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Background & Aims: Little is known about Epstein-Barr virus tumor cells, were overexpressed in EBVaICC. High PD-L1

(EBV)-associated intrahepatic cholangiocarcinoma (EBVaICC)
because of its rarity. We aimed to comprehensively investigate
the clinicopathology, tumor immune microenvironment (TIME)
and genomic landscape of this entity in southern China.
Methods: We evaluated 303 intrahepatic cholangiocarcinomas
(ICCs) using in situ hybridization for EBV. We compared clinico-
pathological parameters between EBVaICC and nonEBVaICC, and
we analyzed EBV infection status, tumor-infiltrating lympho-
cytes (TILs) and genomic features of EBVaICC by immunohisto-
chemistry, double staining, nested PCR, multiplex
immunofluorescence staining, fluorescence in situ hybridization
and whole-exome sequencing.
Results: EBVaICC accounted for 6.6% of ICCs and was associated
with EBV latency type I infection and clonal EBV isolates. Patients
with EBVaICC were more often female and younger, with solitary
tumors, higher HBV infection rates and less frequent cirrhosis;
the lymphoepithelioma-like (LEL) subtype was more common in
EBVaICC. EBVaICC was associated with a significantly larger TIME
component than nonEBVaICC. The LEL subtype of EBVaICC –

associated with a significantly increased density and proportion
of CD20+ B cells and CD8+ T cells – was associated with signifi-
cantly higher 2-year survival rates than conventional EBVaICC
and nonEBVaICC. Both PD-1 and PD-L1 in TILs, and PD-L1 in
words: Epstein-Barr virus; Intrahepatic cholangiocarcinoma; Clinicopathology;
or immune microenvironment; Genomic landscape.

eived 13 May 2020; received in revised form 7 October 2020; accepted 30 October
0; available online 17 November 2020
orresponding author. Address: Department of Pathology, Sun Yat-sen University
cer Center, Guangzhou, Guangdong, 510060, China. Tel.: +86-2087343693, fax:
-2087343702.
ail address: yunjp@sysucc.org.cn (J.-P. Yun).
Yu-Hua Huang, Chris Zhi-yi Zhang and Qun-Sheng Huang shares co-first

horship.
s://doi.org/10.1016/j.jhep.2020.10.037

Journal of Hepatology 2
expression in tumor cells and high CD8+ TIL densities were
significantly more common in EBVaICC than in nonEBVaICC.
Seven genes (MUC4, DNAH1, GLI2, LIPE, MYH7, RP11-766F14.2 and
WDR36) were mutated in at least 3 patients. EBVaICC had a
different mutational pattern to liver fluke-associated chol-
angiocarcinoma and HBV-associated ICC.
Conclusions: EBVaICC, as a subset of ICC, has unique etiological,
clinicopathological and genetic characteristics, with a signifi-
cantly larger TIME component. Paradoxically, patients with
EBVaICC could be candidates for immune checkpoint therapy.
Lay summary: Epstein-Barr virus (EBV) is associated with a
subtype of intrahepatic cholangiocarcinoma, with unique clini-
copathological and genetic characteristics. The tumor immune
microenvironment is also different in this tumor subtype and
patients with EBV-associated intrahepatic cholangiocarcinoma
may respond well to immune checkpoint inhibitors.
© 2020 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Intrahepatic cholangiocarcinoma (ICC) is the second most com-
mon malignancy of the liver, with a much higher incidence in
parts of the Eastern world compared to the West.1 The incidence
of ICC has been rising globally over recent decades,2 and the
etiology and pathogenesis are still not fully understood. ICC is
associated with low survival rates because of its biological
aggressiveness and poor resectability, but also because current
therapeutic options remain limited.3 Currently, approximately
50% of cases are still diagnosed without any identifiable risk
factors.4,5

Epstein-Barr virus (EBV) has been linked to several carci-
nomas of the aerodigestive tract, especially undifferentiated
021 vol. 74 j 838–849
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nasopharyngeal carcinoma (NPC)6 and EBV-associated gastric
carcinoma (EBVaGC),7 but the relationship between EBV infec-
tion and ICC pathogenesis has not been well characterized. The
current level of evidence on EBV-associated ICC (EBVaICC) is
solely based on case reports and small series.8–11 Of note, the vast
majority of previously reported EBVaICC cases arose in Asia in
patients of Chinese descent,8–11 which showed a remarkable
ethnic and geographical distribution. To date, little is known
about EBVaICC. Thus, a systematic and deeper understanding of
this rare entity is required to elucidate its pathogenesis and
identify potential therapeutic strategies.

