
PHYSICAL REVIEW RESEARCH 2, 043273 (2020)

Electron quasi-itinerancy intertwined with quantum order by disorder
in pyrochlore iridate magnetism

Gang Chen 1,2,3 and Xiaoqun Wang4,5

1Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong,
The University of Hong Kong, Hong Kong, China

2State Key Laboratory of Surface Physics and Department of Physics, Institute of Nanoelectronics and Quantum Computing,
Fudan University, Shanghai 200433, China

3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
4School of Physics and Astronomy, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China

5Key Laboratory of Artificial Structures and Quantum Control, Ministry of Education, Shenyang National Laboratory for Materials Science,
Shenyang 110016, China

(Received 6 August 2020; accepted 4 November 2020; published 23 November 2020)

We point out the emergence of magnetism from the interplay of electron quasi-itinerancy and quantum order
by disorder in pyrochlore iridates. Like other Mott insulating iridates, the Ir4+ ion in pyrochlore iridates develops
an effective J = 1/2 moment from the on-site spin-orbit coupling. We consider the generic symmetry-allowed
exchange between these local moments on a pyrochlore lattice and obtain the mean-field phase diagram.
Assuming the superexchange is mediated by direct and/or indirect electron hopping via intermediate oxygens,
we derive the exchange interactions in the strong-coupling regime from the Hubbard model. This exchange has a
degenerate classical ground-state manifold, and quantum fluctuation selects a noncoplanar ground state, known
as quantum order by disorder. Extending to the intermediate-coupling regime, the same noncoplanar order is
selected from the degenerate manifold by the kinetic energy, which is dubbed “electron quasi-itinerancy.” We
discuss the experimental relevance of our results and electron quasi-itinerancy among other iridates and 4d/5d
magnets.
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I. INTRODUCTION

In recent years, there has been a lot of activity on the
Ir-based transition-metal oxides. Due to the strong spin-orbit
coupling (SOC) of its 5d electrons, many novel phases, the-
oretical models, and experiments have been proposed and
discovered in these Ir-based materials [1–4]. Among them,
for example, a quantum spin liquid phase was proposed for
an Ir-based hyperkagomé lattice in Na4Ir3O8 [5], and a fer-
romagnetic ground state with a large ferromagnetic moment
was discovered in Sr2IrO4 with the Ir4+ ions forming a square
lattice [6]. In these Mott insulating systems, the presence of
strong SOC drastically changes the local spin physics. The
local moment of the magnetic ion Ir4+ is an effective J = 1/2
moment [5,7,8] describing local spin-orbital doublets rather
than the usual electron spin S = 1/2 for systems with a weak
SOC. The existence of local spin-orbital doublets has been
detected by resonant x-ray scattering experiments in Sr2IrO4

[9]. As a consequence, the nontrivial exchange interaction can
arise due to the mixing of spin and orbitals [5,10].
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Even though the superexchange interaction between the
Ir local moments is often used to describe most iridates,
most well-known Mott insulating iridates are actually weak
Mott insulators with quasi-itinerant 5d electrons and small
charge gaps. This weak Mott insulating nature was not re-
ally emphasized in the literature, and we think this may
be important in understanding some of the physical proper-
ties of iridates and the related materials. What is electron
quasi-itinerancy? Quasi-itinerancy is the key property of the
electrons in the weak Mott regime where the Mott gap is
not large enough to fully localize the electron to one sin-
gle lattice site and the electron can still be delocalized to
a finite extent spatially due to the small charge gap. Elec-
tron quasi-itinerancy is believed to be the driving force for
the possible spin liquid phase in the weak Mott regime
for κ-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 [11]. Over
there, the electron quasi-itinerancy was found to generate
the frustrated ring exchange interactions that suppress the
magnetic orders. A similar kind of electron quasi-itinerancy
[12–14] that emphasizes different outcomes of the charge
fluctuations has been discussed in various spinels and osmate
pyrochlores. Thus, besides the prevailing strong-coupling per-
spectives, the weak- to intermediate-coupling perspective is
found to be both complementary and exciting. Reference [15]
applied a slave-rotor mean-field theory to study the Mott
transition in a series of rare-earth-based pyrochlore iridates,
R2Ir2O7. They discovered a topological band insulator in the
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noninteracting limit and a novel topological Mott insulator in
the intermediate-coupling regime. Several other groups reex-
amined the problem with a more realistic Hamiltonian and
discovered various magnetic ordered phases and an interesting
Weyl semimetal phase that is located in the narrow regime
separating the topological band insulator or metal phase from
the strong-coupling Mott insulating phase [16–18]. Aligned
with the above theoretical efforts, the experiments discovered
that a metal-insulator transition in R2Ir2O7 (R = Nd, Sm,
Y, and Eu) involves a magnetic ordering produced by the
5d electrons in Ir [19–42]. Moreover, an exotic spin liquid
metallic phase was also proposed experimentally for Pr2Ir2O7

