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Abstract

To leverage data and computation capabilities of mobile devices, machine learning algorithms are

deployed at the network edge for training artificial intelligence (AI) models, resulting in the new

paradigm of edge learning. In this paper, we consider the framework of partitioned edge learning

for iteratively training a large-scale model using many resource-constrained devices (called workers).

To this end, in each iteration, the model is dynamically partitioned into parametric blocks, which are

downloaded to worker groups for updating using data subsets. Then, the local updates are uploaded

to and cascaded by the server for updating a global model. To reduce resource usage by minimizing

the total learning-and-communication latency, this work focuses on the novel joint design of parameter

(computation load) allocation and bandwidth allocation (for downloading and uploading). Two design

approaches are adopted. First, a practical sequential approach, called partially integrated parameter-and-

bandwidth allocation (PABA), yields two schemes, namely bandwidth aware parameter allocation and

parameter aware bandwidth allocation. The former minimizes the load for the slowest (in computing)

of worker groups, each training a same parametric block. The latter allocates the largest bandwidth

to the worker being the latency bottleneck. Second, PABA are jointly optimized. Despite it being a

nonconvex problem, an efficient and optimal solution algorithm is derived by intelligently nesting a

bisection search and solving a convex problem. Experimental results using real data demonstrate that

integrating PABA can substantially improve the performance of partitioned edge learning in terms of

latency (by e.g., 46%) and accuracy (by e.g., 4% given the latency of 100 seconds).

I. INTRODUCTION

An enormous amount of data and computation resources are distributed over a large number of

mobile devices [1]. This motivates the deployment of distributed machine learning algorithms at

the network edge for fast and scalable model training. As a result, a new paradigm of computing,

called edge machine learning, has emerged as an attractive and fast growing research area [2], [3].

In this work, we consider partitioned edge learning (PARTEL) for large-scale model training. In
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the framework, a model is partitioned into parametric blocks that are downloaded onto devices

for distributed updating and the computation results are uploaded to a server for updating the

global model [4]. This work aims at improving the efficiency of PARTEL by minimizing the

total communication-and-learning latency, thereby reducing the resource utilization. Under this

objecive, a set of novel schemes are proposed by jointly designing the model-partitioning based

load distribution over devices and bandwidth allocation for their downloading and uploading.

A. Partitioned Edge Learning

1) Partitioned Learning: A representative framework for partitioned distributed learning is

called parameter server, which is proposed in [4], [5] to distribute a large-scale learning task over

many resource-constrained machines by model partitioning. Implementing the classic method

of block coordinate descent (BCD) [6], the framework iteratively and distributively solves a

large-scale model-optimization problem with a decomposable objective function [e.g., linear

regression and support vector machine (SVM)]. Specifically, a parameter server divides the

model parameters into blocks and update each block in one iteration, called a communication

round. In each round, the server further divides and distributes the global dataset over workers

so that they can locally compute the block gradients for updating the downloaded parametric

block under their resource constraints. Then, the local gradients are uploaded to the server for

aggregation (e.g., averaging) and updating the particular parametric block of the global model,

completing the round. The framework is further developed in a series of work to reduce the

learning latency by allowing overlapping of consecutive rounds [7] or workers to use a staled

parametric block for computing their updates [8].

Recent research on partitioned learning focus on convolutional neural network (CNN) models.

Such a model comprising nested layers does not have a decomposable (learning) loss function,

making direct model partitioning sub-optimal. Overcoming the limitation has driven researchers

to extend the BCD method to CNN [9], [10]. Specifically, by introducing and conditioning on

auxiliary variables, the layers in a CNN become conditionally independent and thus can be

trained separately in different rounds. The cost due to a complex model architecture is that

updating each layer (also a parametric block) requires multiple rounds instead of one as in the

parameter-server framework with a decomposable function.

2) Edge Implementation: While communication channels are abstracted as bit piles in prior

work, PARTEL concerns the design of new communication techniques for efficient implemen-
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tation of partitioned learning in wireless networks. This is an uncharted area and the theme of

this work. Connecting parameter servers with workers (edge devices) using wireless links gives

rise to two challenges: 1) overcoming channel impairments (fading and noise) and scarcity

of radio resources and 2) leveraging a massive number of resource-constrained devices for

performing a single large-scale learning task. The direct application of traditional communication

techniques may not be sufficient given the excessive communication overhead caused by large-

scale model (with millions to billons of parameters) and large-scale dataset (typically comprising

millions of high-dimensional multimedia samples). In this work, we adopt the new approach of

integrated computation-and-communication design. Specifically, the model-and-data partitioning,

computation load allocation, and radio resource allocation are jointly designed so as to reduce

the learning-and-communication latency, thereby minimizing the resource utilization.

B. Federated Edge Learning

1) Federated Learning: Another mainstream framework for distributed learning, called feder-

ated learning, was developed for the purpose of leveraging local data generated at edge devices

while preserving their data privacy by avoiding direct data uploading [11]. The framework similar

to parameter server but simpler as it involves no model or dataset partitioning. Implementing

stochastic gradient descent (SGD), federated learning requires each device to download and

locally update the whole model (or compute the needed gradient) and all devices to upload

the computed models/gradients to update a global model after model/gradient aggregation at

an edge server; the procedure iterates till the model converges. Communication efficiency is

a main research theme in the area as excessive communication overhead is incurred by the

repeated uploading of high-dimensional local models/gradients by many devices over many

rounds. One approach is to reduce the number of uploading devices by allowing infrequent

uploading by devices slow in computation [12], or selecting those whose results are relatively

more important for learning (see e.g. [13], [14]). Another approach is to directly compress local

gradients exploiting their sparsity [15].

2) Edge Implementation: Driven by the vision of edge intelligence, the new area of federated

edge learning (FEEL) has emerged, focusing on efficient implementations of federated learning in

wireless networks. Based on the approach of communication-and-learning integration, many tech-

niques are designed for efficient transportation of high-dimensional data over wireless channels.

New multi-access schemes for FEEL, called “over-the-air computing”, are proposed in [16]–
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[18] to support fast “over-the-air” model/gradient aggregation using the waveform superposition

property of a multi-access channel. Another vein of research addresses the issue of radio

resource management (RRM) in FEEL systems such as bandwidth allocation [19], multiuser

scheduling [20], and their joint design [21], [22]. Joint RRM and training batch-size selection

is further investigated in [23] to accelerate the learning speed in FEEL systems. From the

perspective of FEEL system performance, there exists a fundamental tradeoff between device

energy consumption and learning speed, which is quantified in [24]. In addition, in view of

the varying communication-and-computation capacities of different nodes, researchers have also

developed a hierarchical network architecture for implementing large-scale FEEL [25].

3) Federated vs. Partitioned Edge Learning: The main objective of FEEL is to exploit users’

data without violating their privacy. The framework does not involve model partitioning and

requires each edge device to update a whole model. Since the devices are resource constrained,

FEEL is suitable for small-to-medium learning tasks. In contrast, the objective of PARTEL is to

train a large-scale model using many edge devices as workers via model partitioning. Therefore,

the design of efficient PAETEL requires the integration of the partitioning for load allocation

with radio resource allocation, which is a new challenge not faced in the area of FEEL.

C. Contributions and Organization

In this paper, we consider a single-cell wireless system supporting PARTEL. In the system, the

workers are grouped and each group is responsible for updating an assigned parametric block.