Herein, we identified the EBV infection status of a large cohort
of patients with ICC in southern China, which has the highest
incidence of EBV-associated NPC.12 In addition, we systematically
analyzed the clinicopathological features and tumor immune
environment (TIME) of EBVaICC. We also report on a patient with
EBVaICC who survived for 84 months, having exhibited a marked
response to combined therapy with immune checkpoint
blockade. Furthermore, we also study, for the first time, the
genomic landscape of EBVaICC and ICC-associated EBV.

Materials and methods
Patients, samples and clinicopathological data
A retrospective consecutive cohort of 303 patients with ICC who
primarily underwent their first surgical resection at Sun Yat-sen
University Cancer Center, Guangzhou, China, between April 2008
and May 2017, were included in this study. The well-known risk
factors of ICC4,5 identified in the present cohort are listed in
Table S1. The median follow-up period of surviving patients was
50 months. All patients provided written informed consent for
the collection and publication of their medical information
during the first visit to the hospital. The study was approved by
the Sun Yat-sen University Cancer Center clinical research ethics
committee. The authenticity of this article has been validated by
uploading the key raw data onto the Research Data Deposit
public platform (www.researchdata.org.cn) with approval num-
ber RDDB2020000851. All specimens were formalin-fixed and
paraffin-embedded, processed routinely and H&E stained. The
histological slides were retrieved and reviewed; the diagnosis
was confirmed by 2 experienced digestive pathologists. The
lymphoepithelioma-like (LEL) subtype of ICC was defined as
follows: i) more lymphocytes than tumor cells, ii) no desmo-
plasia throughout the tumor, and iii) tumor cells consistent with
the immunophenotype of ICC.

Tissue microarray construction and EBV-encoded RNA in situ
hybridization
EBV Probe in situ hybridization (ISH) Kit (ISH-6021, Zhongshan
Golden Bridge Biotechnology) was used to detect EBV-encoded
RNA (EBER) in tissue microarray (TMA) slides according to the
manufacturer’s protocol.

Double staining
To demonstrate the presence of EBV in tumor cells, CK7 immu-
nohistochemistry plus EBER in situ hybridization dual-staining
technique was performed. In addition, double immunohisto-
chemical staining for CK7 and EBNA1 was utilized.

Nested PCR and real-time quantitative PCR
EBV clonality was evaluated in all EBVaICC samples using nested
PCR amplification of LMP-1 33 base pair repeats as previously
Journal of Hepatology 2
reported.13 Real-time quantitative PCR was applied toward the
BamHI-W region for EBV DNA detection in 15 serum samples
from patients with EBVaICC.

Immunohistochemical staining and analysis
IHC was performed to analyze the expression of latent EBV
proteins (Epstein-Barr nuclear antigen 1 and 2 [EBNA1 and
EBNA2], and latent membrane protein 1 [LMP1]) in all EBVaICC
cases using a BenchMark ULTRA automatic immunostaining de-
vice according to the manufacturer’s instructions. In addition,
IHC was applied to evaluate the immunophenotype of tumor
cells and tumor-infiltrating lymphocytes (TILs) in all 303 ICCs.
After IHC staining for CD20, CD3, CD68, CD8, FoxP3, cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), HLA-DR and CD163,
TMA slides were scanned by a digital pathology scanner (Aperio
AT2, Leica). The average density (cells/mm2) of each lymphocyte
subset was quantitatively scored with the HALO 2.3 Digital Pa-
thology system (Indica Labs) in a whole TMA core. Programmed
cell death ligand 1 (PD-L1) expression in tumor cells and in TILs,
and programmed cell death 1 (PD-1) expression in TILs, were
scored using an immunoreactivity scoring system (IRS) based on
the percentage and staining intensity of stained cells (Table S2).
CD8+ T cell densities were divided into 2 groups (high vs. low)
according to a median split. Based on the expression status of
PD-L1 in tumor cells and tumor-infiltrating CD8+ T cell densities,
ICCs were categorized into 4 tumor microenvironment types
(TMITs): Type I (PD-L1+/CD8-High), Type II (PD-L1-/CD8-low), Type
III (PD-L1+/CD8-low) and Type IV (PD-L1-/CD8-High).14

Multiplex immunofluorescence staining and evaluation
Multiplex immunofluorescence staining was carried out with
Opal 7-Color Manual IHC Kits (Panovue Biotechnology) accord-
ing to the manufacturer’s protocol. Two panels, including CD20,
CD3 and CD8, as well as CK, PD-L1 and CD8, were visualized with
Vectra 2 System and Nuance and InForm image analysis software
(PerkinElmer).