[43,44]. Now, the Ir electrons are proposed as forming a
Luttinger semimetal [45–47], while the Pr spin is proposed
to be proximate to a transition between a U(1) spin liquid and
an ordered spin ice [48–51].

Based on the existing theoretical [15–17,46–48,52–58] and
experimental works, the true magnetic state of these Ir-based
pyrochlore systems remains open. In this paper, we address
this problem and provide some understanding. We primar-
ily focus on the magnetic properties and avoid touching the
band structure topology that has been invoked in early works.
We first explore the magnetic properties of the Ir-based py-
rochlore lattice in the strong-coupling regime. Physically,
since the 5d electron orbitals of Ir4+ are spatially extended,
which enhances the electron bandwidth, these Ir-based sys-
tems are usually considered to be in the intermediate-coupling
regime. Nevertheless, the SOC could enhance the correla-
tion by suppressing the bandwidth [15]. Moreover, certain
magnetic properties in the strong-coupling limit could persist
to the intermediate-coupling regime even if the system is
located in the intermediate-coupling regime. In the strong-
coupling limit, the effective moments J = 1/2 of the Ir4+

ions are coupled by the superexchange interaction. We an-
alyze the symmetry-allowed exchange Hamiltonian, which
includes three types of pairwise terms: Heisenberg exchange,
antisymmetric Dzyaloshinskii-Moriya (DM) interaction, and
symmetric pseudodipolar (PD) interaction. This model is
equivalent to the one that was used for the interacting Kramers
doublet for the rare-earth pyrochlores. In the mean-field phase
diagram, we find five different ordered phases (see Sec. II):
a “four-in–four-out” state, a continuously degenerate state
spanned by two basis vectors (v1, v2), a weakly ferromag-
netic state (FM), and two coplanar states with spin oriented
along the particular [110] directions. Almost all these ordered
states have the magnetic wave vector q = 0. For the realistic
exchange model obtained from an extended Hubbard model
relevant for R2Ir2O7, there are only two ordered phases, which
are the four-in–four-out state and the continuously degener-
ate manifold spanned by two basis vectors (v1, v2). For the
latter, we find that the quantum fluctuation selects a non-
coplanar spin configuration by a linear spin-wave expansion.
This is the mechanism of quantum order by disorder. For
the intermediate-coupling regime, we apply the self-consistent
mean-field theory to study the microscopic Hubbard model
and assume a general magnetic configuration except having
the same magnetic cell as the crystallographic cell (or q = 0)
order. Again, we find that the system is “fluctuating” within
the continuously degenerate manifold spanned by (v1, v2),
and the electron kinetic energy selects the magnetic orders.

The electron kinetic energy is important here due to the
quasi-itinerancy in the weak Mott regime. It is found that
the magnetic orders in the strong-coupling regime persist into
the intermediate-coupling regime. Since it is unclear which
regime the actual system is proximate to, it is reasonable to
think that the electron quasi-itinerancy is intertwined with the
quantum order by disorder here.