Within one group, the global dataset is distributed over workers so that each resource-constrained

worker need compute the block update using only a data subset. In each communication round,

an edge server coordinates the learning process by performing the following operations:

1) Parameter allocation, referring to partitioning the model into parametric blocks for load

allocation;

2) Bandwidth allocation, namely partitioning the bandwidth for downloading latest values of

parameters to workers and uploading their updates on parametric blocks;

3) Cascading the uploaded block updates to update the global model.

Such coordinated distributed learning introduces the constraint of synchronized updates by de-

vices. The rounds are repeated till the model converges.

One way for improving the efficiency of PARTEL is to minimize the total (communication

plus computation) latency so as to minimize the utilization of radio and device-computation
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resources. Under the constraint of synchronized updates, the total latency depends on both the

communication and computation latency of all devices, which can be controlled by bandwidth

and parameter allocation, respectively. This motivates the current work to make the first attempt

on jointly designing parameter-and-bandwidth allocation (PABA) for PARTEL systems. Our

approach is to formulate and solve latency minimization problems for optimizing the PABA

policy for given heterogeneous channel states and device-computation capacities. The specific

contributions and findings are summarized as follows.

First, practical PABA schemes are proposed for the scenario of large-scale network with fast

varying channels. In this scenario, the direct optimization of joint PABA is a challenging problem,

which is non-convex with many variables and requiring an iterative solution method (see the

second contribution). Moreover, the task of solving the problem has to be repeated whenever the

channels change. To overcome the difficulty, we propose the practical partially integrated PABA

where the designs of the two functional blocks are sequential: the first block (either parameter or

bandwidth allocation) is designed independently of the other and the second block is designed

conditioned on the first. This results in two simple PABA schemes, summarized as follows.

• Bandwidth aware parameter allocation: Consider the optimization of the parameter

allocation conditioned on bandwidth allocation using a conventional scheme [see the left of

Fig. 1(a)]. The optimization is shown be a linear program, allowing the optimal policy to

be derived in closed form. The policy is found to minimize the load for the worker group

slowest in computation. To be precise, the parametric-block length assigned to one group

is inversely proportional to its slowest worker’s total latency.

• Parameter aware bandwidth allocation: Next, reversing the design order [see the right of

Fig. 1(a)] yields the current scheme. By analyzing and exploiting the problem structure,

solving the latency optimization problem is reduced to a simple bisection search. The

resultant optimal policy for parameter aware bandwidth allocation is found to allocate the

largest bandwidth to the worker being the latency bottleneck to alleviate the bottleneck.

Next, targeting slowly varying channels, we develop an efficient iterative algorithm for solving

the problem of joint PABA optimization, called fully integrated PABA, as illustrated in Fig. 1(b).

To this end, a useful property is derived that the optimal policy equalizes the group bandwidth

allocation rates, defined as the additional bandwidth required by assigning one additional param-

eter to the group for updating. Leveraging the property, an efficient solution method is derived
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Figure 1: Two approaches of designing parameter-allocation and bandwidth-allocation blocks:

(a) partially integrated design and (b) joint design.

that intelligently nests a bisection search and solving a convex problem. To gain further insights,

two special cases with single-worker groups or intra-group uniform computation capacities are

considered. The optimal polices are derived in simple form and aligned with intuition (e.g.,

allowing more load to a group with better computation capacity).

The remainder of the paper is organized as follows. In Section II, the system model is

introduced. In Section III, the total-latency minimization problem is formulated and simplified.

In Section IV and V, two schemes of partially integrated PABA are designed while the scheme

of fully integrated PABA is derived in Section VI. Section VII presents the experimental results

followed by concluding remarks in Section VIII.

II. MODELS AND METRICS

A. System Model

A single-cell system is considered, as illustrated in Fig. 2(a). In the cell, there are a server

equipped with a single-antenna access point (AP) and multiple single-antenna edge devices,

serving as workers. The workers are divided into K groups, identified by the index set G1, G2,

..., GK , each of which collaboratively performs one task. The n-th worker in group Gk is denoted

as (k, n). The server is connected to workers via wireless links. For simplicity, the channels are

assumed to be static in one iteration of model training and vary over different iterations. We

assume that the AP has the channel state information (CSI) of all links that are useful for
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Figure 2: System model and operations of the PARTEL framework.

bandwidth allocation. The uplink/downlink spectrum is divided into orthogonal frequency non-

selective channels, each of which is assigned to one worker. The downlink and uplink channel

gains of worker (k, n) are denoted as Hd,k,n and Hu,k,n, respectively.

B. Learning Model

The PARTEL framework is designed for a large-scale learning task with a decomposable

objective function. As mentioned, this is natural for algorithms such as SVM and logistic

regression [6] and can be made feasible for CNN models using the method of auxiliary variables

[9], [10]. Following the literature, a decomposable objective function has the following form (see

e.g., [6]):

L(θ) = F(θ) +R(θ), (1)

where θ = {θ1, ..., θnp , ...θNp}T is the parameter vector of the learning model, F(θ) is the loss

function, and R(θ) is the block-separable regularized function (e.g., `1 and `2 regularizations)

to reduce the overfitting or increase the sparsity of the trained learning model, respectively.

Specifically, the loss function can be written as F(θ) = 1

M

M∑
m=1

ϕ(θ;xm), where X = {xm} is

the dataset, M is the size of the dataset, and ϕ(·) is a smooth function. And the block-separable

regularized function can be written as R(θ) =
Np∑
np=1

ψ(θnp), where θnp is the np-th element of θ

and Np is the total number of parameters. During training, if the regularization function R(·)
is smooth, gradient descent can be used for updating the learning model [26]. Otherwise, the

learning model is updated by another method, called proximal gradient descent [27].
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C. PARTEL Architecture

Consider the network architecture in Fig. 2(a). The global dataset is partitioned at the server

and downloaded by workers such that each worker loads a data subset and each worker group

has the whole dataset. The model-parameter vector is partitioned into K disjoint parametric

blocks, as θ = {θ1, ...,θk, ...,θK}, where θk is assigned to group Gk for updating. One main

benefit of PARTEL is that each resource-constrained worker only needs to calculate and transmit

the gradient or proximal gradient of a parametric block over a data subset instead of the

whole parameter vector during each iteration. As an example, considering the case of smooth

regularization function, only the following block of gradient elements is required for computation

and transmission by worker (k, n),

∂L(θ)
∂θnp

=
1

M

∑
xm∈Xk,n

∂ϕ(θ;xm)

∂θnp

+
1

|Gk|
dψ(θnp)

dθnp

, ∀θnp ∈ θk, (2)

where Xk,n is the data subset at worker (k, n), |Gk| represents the number of workers in group

Gk,
ψ(θnp)

|Gk|
represents the regularization function for each worker, and θk with the size of bk is

the parametric block assigned to group Gk, respectively.

In the PARTEL framework, one training iteration of the learning model is called one (com-

munication) round. In each round, the server first shares the whole model-parameter vector θ to

all workers. Then, the gradient or proximal gradient of each parametric block is calculated by

one worker group. Finally, the gradients or proximal gradients of all groups are uploaded to the

server to update all parameters. Wireless links are used for sharing the whole model parameters

and uploading the gradients. Thereby, to train the distributed learning algorithms in PARTEL

framework, there are three steps in one round, as follows.

• Push: The server (AP) broadcasts the whole model parameters θ to all workers.

• Computation: Each worker computes the gradient or the proximal gradient of the its assigned

parametric block based on its loaded data subset.

• Pull: All workers upload the gradients or proximal gradients of their corresponding para-

metric blocks to the server. The server aggregates the gradients or proximal gradients from

all groups and updates the corresponding parametric block.