Fluorescence in situ hybridization
To detect FGFR2 gene translocation and PD-L1 gene amplification,
FGFR2 (10q26) split dual-color probe and PD-L1/CEN9q dual-
color probe (LBP Medicine Science and Technology Co., Ltd)
were utilized for fluorescence in situ hybridization (FISH) in all
EBVaICC cases, respectively.

Whole-exome sequencing
The 20-fresh tumor/control paired tissue samples isolated from
10 EBVaICC patients were sequenced using commercial DNA
sequencing services (Guangzhou Gene Denovo Biotechnology).
The raw sequence data reported in this paper have been
deposited in the Genome Sequence Archive of the BIG Data
Center at the Beijing Institute of Genomics, Chinese Academy of
Science, under accession number HRA000346 (http://bigd.big.ac.
cn/gsa-human). Code is available from corresponding author on
reasonable request. The 5 new hotspots in ICC-derived EBV
identified by whole-exome sequencing (WES) (Table S3) were
further validated by Sanger sequencing.

Statistical analysis
The overall survival (OS) time was defined as the period of
time in months from operation to death. Relapse-free sur-
vival (RFS) time was assessed from the day of tumor
021 vol. 74 j 838–849 839
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resection to disease recurrence. The high and low TIL den-
sity/proportion was defined as above and below a cut-off
determined using receiver operating characteristic (ROC)
curves and the area under the ROC curve (AUC). Statistical
analyses were performed using SPSS 23.0 for Windows (IBM).
A comparison between groups was conducted using the
Wilcoxon rank-sum, chi-square or Fisher’s exact test for
EB
Va

IC
C

 (L
EL

)

H&E 200x EBER-ISH 2

EB
Va

IC
C

 (C
T)

B

C

p = 0.028

EBVaICC (LEL) 
EBVaICC (CT) 
nonEBVaICC

 

0 24 48 72 96 120
0

25

50

75

100

O
ve

ra
ll 

su
rv

iv
al

 (%
)

Months

A

 

0

20

40

60

80 **

Fe
m

al
e 

(%
)

no
nE

BVaIC
C

EBValC
C

0

20

40

60

80

100

Ag
e 

at
 in

iti
al

 d
ia

gn
os

is
 (y

) *

no
nE

BVaIC
C

EBValC
C

0

20

40

60

H
Bs

Ag
 s

er
o 

po
si

tiv
ity

 (%
) *

no
nE

BVaIC
C

EBValC
C

0

10

20

30

C
irr

ho
si

s 
(%

)

*

no
nE

BVaIC
C

EBValC
C

Fig. 2. Differences in clinicopathological and prognostic characteristics bet
subtype and CT of ICC were identified among EBVaICC; LEL subtype and CT were
predominantly in females, younger patients with solitary tumors, lower cirrh
edocholithiasis rate, lower serum CA19-9 levels and increased LEL subtype propo
with EBVaICC (LEL subtype) had a significantly longer OS than EBVaICC (CT) and n
Meier survival analyses. CT, conventional type; EBV, Epstein-Barr virus; EBVa
angiocarcinoma; LEL subtype, lymphoepithelioma-like subtype; OS, overall survi
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categorical variables and the t-test for discrete variables.
Survival analysis was performed using the Kaplan-Meier and
Life Table method. The value of p<0.05 was considered to be
statistically significant.

