodes have much stronger
connections among them than with others. By dividing the
network into densely connected sub-networks, the city area
is divided into intensely interactive sub-regions. In network
science, community detection methods can partition an
entire network into tightly connected sub-networks, called
communities, and reveal the network clustering character-
istics. A community, also called a cluster or a module,
is normally considered as a group of nodes which probably
share common properties or have similar roles within the
network.

Considering the adaption to large-scale transport networks,
six representative algorithms of community detection that
are adapt for directed-weighted networks are utilized to
acquire the spatial community pattern in our constructed
networks. The metric of modularity is commonly adopted to
measure the performance of network community detection.
When applied to weighted and directed networks, the modu-
larity, denoted as Q, is defined as [21]

Q =
m∑
i=1

wij
w
−
wini w

out
i

w
(1)

Here, wij is the total weight of links starting and ending
in community i, wini and wouti are the total in- and out-weight
of links in module i, and w is the total weight of all the links
in the network.

To optimize Q, the vast majority of search strategies
use one of the following steps to evolve starting partitions:

merging two communities, splitting a community into two,
moving nodes between distinct communities.

The fast greedy [22] algorithm only considers the merging
strategy, beginning with each node as the sole member of
a community. It only updates the j-th row and column and
removes the i-th row and column altogether. The updating
process is
1Q′jk = 1Qik +1Qjk , if k is connected to i and j

1Q′jk = 1Qik − 2ajak , if k is connected to i not j

1Q′jk = 1Qik − 2aiak , if k is connected to j not i

(2)

where ai = di/2m, di is the degree of node i, and m is the
weight on the edge.
Fast unfolding [23] adopts both strategies of moving nodes

and merging communities. The modularity updating process
is

1Q = (

∑
in,C w+ wi,in

2m
− (

∑
tot w+ wi
2m

)2)

−(

∑
in,C w

2m
− (

∑
tot w
2m

)2 − (
wi
2m

)2) (3)

where
∑

in,C w is the sumweight of the links insideC ,
∑

tot w
is the sum weight of the links incident to nodes in C , wi is the
sum weight of the links incident to node i, wi,in is the sum
weight of the links from i to nodes in C , and m is the sum
weight of all links in the network.
Combo [8] involves all three possibilities of optimizing

modularity, which is justified as an upper bound to the execu-
tion time of O(N 2 log(C)), where N is the number of nodes,
and C is the number of communities in the network.
Label propagation algorithm [6], or LPA, is based solely

on network structure and does not require optimization of a
predefined objective function or prior information about the
communities. LPA updates the label of each node according
to the labels of its neighbors. Finally, each node is located
in the community to which the most neighbors belong.
The main idea behind the label propagation algorithm is
the following: Suppose that a node x has neighbor nodes
x1, x2, . . . , xn and that each neighbor node has a label
denoting the community to which it belongs. Then, each node
in the network chooses to join the community to which the
maximum number of neighboring nodes belong, and each
node is initialized with an unique label and the labels prop-
agate through the network. As the labels propagate at every
step, each node updates its label based on the labels of the
neighboring nodes. The asynchronous updating is:

Cx(t) = f(Cxi1 (t), . . . ,Cxim (t),Cxi(m+1) (t−1), . . .Cxin (t−1))

(4)

where xi(m+1), . . . , xin are neighbor nodes that have not been
updated in the current iteration.

Considering a discrete random walk process on the
network, the walktrap algorithm [7] adopts the flow
distance to merge communities. The distance between two
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communities is defined as the distance difference from two
communities to all other nodes:

rC1C2 =

√∑n

i=1
(PtC1i

− PtC2i
)2/d(i) (5)

where ptij denotes the distance from i to j of t steps.
Based on the flow distance definition, the problem of finding
communities is a clustering problem, which can be solved
using an efficient hierarchical clustering algorithm.

Another random walk based algorithm is the infomap [24].
It allocates a binary signature to each node and the Huffman
code is adopted to enumerate a succession of locations visited
by a random walker. The objective function is

L(M ) = qyH (Q)+
∑k

i p
iH (pi)

qy =
∑k

i qiy
pi� = qiy +

∑
α/∈Ci pα

(6)

where qy is the probability of travelling from community i
to another community. pα denotes the probability of visiting
nodes in community Ci. H (Q) and H (Pi) denote the entropy
of the community code book and the entropy of nodes in the
i-th community.