The iterative process of the distributed learning algorithms is shown in Fig. 2(b). From the figure,

synchronized updates are required in each round. Synchronized updates arise from the operation

of gradient aggregation in the pull step and refer to the requirement that all local updates need



9

to be received by the server before the global model can be updated. Consequently, all devices

are allowed the same duration (per-round latency) for uploading their local gradients and thus

synchronized in update transmission. Hence, the latency in the round is decided by the “slowest”

worker. In the sequel, the latency of any one round is defined.

Remark 1 (Learning Convergence Speed). With model updating per round, the distributed

learning using the PARTEL architecture is optimal in the sense of achieving the same learning

performance as the centralized learning within a same number of rounds (see Lemma 1).

However, the implementation of PARTEL in wireless network makes it necessary to measure

the learning duration/latency in second. The reason is that finite radio bandwidth and resource-

constrained workers cause significant latency of communication and computation in each round.

Therefore, optimizing parameter allocation and bandwidth allocation is important for ensuring

fast model convergence as in achieving targeted learning performance within a given duration

measured in second.

Remark 2 (Relation with FEEL). In the case of only one worker group and hence no model

partitioning, the PARTEL architecture reduces to that of FEEL (with uploading per round), as

all workers calculate the gradient of the whole parameter vector over a data subset.

D. Latency Model

Consider an arbitrary communication round, say the r-th round, and an arbitrary worker, say

worker (k, n). The latency, denoted as t(r)k,n, is composed of three parts:

t
(r)
k,n = T

(r)
ph + t̂

(r)
k,n + t

(r)
pl,k,n, (3)

where T (r)
ph , t̂(r)k,n, and t

(r)
pl,k,n correspond to the three steps, namely push, computation, and pull,

respectively.

1) Push latency: The push latency is defined as the time for the server to broadcast the whole

parameter vector θ to all workers, which is given by

T
(r)
ph = max

{(k,n)}

ApNp

BR
(r)
d,k,n

, (4)

where Ap is the number of bits per model parameter, Np is the total number of parameters,

B is the system bandwidth, and R
(r)
d,k,n is the downlink spectrum efficiency of worker (k, n).

The efficiency can be written as R(r)
d,k,n = log2

(
1 + PbH

(r)
d,k,n/N0

)
, where Pb is the transmission
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power of the AP, H(r)
d,k,n is the downlink channel gain, and N0 is the channel noise variance.

Note that the push latency is a constant identical for all workers.

2) Computation latency: Denote the number of computation operations to calculate the gra-

dient with respect to one parameter using one data sample as O, the number of data samples

loaded by worker (k, n) as Dk,n, and the CPU frequency of worker (k, n) as f c
k,n. Then, the

computation latency of worker (k, n) is a function of its assigned load b
(r)
k , i.e., the length of

its assigned parametric block θ
(r)
k . It can be written as

t̂
(r)
k,n

(
b

(r)
k

)
=
b

(r)
k Dk,nO

f c
k,n

. (5)

3) Pull latency: The pull latency consists of two parts. One is the time for worker (k, n) to

upload the gradients to the server, denoted as t̃(r)k,n. The other is the time for the server to update

the learning model, denoted as T (r)
s . Hence, the pull latency is given by

t
(r)
pl,k,n = t̃

(r)
k,n + T (r)

s . (6)

The time T (r)
s is the same for all workers. The uploading time t̃(r)k,n is given by

t̃
(r)
k,n

(
b

(r)
k , ρ

(r)
k,n

)
=

Agb
(r)
k

ρ
(r)
k,nBR

(r)
u,k,n

, (7)

where Ag is the number of bits for each gradient element, b(r)
k is the assigned parametric-block

length, ρ(r)
k,n is the ratio of uplink bandwidth allocated to worker (k, n), and R(r)

u,k,n is the uplink

spectrum efficiency. The efficiency is R(r)
u,k,n = log2

(
1 + PuH

(r)
u,k,n/N0

)
, where Pu is the uplink

transmission power and H(r)
u,k,n is the uplink channel gain.

We define the group latency in the r-th round as follows. Since all parameters should be

updated in the round, the group latency is decided by the “slowest” worker. The latency of

group Gk is thus given as:

t
(r)
k

(
b

(r)
k , {ρ(r)

k,n}
)
= max

n∈Gk
t
(r)
k,n

(
b

(r)
k , ρ

(r)
k,n

)
, (8)

where t(r)k,n
(
b

(r)
k , ρ

(r)
k,n

)
is the latency of worker (k, n) defined in (3) and its three components are

described in (4), (5), and (6).

Next, we define the total latency in the r-th round. Given synchronized updates, the total

latency in this communication round depends on the “slowest” group:

t(r)
(
{b(r)
k }, {ρ

(r)
k,n}
)
= max

k
t
(r)
k

(
b

(r)
k , {ρ(r)

k,n}
)
. (9)
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III. PROBLEM FORMULATION AND SIMPLIFICATION

Based on the models described in the preceding section, the problem of learning-latency

minimization is formulated in this section under two constraints, one on the total number of

parameters and the other on the total bandwidth. Then, the problem is simplified as an equivalent

one-round problem.

A. Problem Formulation

The learning latency depends on two factors. One is the number of communication rounds

required for model convergence, denoted as R, and the other is the per-round latency. Thus, the

total learning latency is given as

tlearn

(
{b(r)
k }, {ρ

(r)
k,n}
)
=

R∑
r=1

t(r)
(
{b(r)
k }, {ρ

(r)
k,n}
)
, (10)

where t(r)
(
{b(r)
k }, {ρ

(r)
k,n}
)

is the latency of the r-th round defined in (9). We aim at minimizing

the learning latency by optimizing the distribution of parametric blocks, or called parameter allo-

cation, and the bandwidth allocation. Parameter allocation must satisfy the following constraints

on the total number of parameters:

(C1.1: Parametric block constraints)


K∑
k=1

b
(r)
k = Np, 1 ≤ r ≤ R,

b
(r)
k ∈ Z+, ∀k, 1 ≤ r ≤ R,

(11)

where Np is the total number of parameters and b(r)
k is length of the parametric block assigned

to group Gk in the r-th round. On the other hand, the bandwidth allocation should satisfy the

following constraints on the total bandwidth:

(C1.2: Bandwidth constraints)


K∑
k=1

∑
n∈Gk

ρ
(r)
k,n ≤ 1, 1 ≤ r ≤ R,

ρ
(r)
k,n ≥ 0, ∀(k, n), 1 ≤ r ≤ R,

(12)

where ρ(r)
k,n is the ratio of the bandwidth allocated to worker (k, n) in the r-th round. Under the

constraints, the problem of learning-latency minimization can be formulated as

(P1: Learning-latency minimization)
min

{b(r)k },{ρ
(r)
k,n}

R∑
r=1

t(r)
(
{b(r)
k }, {ρ

(r)
k,n}
)

s.t. (C1.1) & (C1.2).

(13)

In the sequel, we prove that (P1) can be reduced to an equivalent one-round problem.
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B. Equivalent One-Round Latency Minimization

As shown in the following lemma, the convergence rates (in rounds) of the learning algorithms

implemented at PARTEL are equivalent to the corresponding centralized ones, where the whole

training process, including gradient calculation and model updating, is performed at the server.