The technique used for each EBVaICC sample is shown in
Table S4. For further details regarding the materials used, please
refer to the CTAT table and supplementary information.
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Results
Prevalence and EBV infection status of ICC
EBERs were detected in 6.6% (20/303) of primary ICCs (Fig. 1A)
and were not observed in any detected perihilar chol-
angiocarcinoma (pCCA), distal cholangiocarcinoma (dCCA),
combined mixed hepatocellular and cholangiocarcinoma (cHCC-
CCA), or hepatocellular carcinoma (HCC) (Fig. S1). Double stain-
ing revealed that EBV was only detected in the EBVaICC tumor
cells but was not present in adjacent non-neoplastic bile duct
epithelium (Fig. 1B and Fig. S2). All EBVaICCs were positive for
EBNA1 but were negative for LMP1 and EBNA2, which suggested
that EBV belonged to the latency type I infection (Fig. 1C). Nested
PCR amplification of LMP-1 33 base pair repeats indicated clonal
EBV isolates in all 20 EBVaICCs (Fig. 1D).
Clinical characteristics of EBVaICC
The ages of patients with EBVaICC ranged from 24 to 68 years,
with a median age of 46.5 years. There was a predominance of
females, with the male-to-female ratio of 1:3. All patients were
Chinese. Ten patients (50%) showed HBsAg seropositivity, and
only 1 patient (5%) had histologically confirmed cirrhosis. Nine-
teen patients (95%) harbored a solitary tumor. According to AJCC
TNM staging (8th Edition), 14 patients (70%) were classified as
stage I/II, and 6 patients (30%) were classified as stage III/IV.
Serum EBV DNA>1,000 copy/ml was present in 2 out of 15
(13.3%) available cases (Table S5).
Morphology and immunophenotype of EBVaICC
Pathological data for EBVaICC, including histology, immunohis-
tochemistry and in situ hybridization, are summarized in
Tables S6-7. Histologically, the lymphoepithelioma-like subtype
and conventional type of ICC were identified in 45% (9/20) and
55% (11/20) of EBVaICCs, respectively (Fig. 2A). Secondary
lymphoid follicles were found within the tumor in all cases of the
LEL subtype of EBVaICC but not in any of the conventional type of
EBVaICC (Fig. 2A). All EBVaICCs exhibited variable expression of
biliary-type cytokeratins (CK7 and CK19) (Table S7) and showed
immunopositivity for missense repair proteins of microsatellite
instability (MLH1, PMS2, MSH2 and MSH6) (Fig. S3 and Table S7).
Clinicopathological characteristics between EBVaICC and
nonEBVaICC
EBV infection was not significantly related to any well-known
risk factors of ICC, except for HBV (Table S1). Compared to pa-
tients with nonEBVaICC, EBVaICC tended to occur predominantly
in females (75.0% vs. 37.8%), younger patients (median age 46.5
vs. 57.0 years-old) with a higher HBsAg seropositive rate (50.0%
vs. 26.1%), lower cirrhotic background (5.0% vs. 27.2%), lower
cholelithiasis/choledocholithiasis rate (0% vs. 16.8%), solitary tu-
mors (95.0% vs. 70.7%), and lower serum CA19-9 positive rate
(30.0% vs. 58.0%) (all p values <0.05). Histologically, the LEL
subtype of ICC was significantly more commonly found in
EBVaICC than in nonEBVaICC (45% vs. 0.7%, p <0.001), indicating
the LEL subtype had a close relationship with EBV infection
(Fig. 2A-2B). Differences in clinicopathological features between
EBVaICC and other infection-related ICCs in this cohort, including
liver fluke-associated ICC (LFaICC) and HBV-associated ICC
(HBVaICC), are shown in Table S9 and Fig. S4.
842 Journal of Hepatology 2
Prognostic significance of EBVaICC
Although EBV infection was not significantly related to OS and
RFS in ICC (Fig. S5), EBVaICC (LEL subtype) was associated with a
significantly better 2-year OS rate (89%) than conventional
EBVaICC (36%) and nonEBVaICC (38%) (p = 0.028). The 2-year RFS
rate for EBVaICC (LEL subtype) was 67%, which was higher than,
but not significantly different from those for conventional
EBVaICC (27%) and nonEBVaICC (30%) (p = 0.074) (Fig. 2C). Of
note, EBVaICC was associated with significantly better 2-year OS
and RFS rates than HBVaICC and LFaICC (Fig. S4).

Tumor-infiltrating lymphocytes in EBVaICC
TILs in EBVaICC were predominately CD3+ T cells (84.4% ± 3.6%),
CD20+ B cells (9.4% ± 2.8%) and CD68+ tumor-associated mac-
rophages (TAMs) (6.1% ± 1.1%). Among the T cell population, CD8+
T cells accounted for 71.4% ± 2.9%, while FoxP3+ T cells and CTLA-
4+ T cells accounted for 15.0% ± 2.0% and 13.6% ± 1.9%, respec-
tively. HLA-DR+ M1 TAMs (77.6% ± 2.9%) were predominant
compared to CD163+ M2 TAMs (22.4% ± 2.9%) in EBVaICC. The
proportion of CD20+ B cell as well as CD8+ T cell populations
were significantly increased in EBVaICC compared to non-
EBVaICC, while no difference in the M1/M2 TAM ratio was
identified (Fig. S6).