B. CONSISTENCY ESTIMATION
To explain the formation of the spatial communities,
the ultimate proof of the hidden reason is to match the
spatial communities to POIs distributed among the regions.
As shown in Fig. 2, POIs in the studied area are matched
with nodes, in accordance to the geolocation using the map
matching process. Region ri is located using the longitude and
latitude range (bottom, top)-(left, right). The origin and desti-
nation of a movement, as well as a specific POI position, are
located using the longitude and latitude. The map matching
process determines which region the point is located. After
mapping the origins and destinations with partitioned regions,
the weights on each directed edge in the constructed network
are calculated.

By mapping each POI to the corresponding region, the POI
features of each node in the spatial network are obtained. POI
features are denoted as xi = (x(1), x(2), . . . , x(M)), where M
is the POI category number, and x(j) is the number of the
j-th POI category in node i. After applying a CDM to the
constructed network, the nodes are partitioned into disjoint
sets (communities). Nodes in the same community have the
same classification label value Y . Each node in the network is
characterized by the POI feature vector. Then, the multi-class
classification problem is solved using the stepwise logistic
regression method, where the community label Y is set as the
dependent variable, and the POI feature is set as the indepen-
dent variable. Suppose that the value set of Y is {1, 2,. . . , K},
then, the multinomial logistic regression is defined as

P(Y =k|x)=
exp(wk ·x + b)

1+
K−1∑
k=1

exp(wk ·x+b)

, k=1, 2, . . . ,K−1

(7)

FIGURE 2. The propose onsistency estimation model first sets the
partitioned regions as nodes in the network and the connection between
nodes as edges weighted by the number of OD pairs. POIs are matched
with nodes in the network. Then, a CDM is implemented on the network
to obtain the spatial communities. By applying the multi-class
classification method of stepwise logistic regression, the POI features are
set as independent variables and the spatial community categories are
set as classification labels. Regression fitness is adopted to estimate the
consistency between spatial communities and POI feature, thus
determining the most effective CDM that generates POI driven
communities.

P(Y = K |x) =
1

1+
K−1∑
k=1

exp(wk · x)

(8)

where w = w1,w2, . . . ,wM and b are model parameters.
Given the testing set D ={(x1,y1),(x2,y2), . . . , (xN, yN)}, let
Dk denote the samples labeled with k , and θ = (w, b). Then,
the multi-class classification method of the stepwise logistic
regression is adopted and the MLE (maximum likelihood
estimation) is applied to calculate the parameters:

l(θk ) = logP(Dk |θk ) =
∑
x∈Dk

logP(x|θk ) (9)

θ̂k = argmax
θk

l(θk ) (10)

IV. EXPERIMENT
A. DATASETS
Taking the spatial networks of Beijing and Shanghai as case
studies, datasets of taxi GPS trajectories in both cities are
collected. The Baidu APIs1 is used to acquire the datasets
of POIs in two metropolises, both containing seventeen cate-
gories of POIs. The studied area of Beijing is of longitude
and latitude (116.0, 116.8)-(39.65, 40.25), and Shanghai is

1http://lbsyun.baidu.com/index.php?title=jspopular.
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of longitude and latitude (120.4507, 122.1024)-(30.0022-
31.9270). We partition the studied areas into squared grids,
each with 1 km2 in size, using the open street map (OSM)2.
As shown in Fig. 3, taxi trajectories are used to extract

mobility flows. A taxi trajectory is a sequence of GPS points
pertaining to the sampling location of the taxi over time. Each
point consists of a tuple< (x, y), f >with location (x, y), and
the taxi’s occupancy status f , where (x,y) is a pair of spatial
coordinates representing latitude and longitude. f= 1 means
the taxi is occupied by passengers, otherwise f=0. The flag f
bound to each trajectory position is essential for determining
the taxi occupation state, which is utilized to extract the origin
and destination of a trip. All other GPS points between a pair
of (xo, yo) and (xd, yd) own the same occupation state, f=1.

FIGURE 3. Mobility extraction from taxi trajectories with occupation state
variation.

The extracted mobility flows consist of 186,2799 OD pairs
for Beijing and 38,0640 OD pairs for Shanghai. The mobility
volume between any pair of nodes is acquired by matching
origins and destinations to the geographical grids using the
OSM. Disregarding grids with no OD pairs, 2926 grids
remain for Shanghai and 3995 grids remain for Beijing. These
grids are set as nodes in the transport networks, and the
mobility flow volume originating from grid i to grid j is set
as the weight on the directed edge.

The seventeen dimensions of POI features are set as the
independent variables X for the logistic regression, and each
dimension is set as a component X (i) of the independent
variable. The spatial communities are set as classification
labels during the multi-class classification process with the
stepwise logistic regression. The dataset description of POIs
is shown in Tab. 1.