Lemma 1 (How many communication rounds?). The distributed learning algorithms imple-

mented at PARTEL are equivalent to the corresponding centralized ones in terms of convergence

rate as measured by the required number of communication rounds (see e.g., [27], for convergence

analysis on the latter). Specifically, for distributed learning, the values of gradients or proximal

gradients calculated in each round and the number of rounds required for model convergence

are independent on parameter allocation and bandwidth allocation.

Proof: See Appendix A.

The following proposition follows from Lemma 1.

Proposition 1 (Problem simplification). The learning-latency-minimization problem in (P1) is

equivalent to separately minimizing the latencies for all rounds:

(P2: One-round-latency minimization)
min

{b(r)k },{ρ
(r)
k,n}

t(r)
(
{b(r)
k }, {ρ

(r)
k,n}
)

s.t. (C1.1) & (C1.2).

(14)

The simplified problem is solved in the following sections to obtain the optimal polices for

PABA. For simplicity, the notation (r) is omitted.

IV. BANDWIDTH AWARE PARAMETER ALLOCATION

In this section, the scheme of bandwidth aware parameter allocation is designed based on the

approach on the left of Fig. 1(a). Given bandwidth allocation, the optimal parameter allocation

is proposed, which requires the latencies of all groups equal to the optimum. Besides, according

to the optimal solution, the length of the parametric block assigned to group Gk is inversely

proportional to its slowest worker’s total latency for computing and uploading one gradient

element.

First, the bandwidths are allocated to the workers independent of their assigned paramet-

ric block, e.g., equal bandwidth allocation. Next, given allocated bandwidths, the parameters

are allocated by solving (P2), giving the algorithm of bandwidth aware parameter allocation.
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Specifically, given the bandwidth-allocation scheme {ρ∗k,n}, the problem of one-round-latency

minimization in (P2) can be simplified as

(P3: Parameter allocation)

min
{bk}

max
k

tk (bk) ,

s.t. bk ∈ Z+, 1 ≤ k ≤ K,

K∑
k=1

bk = Np,

(15)

where tk (bk) and bk are the latency and the parametric-block length of group Gk, respectively.

By substituting the push latency in (4), the computation latency in (5), and the push latency in

(6) into the group latency in (8), it can be derived that

tk (bk) =max
n∈Gk

tk,n = Tph +max
n∈Gk

{
Dk,nO

f c
k,n

+
Ag

ρ∗k,nBRu,k,n

}
bk + Ts, (16)

which shows that tk (bk) is a linear function of bk. Furthermore, by defining tPA = maxk tk (bk),

(P3) can be converted into the following mixed-integer linear problem (MILP),

min
{bk},tPA

tPA,

s.t. bk ∈ Z+, 1 ≤ k ≤ K,

K∑
k=1

bk = Np,

tk ({bk}) ≤ tPA, 1 ≤ k ≤ K.

(17)

To solve (17), we follow the typical way, which first relaxes {bk} to be continuous and then

round the solution. The error caused by the relaxation and rounding is just one parameter and

is negligible due to the typically large values of {bk} (e.g., thousands to tens of thousands).

Theorem 1 (Relaxed parameter allocation). By relaxing the integer constraints {bk ∈ Z+, 1 ≤
k ≤ K} to {bk ≥ 0, 1 ≤ k ≤ K}, the problem in (17) can be solved by linear programming.

The solution requires all groups to have the same latency:

tk (bk) = t∗PA, ∀k, (18)

where t∗PA solves the following equation and can be computed using e.g., a bisection search:
K∑
k=1

t∗PA − Tph − Ts

max
n∈Gk

{
Dk,nO

f c
k,n

+
Ag

ρ∗k,nBRu,k,n

} = Np. (19)
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The optimal parameter-allocation policy assigns b∗k parameters to group Gk with b∗k given by

b∗k =
t∗PA − Tph − Ts

max
n∈Gk

{
Dk,nO

f c
k,n

+
Ag

ρ∗k,nBRu,k,n

} , 1 ≤ k ≤ K. (20)

Proof: See Appendix B.

Two observations can be made from Theorem 1. First, according to (19), the minimal per-

round latency, t∗PA, linearly increases as the total number of parameters, Np, grows. Second, in

(20), the terms
Dk,nO

f c
k,n

and
Ag

ρ∗k,nBRu,k,n

are the time for computing one gradient element and

the time for uploading the element for worker (k, n), respectively. From (20), we can observe

that the optimal parametric-block length assigned to group Gk, say bk, is inversely proportional

to its slowest worker’s total latency for computing and uploading one gradient element.

Rounding the real-valued numbers of parameters assigned to the groups gives the algorithm

of bandwidth aware parameter allocation in Algorithm 1.

Algorithm 1 Bandwidth Aware Parameter Allocation
1: Input: {ρ∗k,n}, {Ru,k,n}.
• {ρ∗k,n}, pre-determined bandwidth-allocation scheme,

• {Ru,k,n}, the uplink spectrum efficiencies of all workers.

2: Get the optimal latency t∗PA of the relaxed problem by solving (19) with bisection method.

3: Determine the practical block size {b̂∗k} as

b̂∗k = round

 t∗PA − Tph − Ts

max
n∈Gk

{
Dk,nO

f c
k,n

+
Ag

ρ∗k,nBRu,k,n

}
 , ∀k ∈ [1, K − 1],

b̂∗K = Np −
K−1∑
k=1

b̂k.

(21)

4: Calculate the near-optimal latency t̂∗LB with {b̂∗k}.
5: Output: {b̂∗k} and t̂∗LB.

V. COMPUTATION AWARE BANDWIDTH ALLOCATION

In this section, the scheme of parameter aware bandwidth allocation is designed based on the

approach on the right of Fig. 1(a). Given parameter allocation, the optimal bandwidth allocation
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is proposed, where all workers’ latencies equal to the optimum and most bandwidth should be

allocated to the worker with smallest communication rate and longest computation time.

First, the parametric-block lengths are assigned to the groups independent of their spectrum

efficiencies, e.g., the parametric-block length assigned to one group is proportional to its com-

putation latency of computing one gradient element. Next, given assigned parametric blocks, the

bandwidths are allocated by solving (P2), giving the algorithm of parameter aware bandwidth

allocation. Specifically, given the parameter-allocation policy {b̂∗k}, the problem of one-round-

latency minimization in (P2) reduces to

(P4: Bandwidth allocation)

min
{ρk,n}

max
k

tk ({ρk,n}) ,

s.t. ρk,n ≥ 0, ∀(k, n),
K∑
k=1

∑
n∈Gk

ρk,n ≤ 1,

(22)

where tk ({ρk,n}) is the latency of group Gk defined in (8) and ρk,n is the uplink bandwidth ratio

allocated to worker (k, n).

Lemma 2 (Convexity of bandwidth allocation). (P4) is a convex problem.

Proof: See Appendix C.

By solving the convex problem, the minimal latency and the optimal bandwidth-allocation

scheme can be obtained, as shown in the following theorem.