The densities of tumor-infiltrating immune cells, including
CD20+ B cells, CD3+ T cells, CD68+ TAMs, CD8+ T cells, FoxP3+ T
cells, CTLA-4+ T cells, HLA-DR+ M1 TAMs and CD163+ M2 TAMs
were significantly increased in EBVaICC compared with non-
EBVaICC (all p values <0.01) (Fig. 3A-B). Of note, EBVaICC had a
significantly larger TIME component than HBVaICC and LFaICC;
no difference was observed between HBVaICC and LFaICC
(Fig. S7).

As shown in (Fig. 4A-B), the EBVaICC LEL subtype had
significantly higher densities of CD20+ B, CD3+ T and CD8+ T cells
compared with conventional EBVaICC and nonEBVaICC (p <0.05
for all comparisons). Of note, increased densities of CD20+ B and
CD8+ T cells were significantly related to longer OS and RFS in
ICC, respectively (p <0.05 for all comparisons) (Fig. 4C).

Association between EBV positivity and expression of PD-1
and PD-L1
Both PD-1 and PD-L1 in TILs, and PD-L1 in tumor cells, were
overexpressed in EBVaICC. A total of 95.0% (19/20) of EBVaICCs
were positive for PD-L1 in tumor cells (IRS score>−3) but only
22.3% (63/283) of nonEBVaICCs were (p <0.0001); 100% (20/20)
of EBVaICCs were positive for PD-L1 in TILs (IRS score>−1) but only
56.5% (160/283) of nonEBVaICCs were (p <0.0001). A total of
95.0% (19/20) of EBVaICCs were positive for PD-1 in TILs (IRS
score>−1) but only 64.0% (181/283) of nonEBVaICCs were (p =
0.005) (Fig. 5A-B). Interestingly, PD-L1 gene amplification was
not observed in 95% (19/20) of EBVaICCs by FISH analysis (Fig. 5A,
inset figure). The IHC expression patterns of PD-L1 and PD-1 in
all 303 ICC cases are shown in Fig. 5C.

Association between EBV positivity and TMIT
We classified each ICC sample into a TMIT (type I, II, III and IV)
according to immunohistochemical results as follows: Type I, 53
samples (17.5%); Type II, 123 (40.6%); Type III, 29 (9.6%); and
Type IV, 98 (32.3%) (Fig. 6A). TMIT was significantly related to
OS in ICC (p = 0.014) but not significant for RFS (p = 0.059)
(Fig. 6B). The TMIT I subgroup had the best survival benefit, and
the TMIT III subgroup had the worst survival benefit.
021 vol. 74 j 838–849
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EBVaICC. (B) The density of tumor-infiltrating CD20+ B lymphocytes, CD3+ T lymphocytes and CD68+ TAMs were significantly increased in EBVaICC compared
with nonEBVaICC as well as CD8+, PoxP3+ and CTLA4+ T cell populations and HLA-DR+M1 TAMs and CD163+ M2 TAMs (all p values <0.01, based on t-test). EBV,
Epstein-Barr virus; EBVaICC, EBV-associated intrahepatic cholangiocarcinoma; IHC, immunohistochemical; TAMs, tumor-associated macrophages; TILs, tumor-
infiltrating lymphocytes.
Clinicopathological relationships between TMIT and CD8 or PD-
L1 expression are shown in Table S10. Of note, EBVaICC was
significantly associated with TMIT I because 90% (18/20) of
EBVaICCs belonged to TMIT I, while the value was only 12.4%
(35/283) for nonEBVaICCs (p <0.0001) (Fig. 6C). The patient
from Case #4 exhibited a marked response to the combined
therapy, including immune checkpoint inhibitor therapy, with a
long survival time of 84 months; patient details are provided in
Table S5-7 and Fig. S8. Interestingly, EBVaICC had a significantly
different TMIT (in addition to having significantly elevated TILs
and harboring high PD-L1 expression) than HBVaICC and LFaICC
(Table S11-12).
Somatic aberrations of EBVaICC
We analyzed the WES data of 10 EBVaICCs with a mean coverage
of 100x and identified 3,353 somatic synonymous and non-
synonymous mutations (including single-nucleotide mutations
and small insertions and deletions, or InDels). The somatic mu-
tations included 1,346 non-silent and 2,007 silent mutations,
which revealed a high mutation rate (median: 4.4 mutations per
Journal of Hepatology 2
megabase). We discovered that 7 genes were affected by non-
silent mutations in at least 3 patients, including MUC4, DNAH1,
GLI2, LIPE, MYH7, RP11-766F14.2 and WDR36. The predominant
somatic mutation type was C: G>T: A transitions and C: G>A: T
transitions. Then, 3 independent and stable mutational signa-
tures were identified (Fig. S9). In addition, 22 potential driver
genes in EBVaICC were predicted by the MuSigCV software
(Fig. 7). Significantly mutated genes in EBVaICC compared to
those reported in ICC15 are shown in Fig. S10. Of note, EBVaICC
displayed a different mutational pattern from other EBV-
associated carcinomas including EBVaGC,16 NPC17 and pulmo-
nary lymphoepithelioma-like carcinoma18 (Fig. S11), and other
infection-related CCA, including HBVaICC15 and LFaCCA19,20