B. RESULTS AND ANALYSIS
The community snapshot is affected by the travel distance.
Thus, a distance threshold (DT) is added to the community
detecting process. Here in this paper, we focus on the spatial
features between nodes in the transport networks, thus the
distance threshold refers to the Euclidean distance between
grid cells instead of the trip length, which are regarded as
nodes in the transport networks. As shown in Fig. 4, for the
spatial network of Shanghai, the edge number and mobility
flow reach 90% as the distance threshold gradually increases
to 20 km and 14 km, respectively. This is similar for the
spatial network of Beijing, where the critical distances are 25
km and 9 km.

As the metric of modularity is commonly used for the
optimization of CDMs used in this paper, we compare the

2http://www.openstreetmap.org/copyright

modularity metric results of different CDMs to directly
estimate the community detection result. Besides, as we
concentrate on finding the CDMs that are consistent to the
POI distribution in a city, the regression fitness measure of
R-Square is adopted to measure the consistency between
communities and POI features. Themodularity of community
detection results for the two cities is respectively shown
in Fig. 5 and Fig. 6, along with the regression fitness degree
metric R-Square. The modularity decreases as the distance
threshold increases (except for the walktrap and LPA, which
will be explained later based on the visualization of the
detected communities). Larger distance thresholds mean that
more edges and more mobility flows are added to the spatial
networks, resulting in a smaller modularity value. When the
mobility flow proportion is approximately 1, the modularity
tends to be convergent as a low number of edges and flows
are added to the network.

Combined with the modularity metric, the regression
fitness metric, R-Square, is ranked to determine suitable
CDMs for generating communities motivated by POIs. Note
that the node number in the Beijing network is 1.37 times
greater than the node number in the Shanghai network,
and the gross mobility flows of Beijing are 4.87 times
greater than that of Shanghai. This means that the flow
density in the Beijing network is 3.6 times greater than that
in the Shanghai network. As shown in Fig. 7, the network
scale and flow density affect the value of modularity and
R-Square, but does not affect the relative rank measured by
both modularity and R-Square (except for LPA and infomap,
which will be explained with the illustration of commu-
nity detection results). It shows that combo has the largest
R-Square for both networks. The median value is 0.3 for the
Shanghai network and 0.48 for the Beijing network. This
indicates that the spatial community is correlated with POI
features. The walktrap has the lowest modularity for both
networks, but the regression fitness, R-Square, of the walk-
trap is just smaller than that of combo for both networks.
Next, we further analyze the community detection results
and the logistic regression fitness combined with the spatial
communities’ visualization.

As shown in Fig. 5, infomap has larger modularity in the
Shanghai network than other algorithms. This is explained
with the visualization of the community detection results.
As shown in Fig. 8(a and b), infomap has the largest commu-
nity in the city center of Shanghai (Fig. 8(a)), which is not
the same for Beijing (Fig. 8(b)). As shown in Fig. 8(c), LPA
has the most communities in the city center of Shanghai,
which is similar to the Beijing network (Fig. 8(d)). According
to the algorithm theory of LPA, when a network has sparse
edges, it always has a community much larger than the other
communities. From the community visualization, we can find
that the large proportion of nodes in the largest community
leads to increased modularity, and the spatially separated
communities lead to the poor regression fitness measured
by R-Square, as shown in Fig. 5 and Fig. 6. The mobility
flow density of the Beijing network is 466, while it is just

VOLUME 6, 2018 29733



L. Huang et al.: Comparing Community Detection Algorithms in Transport Networks via POIs

TABLE 1. POI categories.

FIGURE 4. Variation of edge number (a) and low (b) with distance threshold changing in the Shanghai and Beijing networks.

130 for the spatial network of Shanghai. Thus, the community
snapshots acquired by LPA and infomap are not stable, which
is strongly affected by the edge density or the mobility flow
density.

To explain the regression results of walktrap and combo,
we visualize the community detection results of both
algorithms. According to the community detection theory
of walktrap, it uses flow distance as the measure to
merge communities for optimizing the modularity metric.
The spatial communities with DT=16 and DT=17 iden-
tified by walktrap are shown in Fig. 9(a) and Fig. 9(b),
respectively. This shows that the algorithm merges commu-
nity pair C1 and C2, C3 and C4, C5 and C6, C7 and C8 to
C1+2, C3+4, C5+6, andC7+8. Small communities are spatially

scattered around the suburban area. While communities
detected using combo are quite different, meaning that even
nodes in the suburban area are connected to the spatially close
communities.