Theorem 2 (Parameter aware bandwidth allocation). The optimal solution of the bandwidth-

allocation problem in (P4) requires all workers have the same latency: tk,n (ρk,n) = t∗BA, ∀(k, n),
where t∗BA is the minimal latency that solves the following equation and can be computed using

e.g., a bisection search:
K∑
k=1

∑
n∈Gk

b̂∗kAg(
t∗BA − Ts − Tph − T̂k,n

)
Ru,k,n

= B, (23)

where {T̂k,n = t̂k,n(b̂
∗
k)} are the computation latency and are constants. The resultant scheme of

computation aware bandwidth allocation is given as

ρ∗k,n =
b̂∗kAg(

t∗BA − Ts − Tph − T̂k,n
)
Ru,k,nB

, ∀(k, n). (24)

Proof: See Appendix D.
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Two observations can be made from Theorem 2. First, in (23), the system bandwidth is a

strict decreasing function of the optimum t∗BA. In turn, it’s easy to show that the optimal latency

t∗BA strictly decreases as the system bandwidth B increases. Second, for the optimal bandwidth-

allocation scheme in (24), the allocated bandwidth of any one worker is a decreasing function

of its uplink data rate and is an increasing function of its computation time. In other words,

the most bandwidth should be allocated to the worker with smallest uplink rate and longest

computation time.

The optimal scheme of parameter-aware bandwidth allocation is summarized in Algorithm 2.

Algorithm 2 Parameter Aware Bandwidth Allocation

1: Input: {b̂∗k} and {Ru,k,n}.
• {b̂∗k}, the pre-determined parametric-block lengths,

• {Ru,k,n}, the uplink spectrum efficiencies of all workers.

2: Calculate the optimal latency t∗BA by solving (23) with bisection method.

3: Determine the bandwidth {ρ∗k,n} as (24).

4: Output: {ρ∗k,n} and t∗BA.

VI. JOINT PARAMETER ALLOCATION AND BANDWIDTH ALLOCATION

In this section, joint PABA based on the design approach in Fig. 1(b) is considered. Leveraging

the results in preceding sections, the optimization problem (P2) is simplified. This allows an

efficient solution method to be developed for computing the optimal policy for joint PABA. To

gain further insights, two special cases are considered.

A. Optimal Joint PABA

The optimal joint PABA policy for PARTEL is computed and analzyed by solving Problem

(P2) following a series of steps as follows.

1) Problem Simlification: First, we simplify (P2) by using the results in Theorem 2 and

relaxing the parametric-block lengths {bk} to be continuous. According to Theorem 2, to achieve

the minimal latency, all workers should have the same one-round latency [defined in (9)], namely
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tk,n = t, ∀(k, n). In Theorem 2, {bk} are given but they are variables in the current case. Thus,

the bandwidth-allocation policy in (24) should be rewritten as a function of {bk}:

ρk,n (bk, t) =
bkAg[

t− Ts − Tph − t̂k,n (bk)
]
Ru,k,nB

, ∀(k, n), (25)

where t̂k,n (bk) =
bkDk,nO

f c
k,n

is the computation latency following from (5), and Ts and Tph are the

server updating and push latency, respectively. Moreover, we relax the parametric-block lengths

(in bits) {bk}, to be continuous to simplify the solution of (P2), which can be rounded to yield

the policy. As mentioned, in large-scale learning models, the values of {bk} are large and the

performance loss caused by rounding is negligible. By substituting tk,n = t and relaxing {bk},
Problem (P2) is simplified as

(P5)

min
{bk},t

t

s.t. bk ≥ 0, ∀k, (C5.1)

K∑
k=1

bk = Np, (C5.2)

K∑
k=1

∑
n∈Gk

ρk,n (bk, t) ≤ 1, (C5.3)

where ρk,n (bk, t) is given in (25).

2) A Useful Property: It is easy to show that (P5) is non-convex. To transform the problem

into a tractable convex problem, we derive a useful property. To this end, two definitions are

introduced. One is worker bandwidth allocation rate, defined as the required bandwidth per

additional parameter for one worker. Using (25), it can be written mathematically as

∂ρk,n (bk, t)

∂bk
=

Ag

t̃k,n (bk)BRu,k,n

(
1 +

t̂k,n (bk)

t̃k,n (bk)

)
, ∀(k, n). (26)

One can recall that t denotes the one-round latency, t̂k,n (bk) and t̃k,n (bk) are the computation

latency and uploading time of worker (k, n), respectively. Note that in (26), the physical meaning

of the term,
Ag

t̃k,n (bk)BRu,k,n

, is the required bandwidth for worker (k, n) to upload one gradient

element; the following scaling factor accounts for computation latency. Next, the group bandwidth

allocation rate is defined as the required bandwidth per additional parameter for one group, which

sums the bandwidth allocation rates over the workers in the same group as follows:∑
n∈Gk

∂ρk,n (bk, t)

∂bk

∆
=
∑
n∈Gk

Ag

t̃k,n (bk)BRu,k,n

(
1 +

t̂k,n (bk)

t̃k,n (bk)

)
, 1 ≤ k ≤ K. (27)
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From (26) and (27), two observations can be made. One is that worker/group bandwidth allocation

rates depend on both their computation capacities and communication rates. The other is that

given fixed one-round latency t, the rates increase as the length of the assigned parametric blocks

({bk}) grows. The reason is that heavier load increases computation latency and thereby shortens

allowed communication latency, making it necessary to have a larger bandwidth. Based on the

above definitions, one key property of the optimal policy is derived as shown below.

Lemma 3 (Uniform Group Bandwidth Allocation Rates). Given a constant C, a necessary and

sufficient condition for the solution of (P5) is∑
n∈Gk

∂ρk,n (bk, t)

∂bk
= C, ∀k, (28)

for a fixed model size, namely
∑K

k=1 bk = Np, and under the constraint on the bandwidth

allocation ratios:
∑K

k=1

∑
n∈Gk ρk,n (bk, t) = 1.

Proof: See appendix E.

3) Problem of Model Size Maximization: Though the property in Lemma 3 is insightful,

the direct policy computation by solving the equations in (28) requires a (K + 2)-dimensional

search, which is impractical when K is large. A more efficient solution can be derived by relating

Problem (P5) to the convex problem of model size maximization introduced as follows.

Given one-round latency t for an arbitrary round, let N∗p (t) denote the maximum size of a

model that can be updated within the round. Then N∗p (t) solves the following problem of model

size maximization

(P6)

N∗p(t) = max
{bk}

K∑
k=1

bk

s.t. bk ≥ 0, ∀k,
K∑
k=1

∑
n∈Gk

ρk,n (bk, t) ≤ 1,

where the notation follows that in Problem (P5). Note that given the one-round latency t, if and

only if the solution in Problem (P6) satisfies N∗p(t) ≥ Np, where Np is the target updating model

size, Problem (P5) is feasible, as all its constraints can be satisfied.

Two useful lemmas for relating Problems (P5) and (P6) are given as follows, which are proved

in Appendices F and G.
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Lemma 4 (Relation of maximal feasible model size and latency). The maximal model size

N∗p(t) is a monotonously increasing function of the one-round latency t.

It follows from the result in Lemma 4 that the solution for Problem (P5) is the minimum

latency t∗, for which the updatable model size N∗p(t
∗) is no smaller than the target size Np. This

suggest a solution method of Problem (P5) by a search for t∗ using the criterion N∗p(t
∗) ≥ Np

as elaborated in the next subsection.

This requires solving Problem (P6) so as to compute the function N∗p(t
∗). To this end, the

following result is useful.

Lemma 5. Given t, Problem (P6) is convex.

The convexity allows Problem (P6) to be solved using the traditional primal-dual method.

Some needed notations are defined as follows. Let ηλ and {ηbk} denote the step sizes of gradient

descent. The Lagrange function LP6 ({bk}, λ) is defined as

LP6 ({bk}, λ) = −
K∑
k=1

bk + λ

(
K∑
k=1

∑
n∈Gk

ρk,n (bk)− 1

)
, with λ ≥ 0, (29)

where {ρk,n (bk) , ∀(k, n)} are defined in (51) and λ is the multiplier. Using the notations, the

application of the primal-dual method yields Algorithm 3 for solving Problem (P6).