(Fig. S12).
Somatic copy number alterations of EBVaICC
Frequent alterations included copy number losses in 7q34 (q-
value = 2.3168e-07, 30%) and 14q11.2 (q-value <1e-07, 50%). No
frequent arm-level alterations for copy number gains were
noted. When mutations of druggable genomes in Maftools with
021 vol. 74 j 838–849 843
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Fig. 4. Proportions and densities of tumor-infiltrating CD20+ B cells and CD8+ T cells were significantly increased in the LEL subtype of EBVaICC. (A)
Representative multiple immunofluorescence images of CD20, CD3 and CD8 in EBVaICC (LEL subtype), EBVaICC (CT) and nonEBVaICC. (B) The proportions and
densities of tumor-infiltrating CD20+ B cells and CD8+ T cells were significantly increased in the LEL subtype of EBVaICC, (all p values <0.05, based on t-test). (C)
The densities of CD20+ cells and CD8+ T cells were significantly related to OS and RFS in ICC, respectively, based on Kaplan-Meier survival analyses. CT, con-
ventional type; EBV, Epstein-Barr virus; EBVaICC, EBV-associated intrahepatic cholangiocarcinoma; ICC, intrahepatic cholangiocarcinoma; LEL subtype,
lymphoepithelioma-like subtype; OS, overall survival; RFS, relapse-free survival.
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information compiled from the Drug Gene Interaction database
were analyzed, deletions of PRSS1, which was regarded as
disease-causative in pancreatitis,21 were identified in 3 cases
(30%) (Fig. S13). The amplification of CD274 was not identified
among these 10 cases. Amplification of CD274 was associated
with elevated PD-L1 expression in EBVaGC.22 Altered pathways
enriched in EBVaICC are shown in Fig. S14.

Somatic structural variation
FGFR2 gene fusions were not detected in 10 EBVaICC cases in
WES data by novoBreak algorithm, which were validated by FISH
analysis using a split dual-color probe.
844 Journal of Hepatology 2
Single-nucleotide variant of the EBV genome in EBVaICC
The top 40 frequent nonsynonymous mutations identified in ICC-
derived EBV are shown in Fig. 8, which were determined by
aligning the viral reads against the EBV reference genome
(NC_007605.1). All cases harbored new hotspots of BKRF4
(H171N), BcRF1 (T33A), BKRF4 (G169V), BOLF1 (D1154E) and
BPLF1 (S405G). All of these hotspots were successfully validated
in tumor tissues by Sanger sequencing, except for BPLF1 (S405G),
the mutation validation of which failed due to high GC DNA
templates (Fig. S15). Mutations were frequently observed in the
BRLF1, BOLF1 and BRRF2 regions. Of note, variants in BOLF1 and
BRRF2 are significantly enriched in ICC, other than those at
021 vol. 74 j 838–849
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EBNAs, LMP1, LMP2 and BDLF2/3, which were consistently re-
ported in EBV derived from other cancers.23,24
Discussion
To date, the EBV infection status of ICC in southern China, with
the highest incidence of EBV-associated NPC,12 still remains
unknown. Our results revealed for the first time that the overall
prevalence of EBVaICC was 6.6%, which was similar to that of
EBVaGC (5.1%) in this area.7 In addition, all EBVaICCs were pos-
itive for EBNA1, without immunostaining for LMP1 and EBNA2,
which indicated that EBV harbored in ICC was a latency type I
infection. Furthermore, EBV was detected in EBVaICC tumor cells
with clonal isolates but was not present in adjacent non-
neoplastic bile duct epithelium. Such observations imply that
EBV infection may have occurred before the expansion of the
846 Journal of Hepatology 2
malignant cell clone or arose from a single infected progenitor
cell.