Theoretically, to optimize modularity during the commu-
nity detection process, combo adopts the strategies of
merging, splitting and moving nodes between existing
communities, meaning the algorithm considers each node
in every iteration step. Thus, the community patterns found
by combo are spatially connected, and the regression results
are always optimal. With the worst modularity rank for
both networks, the R-Square value of walktrap ranks only
behind combo. As shown in Section 3, walktrap adopts
flow distance to merge sub-communities, meaning that the
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FIGURE 5. Modularity an R-Square acquired by the algorithms: fast greedy (a), fast unfolding (b), combo (c), LPA (d), walktrap (e), and infomap
(f) for the networks of Shanghai with distance threshold variation.

FIGURE 6. Modularity and R-Square acquired by the algorithms: fast greedy (a), fast unfolding (b), combo (c), LPA (d), walktrap (e), and infomap
(f) for the networks of Beijing with distance threshold variation.

similarity between two nodes can be described the difference
between these two nodes to others. Similarly, the correla-
tion between two urban regions, featured by mobility flows
and POIs, can also be measured using flow distance. For
example, an urban region functions similarly to another
one if two regions connect other regions with a similar
amount of mobility flows. Meanwhile, regions covered by

the comparable category and number of POIs are of similar
functions in the urban daily life, and then they connect to
other regions with similar mobility pattern. This may be the
reason why walktrap has better regression fitness despite
having the worst modularity.

For the transport network of Shanghai, with the increased
distance threshold, all the community detection results show
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FIGURE 7. Rank of modularity of each algorithm combined with R-Square for the Shanghai network (a) and Beijing network (b).

FIGURE 8. Communities obtained using Infomap for the Shanghai network (a) contains the largest community in the city center, which is not contained
in the Beijing network (b). LPA also acquires the largest community in the Shanghai network (c), and the largest community in the Beijing network (d).

FIGURE 9. Communities etected by walktrap and combo for the spatial network of Shanghai. Communities detected by walktrap with DT=16 and
DT=17 are shown in (a) and (b). Communities detected by combo with DT=16 and DT=17 are shown in (c) and (d).

communities spread from the city center to suburban areas.
However, communities in Beijing are scattered spatially with
similar size. We find that Shanghai and Beijing are polycen-
tric, communities in the spatial networks of Shanghai circle
around the city center, and the communities in Beijing are
decentralized.

As shown in Fig. 10, we further studied the correla-
tion between modularity and the regression fitness metric
R-Square. R-Square presents a positive linear correlationwith

the modularity of the algorithm combo. The median value of
R-Square is 0.3 for the Shanghai network using combo and
0.48 for the Beijing network. This further certifies that the
community patterns can be explained from the perspective
of POIs and communities are correlated with POIs according
to the regression results. It can also be found that spatial
communities in Beijing are better matched to the POI feature.
As the mobility flow density of the Beijing network is much
more than that of Shanghai, the better matching result means
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FIGURE 10. Scatter lot of the modularity and R-Square of the six algorithms for the Shanghai network (a) and the Beijing network (b).

moremobility flows can better reflect the spatial communities
driven by POIs.

For both networks, the community detection results of LPA
are affected by the network scale and edge density. Combo
has better regression results with larger modularity, while
infomap has better regression results with smaller modu-
larity. The regression result of walktrap is more stable with
DT variation, and has a larger R-Square value than that of
fast unfolding. Comparing the community detection result
visualization of these algorithms, it also finds that only the
result got by combo is the most stable when the distance
threshold varies. Comprehensively, from the perspectives
of detecting spatial communities motivated by POIs and
community stability in urban transport networks, combo is
the best choice.

V. CONCLUSION
Researching the spatial communities of mobility flows
in urban transport networks is helpful for understanding
of urban movement and improving urban planning. Spatial
communities in transport networks are rooted in the POI
features distributed in the city area. This paper proposes
to apply the consistency between network communities of
mobility flows and urban POIs to compare the CDMs most
suitable for detecting POI driven spatial communities.

Mobility flows of the studied city are collected to construct
transport networks with partitioned grids as nodes and the
connections between them as links weighted by the mobility
volume. POIs are mapped into nodes in the network and
are used to characterize each node. Representative commu-
nity detection algorithms are adopted to explore mobility
communities. Then, we use stepwise logistic regression to
estimate the consistency between mobility communities and
POIs, with the POI feature as an independent vector and
the community category as a dependent classification label.
Taking the taxi systems of Beijing and Shanghai as case
studies, experimental results show that the CDMs, combo

and walktrap, could identify mobility communities that are
explained by the POI features, and combo is presented as the
best CDM.

As this paper only focus on comparing the CDMs from the
perspective of POI feature in transport networks, the common
measure of modularity is applied to estimate community
detection results. In the future, we will compare additional
CDMs with our proposed model with other community
feature measurement, as well, we intend to employ other
mobility data sources, such as the cell-tower traces, for more
experimental verification.
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