4) Solution by Nested Optimization: It follows from the results in the preceding subsection

that Problem (P5) can be solved by nesting a one-dimensional search over t and the solution of

a convex problem, namely Problem (P6). The search can be efficiently implemented using the

bisection method given the monotonicity in Lemma 4 while the solution of Problem (P6) relies

on Algorithm 3. Nesting them yields Algorithm 4 for computing the optimal joint PABA policy.

The computational complexity of Algorithm 4 can be divided into two parts. One is the inner

loop for solving the convex Problem (P6). Its complexity is O(K3), where K is the number of

worker groups. The other is the outer loop of bisection search, with complexity of O [log(1/δ)]

and δ being the convergence tolerance. The overall computational complexity of Algorithm 4 is

O [log(1/δ)K3]. As K is small (e.g., K = 15) compared with the number of parameters (e.g.,

Np > 106), the computational overhead caused by Algorithm 4 at the server can be ignored.

B. Two Special Cases

1) Single-Worker Groups: Consider the case when each group comprises only a single worker.

The dataset is not partitioned and each worker uses the whole dataset to update an assigned
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Algorithm 3 Model Size Maximization
1: Input: {Ru,k,n} and T .

• {Ru,k,n}, the uplink spectrum efficiencies of all workers.

• T , the given one-round latency.

2: Initialize t = T , λ(0), and l = 0.

3: Loop

4: λ(l+1) = max

{
λ(l) + ηλ

∂LP6 ({bk}, λ)
∂λ

, 0

}
.

5: Initialize {b(0)
k } and i = 0.

6: Loop

7: b
(i+1)
k = b

(i)
k − ηbk

(
−1 + λ(l+1)

∑
n∈Gk

∂ρk,n (bk)

∂bk

)
, ∀k.

8: i = i+ 1.

9: Until Convergence

10: {b∗k = b
(i−1)
k , ∀k} and l = l + 1.

11:Until Convergence

12:Get N∗p(T ) =
∑K

k=1 b
∗
k.

13:Output: N∗p(T ) and {b∗k}.

parametric block. Using the property of uniform group allocation rates in (28), the parametric-

block length can be derived as functions of the latency t and the unknown variable C:

bk (t, C) =
fk,1
Dk,1O

(
t− Tph − Ts −

√
Agt

CRu,k,1

)
,∀k. (30)

From (30), the number of parameters assigned to group Gk decreases with its computation time

to calculate one gradient element, say
fk,1
Dk,1O

, and increases with its uploading rate Ru
k,1. This

is aligned with the analysis in (20). By substituting bk (t, C) in (30) into the constraints (C5.2)

and (C5.3), it’s easy to show that the following equations hold if the latency is at its minimum:

K∑
k=1

bk (t
∗, C) = Np,

K∑
k=1

∑
n∈Gk

ρk,n (bk (t
∗, C)) = 1.

(31)

Using (31), the optimal latency t∗ and the corresponding C can be efficiently solved for since

there are only two variables. Then the optimal parameter allocation {b∗k} follows from (30).

Substituting {{b∗k}, t∗} into (24) gives the optimal bandwidth allocation {ρ∗k,1}.
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Algorithm 4 Optimal Joint Parameter Allocation and Bandwidth Allocation
1: Input: {Ru,k,n}.
• {Ru,k,n}, the uplink spectrum efficiencies of all workers.

2: Select tu = Tu so that t = tu makes N∗p(tu) defined in (P6) larger than Np.

3: Select tl = Tl so that t = tl makes N∗p(tl) < Np.

4: While tu 6= tl

4: Let tm = (tu + tl)/2. And substitute t = tm in to (P6).

5: Solve (P6) with Algorithm 3 to obtain N∗p(tm) and {b∗k} by inputing {Ru,k,n} and tm.

6: If N∗p(tm) ≥ Np

7: tu = tm.

8: Else

9: tl = tm.

10: End if

11:End while

12:t∗ = tm.

13:Output: t∗ and {b∗k}.

2) Uniform Intra-group Computation Capacities: In this case, all workers within the same

group, say group Gk, have identical computation capacities and hence the same computation

time:

{
Dk,n

f c
k,n

=
Dk,1

fk,1
, ∀n ∈ Gk

}
. In this case, a similar load-balancing scheme as the preceding

special case can be derived:

bk (t, C) =
fk,1
Dk,1O

t− Tph − Ts −
√
Agt

C

∑
n∈Gk

1

Ru,k,n

 , ∀k. (32)

A similar solution method can be applied to compute the optimal PABA policy, specified by the

optimal load assignments bk (t∗, C) and bandwidth allocation {ρ∗k,n}.

VII. EXPERIMENTAL RESULTS

A. Experiment Setup

Consider a single-cell wireless network in a disk with a radius of 0.15 kilometres. The AP

(edge server) is located at the center with multiple workers randomly located within the disk.

The workers are separated in to K groups each having N workers. The total bandwidth is B. By

default, their values are set as K = 15, N = 15, and B = 100 MHz unless specified otherwise.
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The workers’ computation capacities are uniformly selected from the set {0.1, 0.2, · · · , 1.0} GHz.

The learning task is a `1-regularized logistic regression task for training a news-filtering model

using the News20 dataset collected in [28]. The model has Np = 1, 241, 220 parameters. The

training dataset contains 15936 samples and the test dataset contains 3993 samples. For each

group, the training dataset is uniformly partitioned into N subsets. Each subset is downloaded

by one worker. Wireless channels are modelled with the following parameters. The noise power

density is N0 = −174 dBm/Hz. The transmission power of AP and workers is Pb = 46 dBm

and Pu = 24 dBm, respectively. The path loss between worker and AP is 128.1+37.6 log d with

the distance d in kilometre. Rayleigh fading is assumed.

For comparison, four algorithms are considered, described as follows 1.

• Baseline: The number of parameters assigned to one worker is proportional to its compu-

tation capability and bandwidths are equally allocated.

• Bandwidth-aware parameter allocation: The bandwidth is first equally allocated and then

the parameters are allocated by the scheme of bandwidth aware parameter allocation in

Algorithm 1.

• Parameter-aware bandwidth allocation: The parameters are proportionally allocated first and

then the bandwidth is allocated using the scheme of parameter aware bandwidth allocation

in Algorithm 2.

• Joint PABA: The parameter allocation and bandwidth allocation are jointly optimized using

Algorithm 4.

B. Learning Performance

Latency minimization PABA can accelerate the model convergence. To evaluate the gain,

the curves of (model) training and test accuracies versus latency are plotted in Fig. 3. As

observed, the partially integrated and joint PABA algorithms outperform the baseline algorithm

in terms of model convergence. For example, given the latency of 100 second, the proposed

joint PABA, parameter aware bandwidth allocation, and bandwidth aware parameter allocation

achieve a training accuracy of (5.24%, 3.49%, 2.26%) and a test accuracy of (4.40%, 2.84%,

1.99%) higher than that of the baseline algorithm, respectively. With respect to the baseline, the

performance gains of the PABA schemes are due to the integration of workload and bandwidth.

1The source codes for implementing PARTEL are available at https://www.eee.hku.hk/%7ewirelesslab/resources/Demo.zip.
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(a) Training accuracy versus latency.
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(b) Test accuracy versus latency.

Figure 3: Learning performance versus (communication-plus-computation) latency.