In this study, EBV infection was only detected in ICC but not
observed in the limited cases of pCCA, dCCA and cHCC-CCA,
which indicated that the prevalence of EBV-associated CCA
may differ based on anatomic location, which is similar to
EBVaGC.25 In addition, our results demonstrated that EBVaICC
was associated with higher HBV infection rate and increased
degree of lymphocytic infiltrate; in contrast, EBVaICC had a lower
cirrhotic background. Hepatitis B is recognized as a risk factor for
ICC.2,26 It has also been reported that antiviral therapy improves
survival in patients with HBV infection and ICC undergoing liver
resection.27,28 These findings presumably show that HBV may
have a direct carcinogenic effect or play a synergistic role with
EBV on target cells. Chronic liver inflammation resulting from
HBV infection may trigger cellular proliferation, which increases
the risk of malignant transformation.29 HBV may act as a co-
factor in EBVaICC carcinogenesis, which contributes to tumori-
genesis. Both HBV and EBV are highly endemic in southern
China, and whether the prevalence of EBVaICC in this region is
related to these risk factors needs further study. Of note,
although the LEL subtype was significantly related to EBVaICC,
more than half of EBVaICC morphologically presented with
conventional ICC, which could be underdiagnosed in our routine
practices without EBER detection.

The TIME of EBVaICC has not been characterized. In this study,
the TIME component was significantly larger in EBVaICC than in
nonEBVaICC. These results indicated that the immune response
has a closer relationship with EBVaICC than with nonEBVaICC.
This immune response could be triggered by EBV harbored in the
tumor cells, which resulted in dense lymphocytic infiltrate.30 Of
note, both the size and composition of TIME in EBVaICC were
significantly variable among individual cases.

Our results revealed that although the EBV infection did
not significantly affect patients’ outcome in ICC, the LEL
subtype of EBVaICC was significantly related to favorable
outcomes. These observations prompted us to analyze the
relationship between the characteristics of TIME and patient
prognosis. The LEL subtype of EBVaICC had the largest TIME
component, and the TIME component was somewhat larger
in conventional EBVaICC than in nonEBVaICC. This probably
reflects different levels of antitumor immune responses. The
conventional type of EBVaICC shared similar TIME features
with nonEBVaICC except for significantly increased CD3+ and
CD8+ T cell density. Tumor infiltration by B lymphocytes is
seldom observed, which may be attributed to the tendency
for these cells to rarely migrate outside of lymph nodes.31

Interestingly, the LEL subtype of EBVaICC, which had a
significantly increased density of CD20+ B cells and CD8+ T
cells, was significantly related to favorable outcome in ICC. In
addition, lymphoid follicular germinal centers were found
within these tumors, which indicated an effective humoral
immune response in the LEL subtype of EBVaICC. In addition,
it has been reported that the close proximity of tumor-
infiltrating T cells and B cells indicates a functional interac-
tion between them that is linked to enhanced local immune
activation and contributes to better prognosis for patients
with HCC.32 The LEL subtype of EBVaICC was associated with
favorable prognostic outcomes, which possibly benefitted
from enhanced local immune activation by the significantly
increased tumor-infiltrating B cells and CD8+ T cells.
021 vol. 74 j 838–849
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Accordingly, the host immune response is associated with the
patient’s prognostic outcome rather than the EBV infection
status in ICC. The evaluation of histological subtype of
EBVaICC is important because it has prognostic significance.