Specifically, additional bandwidth (or less workload) is allocated to a device to compensate for

slow computation (or weak link), thereby reducing the per-round latency. The PABA schemes

with varying complexity support different degrees of integration and as a result, achieve different

levels of latency reduction with joint PABA performing the best.

C. PARTEL v.s. FEEL

In Fig. 4, the proposed PARTEL framework and the FEEL framework are compared. As

mentioned in Remark 2, the PARTEL framework reduces to the FEEL framework in the case of

only one group. Consider there are 50 workers in the cell. For PARTEL, they are clustered into

5 groups, each of which has 10 workers. For FEEL, they are in one group and hence no model

partition. For fairness, we use the same scheme of joint PABA to compare PARTEL and FEEL.

From the figure, the proposed PARTEL framework outperforms the FEEL framework with a

latency reduction of 48.43% on average to achieve the same accuracy. The reason is as follows.

For the PARTEL framework, each worker only needs to transmit the gradient of a parametric

block while for the FEEL framework, the gradient of the whole parameter vector is needed to be

uploaded by each worker. This makes the uploading latency much larger for the latter, especially

when the wireless resources are limited.

D. Latency Performance

The latency performance of joint and partially integrated PABA and baseline scheme in terms

of expected one-round latency are compared in Fig. 5 for a varying bandwidth and a varying
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Figure 4: Comparison between PARTEL and FEEL.

number for worker groups. First, as expected, the latency of all algorithms are observed to

decrease as either the bandwidth or group number increase, representing more communication

and computation resources, respectively. For a large bandwidth (or a group number), the latency

saturates as it is dominated by computation latency (or communication latency). Next, the PABA

algorithms are observed to significantly reduce the latency with respect to the baseline scheme.

In particular, joint PABA achieves latency reduction of 46.73% for the bandwidth of 70 MHz

and 46.92% for the number of groups equal to 18. Among the PABA algorithms, joint PABA

outperforms two partially integrated PABA algorithms at the cost of higher complexity. On the

other hand, the latency comparison between parameter aware bandwidth allocation and bandwidth

aware parameter allocation suggests the former is more effective. Because the former can cope

with channel heterogeneity for all workers while the latter can only cope with the computation

capacity heterogeneity in worker group level.

Consider the case where the number of worker groups is fixed but the group size grows.

The growth has two conflicting effects. On one hand, the computation load, say the number

of assigned parameters, per worker reduces, resulting in decreasing computation latency. On

the other hand, more workers sharing a fixed bandwidth causes increases the communication

latency. This suggests an optimal group size for learning latency minimization as confirmed by

the curves of latency versus number of workers per group plotted in Fig. 6. The optimal group

size differs for different algorithms e.g., 20 for joint PABA and 18 for the baseline scheme.

The simulation results above show that the proposed joint PABA scheme has the best perfor-
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Figure 5: Latency performance comparison for (a) a varying bandwidth and (b) a varying number

of worker groups.
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Figure 6: One-round latency versus number of workers in each group

mance and verify our analysis in Sections IV, V, and VI.

VIII. CONCLUSION

In this paper, we have proposed the new edge-learning framework, PARTEL, for performing

a large-scale learning task in a wireless network. The framework features both data-and-model

partitioning for distributing learning at many resource-constrained mobile devices. For efficient

edge implementation of PARTEL, we have jointly designed the functional blocks of parameter

allocation and bandwidth allocation (PABA), resulting in substantial latency reduction.
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The current work opens several interesting directions for future investigation. One direction

is to extend the joint PABA design to the cases of multi-cell systems with inter-cell interference

management required and coexisting of networks/services (PARTEL and non-PARTEL users).

Another direction is to investigate worker scheduling to balance distribute computation capacities

and multi-access latency. Designing communication techniques for PARTEL such as multi-

antenna and millimeter-wave transmission is also an interesting direction to explore.

APPENDIX

A. Proof of Lemma 1

In the case of smooth regularization, both F(θ) and R(θ) are smooth functions. For an

arbitrary round, say the (r + 1)-th, gradient descent is used to update the model parameters:

θ(r+1)
np

= θ(r)
np

+ ηr∇θ
(r)
np
L
(
θ(r)
)
, 1 ≤ np ≤ Np, (33)

where θ(r)
np is the np-th element of θ(r), ηr is the learning rate, and ∇

θ
(r)
np
L
(
θ(r)
)

is the gradient

defined in (2). Besides, due to the decomposable structure of the objective function L(·),
∇
θ
(r)
np
L
(
θ(r)
)

is independent of ∇
θ
′(r)
np
L
(
θ(r)
)
, for any np 6= n

′
p. Hence, in the distributed

algorithms, the ground-true gradients can be calculated for each parametric block. Thereby,

the distributed gradient descent algorithm is equivalent to the centralized one.

In the case of non-smooth regularization, R(θ) is non-smooth. For an arbitrary round, say the

(r + 1)-th, proximal gradient descent is used to update the learning parameters:

θ(r+1) = prox
(
θ(r) − ηr∇F(θ(r))

)
, (34)

where prox(y) = argmin
µ

(
R(µ) + 1

2
||µ − y||22

)
. Similarly, for any np 6= n

′
p, ∇θnp

F is inde-

pendent of ∇θ
n
′
p

F . Besides, R(µ) and ||µ − y||22 are block separable. Thereby, the distributed

proximal gradient descent algorithm is equivalent to the centralized one.

In summary, the distributed implementation has no impact on the calculated proximal gradients

or gradients. Hence, the convergence rates (in rounds) only depend on the learning algorithms

themselves and are irrelevant to parameter allocation and bandwidth allocation.
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B. Proof of Theorem 1

After relaxation, the first constraint of (17) turns to be {bk ≥ 0, 1 ≤ k ≤ K}, while the other

parts remain the same. The relaxed problem is a linear program. KKT conditions are used to

solve the linear program. The Lagrange function can be written as

L ({bk}, tPA, {λk}) = tPA + µ

(
K∑
k=1

bk −Np

)
+

K∑
k=1

λk (tk (bk)− tPA) , (35)

where µ and {λk} are the Lagrangian multipliers. The KKT conditions are given by

∂L ({bk}, tPA, {λk})
∂bk

= µ+ λkmax
n∈Gk

{
Dk,nO

f c
k,n

+
Ag

ρ∗k,nBRu,k,n

}
= 0, 1 ≤ k ≤ K,

∂L ({bk}, tPA, {λk})
∂tPA

= 1−
K∑
k=1

λk = 0,

λk (tk (bk)− tPA) = 0, 1 ≤ k ≤ K,

K∑
k=1

bk −Np = 0, λk ≥ 0, tk (bk)− tPA ≤ 0, 1 ≤ k ≤ K,

(36)

In (36), the second condition indicates ∃k, λk 6= 0. Then, together with the first condition, we

can show µ 6= 0, and further show that {λk 6= 0,∀k} as µ 6= 0. Next, from the third condition,

we have

tk (bk)− tPA = 0, 1 ≤ k ≤ K. (37)

By substituting the group latency tk (bk) in (16) into the above equation, (19) can be derived.

Next, by substituting (19) into the constraint
∑K

k=1 bk = Np, we can get (20). In (20), the

optimum t∗PA can be solved by bisection search because Np increases with tPA. Then, the optimal

parameter-allocation scheme {b∗k} is given in (19).

C. Proof of Lemma 2

(P4) is convex if its objective function is convex, as the constraint is a linear set. First, for any

one worker, say worker (k, n), by substituting the push latency in (4), the computation latency

in (5), and the pull latency in (6), its total latency in (3) can be derived as

tk,n (ρk,n) = Tph + T̂k,n + t̃k,n (ρk,n) + Ts = Tph + T̂k,n +
b̂∗kAg

ρk,nBRu,k,n

+ Ts, (38)

where Tph, T̂k,n = t̂k,n(b̂
∗
k), and Ts are constants. In (38), tk,n (ρk,n) is a convex function of ρk,n.

Then, the objective function of (P4), given by maxk tk ({ρk,n}) = max(k,n) tk,n (ρk,n), is also

convex, because max operation preserves convexity.
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D. Proof of Theorem 2

To solve (P4), we derive and solve an equivalent convex problem. First, define tBA = maxk tk ({ρk,n}).
Then, substituting it and tk ({ρk,n}) = maxn∈Gk tk,n (ρk,n) into (P4), it can be equally derived as

min
{ρk,n},tBA

tBA, s.t.
K∑
k=1

∑
n∈Gk

ρk,n ≤ 1, & tk,n (ρk,n) ≤ tBA, ∀(k, n). (39)

KKT conditions are used to solve the convex problem in (39). The Lagrange function is

L ({ρk,n}, tBA, {λk,n}) = tBA + µ

(
K∑
k=1

∑
n∈Gk

ρk,n − 1

)
+

K∑
k=1

∑
n∈Gk

λk,n (tk,n (ρk,n)− tBA) , (40)

where µ and {λk,n} are the multipliers, tk,n (ρk,n) in (38). Then, the KKT conditions are

∂L ({ρk,n}, tBA, {λk,n})
∂ρk,n

= µ− λk,n
b̂∗kAg

ρ2
k,nBRu,k,n

= 0, ∀(k, n),

∂L ({ρk,n}, tBA, {λk,n})
∂tBA

= 1−
K∑
k=1

∑
n∈Gk

λk,n = 0,

λk,n (tk ({ρk,n})− tBA) = 0, ∀(k, n),
K∑
k=1

∑
n∈Gk

ρk,n − 1 = 0, λk,n ≥ 0, tk ({ρk,n}) ≤ tBA, ∀(k, n).

(41)

In (41), the second condition shows that ∃(k, n), λk,n 6= 0. Then, together with the first condition,

it can be derived that µ 6= 0, and hence {λk,n 6= 0, ∀(k, n)}. In addition, according to the third

condition in (41), we have {tk,n (ρk,n)−tBA = 0, ∀(k, n)}. In the next, by substituting tk,n (ρk,n)

in (38) into the above equation, we can derive (23). Then, by substituting (23) into the condition∑K
k=1

∑
n∈Gk ρk,n−1 = 0, (24) can be derived. In (24), bisection search can be used to find t∗BA,

as B strictly decreases with tBA. Then, the optimal bandwidth-allocation scheme {ρ∗k,n} can be

decided by (23).

E. Proof of Lemma 3

The KKT conditions of (P5) are used to show the sufficient and necessary conditions. First,

the Lagrangian function is given by

L ({bk}, t, λ, µ) = t+ µ

(
K∑
k=1

bk −Np

)
+ λ

(
K∑
k=1

∑
n∈Gk

ρk,n (bk, t)− 1

)
, (42)
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where ρk,n (bk, t) is defined in (25), and µ and λ are multipliers. Then, KKT conditions are

necessary to achieve the optimum, which are given by

∂L ({bk}, t, λ, µ)
∂t

= 1 + λ

K∑
k=1

∑
n∈Gk

∂ρk,n (bk, t)

∂t
= 0,

∂L ({bk}, t, λ, µ)
∂bk

= µ+ λ
∑
n∈Gk

∂ρk,n (bk, t)

∂bk
= 0, ∀k,

λ

(
K∑
k=1

∑
n∈Gk

ρk,n − 1

)
= 0,

K∑
k=1

bk = Np, λ ≥ 0,
K∑
k=1

∑
n∈Gk

ρk,n ≤ 1.

(43)

From the first condition in (43), we have λ 6= 0. Then, the second conditions can be derived as∑
n∈Gk

∂ρk,n (bk, t)

∂bk
= C, ∀k, (44)

where C = −µ/λ. Next, as λ 6= 0, the third condition in (43) can be derived as
K∑
k=1

∑
n∈Gk

ρk,n (bk, t) = 1. (45)

As a result, the above two conditions in (44) and (45) together with the forth condition in (43),

which are summarized in (28), are necessary to achieve the minimal latency. Furthermore, it is

easy to show that only one solution is in (28), which should be optimal. Hence, the conditions

in (28) are sufficient and necessary to achieve the optimal latency.

F. Proof of Lemma 4

First, two useful facts are listed below.

• Fact1: The bandwidth allocation ratios {ρk,n (bk, t) , ∀(k, n)} defined in (25) are monotonously

decreasing function of the overall one-round latency t.

• Fact2: ρk,n (bk, t) is monotonously increasing function of the parametric-block length bk for

all workers.

Based on Fact2, to maximize the feasible model size, second condition in (P6) should be
K∑
k=1

∑
n∈Gk

ρk,n (bk, t) = 1. (46)

Then, for t = T1, denote the optimal solution of (P6) as {b∗k,1}. The corresponding maxi-

mal feasible model size and optimal bandwidth allocation ratios are n∗p(T1) =
∑K

k=1 b
∗
k,1 and

{ρ∗k,n
(
b∗k,1, T1

)
}, respectively.
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Next, assume any T2 > T1, from Fact1, we have ρk,n
(
b∗k,1, T2

)
< ρ∗k,n

(
b∗k,1, T1

)
for all workers,

which further shows that
K∑
k=1

∑
n∈Gk

ρk,n
(
b∗k,1, T2

)
<

K∑
k=1

∑
n∈Gk

ρ∗k,n
(
b∗k,1, T1

)
= 1. (47)

Furthermore, let

bk,2 = b∗k,1, k = 2, 3, ...K. (48)

For group G1, we have ∑
n∈G1

ρk,n (b1,2, T2) = 1−
K∑
k=2

∑
n∈Gk

ρk,n (bk,2, T2) ,

> 1−
K∑
k=2

∑
n∈Gk

ρ∗k,n
(
b∗k,1, T1

)
,

=
∑
n∈G1

ρ∗k,n
(
b∗1,1, T1

)
,

(49)

where the two equalities are due to (46) and the inequality is due to (47) and (48). According

to Fact2 and (49), we can show that b1,2 > b∗1,1. That says
∑K

k=1 bk,2 >
∑K

k=1 b
∗
k,1 = n∗p(T1).

Furthermore, the maximal feasible model size for t = T2 satisfies n∗p(T2) ≥
∑K

k=1 bk,2. That says

n∗p(T2) > n∗p(T1). (50)

G. Proof of Lemma 5

First, the objective of (P6) is convex and the the first constraint is a convex set. Then, given

t = T , from (25), all bandwidth-allocation ratios in the second condition can be written as

ρk,n (bk) =
bkAg(

T − Ts − Tph − t̂k,n (bk)
)
Ru,k,n

, ∀(k, n), (51)

where t̂k,n (bk) =
bkDk,nO

f c
k,n

. In (51), {ρk,n (bk) , ∀(k, n)} can be linearly transformed from the

convex function f(x) =
x

1− ax with ax < 1 and a > 0. Hence, {ρk,n (bk) , ∀(k, n)} are convex,

as linear transformation preserves convexity. Thereby, the second condition of (P6) is a convex

set.
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