Until recently, the treatment options available to patients
with ICC remained limited. Advances in cancer immunology and
immunotherapy have facilitated the development of additional
treatment options that bring new hope to patients with ICC. The
effective selection of suitable cases for immunotherapy will
hopefully have a positive impact on advancing toward the goal of
developing precision immunotherapy for patients with ICC. Our
results revealed significant overexpression of PD-1 and PD-L1 in
TILs, and PD-L1 in tumor cells, in EBVaICC. However, the
Journal of Hepatology 2
amplification of CD274 (PD-L1), which is an important mecha-
nism of PD-L1 overexpression in EBVaGC,22 was only identified
in 1/20 EBVaICCs by FISH, which suggested the presence of an
alternative mechanism of PD-L1 overexpression in EBVaICC. In
addition, this study showed that TMIT was significantly related
to the EBV infection in ICC. TMIT I (PDL1-Tumor+/CD8-High),
which is thought to respond relatively well to checkpoint
blockade,14 was significantly more commonly observed in
EBVaICC (90%) than in nonEBVaICC (12.4%). Type I tumors are
most likely to benefit from a single agent anti-PD-1/L1 blockade
because these tumors have evidence of preexisting intratumor T
cells that are turned off by PD-L1 engagement.14 Therefore, in
terms of application, our data suggest that patients with EBVaICC
021 vol. 74 j 838–849 847
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would be good candidates for immune checkpoint therapy and
benefit from anti-PD-1/L1 therapy.

Our study of 10 EBVaICCs using WES revealed the distinct
mutational landscape of this rare and special subtype of ICC. We
identified a frequent somatic mutation rate and the existence of
a high frequency of copy number loss areas. In addition, we
discovered 7 frequently mutated genes and 22 significantly
mutated potential driver genes and further uncovered several
pathways that may contribute to the tumorigenesis of this dis-
ease. Of note, none of the reported frequently mutated potential
driver genes (TP53, KRAS, IDH1, PTEN, ARID1A, EPPK1, ECE2 and
FYN)15 could be detected in our 10 EBVaICC cases. Interestingly,
EBVaICC had a different mutational pattern to LFaCCA19,20 and
HBVaICC,15 which indicated that a different type of infection-
related CCA may have different tumor pathogenesis. We
believe that our work provides a valuable starting point for un-
derstanding the genetic landscape of mutations in infection-
related CCA.

Various EBV strains are differentially distributed throughout
the world, and the behavior of cancer-derived EBV strains is
different from that of the prototype EBV strain of non-cancerous
origin. For the first time, we assembled 10 EBV genomes directly
from EBVaICC clinical samples and characterized the mutational
landscape of ICC-derived EBV. The single-nucleotide variants of
the EBV genome are frequently observed in the BRLF1, BOLF1 and
BRRF2 regions. Of note, new mutation hotspots were observed at
BOLF1 and BRRF2 in EBVaICC, other than those at EBNAs, LMP1,
LMP2 and BDLF2/3 reported in other EBV-associated malig-
nancies.23,24 All ICC-derived EBV harbored nonsynonymous
mutations of BKRF4 (H171N), BcRF1 (T33A), BKRF4 (G169V),
BOLF1 (D1154E) and BPLF1 (S405G), which were not frequently
observed in other EBV-associated tumors. Mutations in EBNA
loci, which are known as one of the mutational hotspots in EBV-
associated tumors, were not commonly observed in ICC-derived
EBV. These results indicate that EBV in ICC exhibits unique fea-
tures in its sequence, which supports the hypothesis of the ex-
istence of disease-specific EBV. However, whether the unique
EBV is a driver of the development of EBVaICC or simply adapted
to the niche of EBVaICC as a bystander requires further
investigation.

However, this study is limited in some ways. Although a large
cohort of ICC was included, the number of EBVaICC and control
groups (pCCA, dCCA and cHCC-CCA) was still small, and some of
the results may require verification. Furthermore, due to the
poor quality of RNA in fresh tissue specimens, whole tran-
scriptome sequencing failed. In addition, no confident evidence
of the integration of the EBV genome was observed based on our
WES data. Whole-genome sequencing was not performed, and
whether EBV is directly integrated into the host genome is still
unknown.

In conclusion, EBVaICC accounted for 6.6% of ICCs in this
study, and was associated with EBV latency type I infection and
clonal EBV isolates. EBVaICC has unique characteristics regarding
clinicopathology, tumor immune microenvironment and mo-
lecular genetics. The vast majority of this entity belongs to TMIT I
(PD-L1+/CD8-High). Paradoxically, patients could be candidates
for immune checkpoint therapy. The LEL subtype of EBVaICC
presents an ideal model of host antitumor activity and is
significantly related to favorable survival, which may benefit
from enhanced local immune activation by tumor-infiltrating B
cells and CD8+ T cells.
848 Journal of Hepatology 2
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