In the following, we outline the main content of this paper.
In Sec. II, we study a generic symmetry-allowed exchange
Hamiltonian on the pyrochlore lattice with the effective spin-
1/2 originating from Kramers degeneracy, which is relevant
for R2Ir2O7 in the strong-coupling regime. In the exchange
Hamiltonian, there are four symmetry-allowed coupling pa-
rameters: Heisenberg exchange J0, DM interaction D, and
�1, �2 for PD interaction. We analyze this Hamiltonian with
the mean-field method in different parameter regimes. In
many parts of the phase diagram, the ground state can be
understood as simultaneously optimizing different terms of
the Hamiltonian. In Sec. III, we derive a realistic exchange
from the extended Hubbard model. Two limits with the dom-
inant direct or indirect electron tunneling via intermediate
oxygens are considered. In these two cases, we find that
there is only one mean-field phase, which is the continuously
degenerate manifold (v1, v2). We then implement the linear
spin-wave theory, and a noncoplanar ground state is favored
by this quantum order-by-disorder mechanism. For the cer-
tain intermediate regime with comparable direct and indirect
electron tunnelings, the four-in–four-out state is favored. We
further explore the magnetic properties of the Hubbard model
in the intermediate-coupling regime. By assuming a q = 0
magnetic structure, we implement a Hartree-Fock type of self-
consistent mean-field theory for the interaction. Finally, in
Sec. IV, we discuss the relevant experiments and other related
works.

II. THE GENERIC EXCHANGE HAMILTONIAN

In this section, we analyze the Ir-based pyrochlore lattice
in the strong-coupling regime. In the strong-coupling limit,
the local effective spin moments are coupled by an exchange
Hamiltonian. For the effective spin-1/2 moment describing
the local Kramers doublets, the exchange interaction is guar-
anteed to be pairwise. The generic exchange Hamiltonian has
the following form:

Hex =
∑
〈i j〉

J0(Ji · J j ) + Di j · (Ji × J j ) + �
μν
i j Jμ

i Jν
j , (1)

where the nearest-neighbor interaction is assumed, J0 is the
isotropic Heisenberg exchange, Di j describes the antisymmet-
ric DM interaction, and �

μν
i j is the symmetric PD interaction.

This form of decomposition is well known in the much older
literature of magnetism [59] but is not quite as popular among
newer studies. Kitaev or any other anisotropic exchange in-
teractions can be well cast into this form, as long as they
are pairwise interactions. As a general rule of thumb, for
systems with a weak SOC, the DM interaction is weaker than
the Heisenberg part, and PD interaction is even weaker than
DM interaction. For systems with strong SOC such as the
iridates here, there is no general rule of thumb, and all the
interactions could be of similar magnitudes. Thus, for most
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FIG. 1. The pyrochlore lattice in the global cubic coordinate
system. “0,” “1,” “2,” and “3” label the four sublattices.

magnetic systems composed of 3d transition-metal ions, the
DM interaction and PD interaction are expected to be much
weaker than the Heisenberg exchange and hence can be ne-
glected at lowest-order approximation. For Ir-based magnets
or other magnetic systems formed by 4d/5d transition-metal
ions, SOC is quite strong, and local moment is a mixture of
spin and orbitals. As a result, the exchange interaction is usu-
ally very non-Heisenberg-like, and the anisotropic exchanges
(such as DM and PD interactions) can be quite significant.

Throughout this section, we assume an antiferromagnetic
Heisenberg part with J0 > 0. Since most R2Ir2O7 (and also
spinel AB2X4) compounds have a space group Fd3̄m, this
space-group symmetry further restricts the allowed forms of
the DM interaction and PD interaction. Therefore, for the
bond connecting sublattice 0 with sublattice 1 (see Fig. 1),
we have

D01 = D

(
0,

1√
2
,− 1√

2

)
, (2)

�01 =
⎡
⎣−2�1 0 0

0 �1 −�2

0 −�2 �1

⎤
⎦, (3)

where the matrix �01 is demanded to be symmetric and trace-
less, as the part of the full interaction that has a trace is taken
care of by the Heisenberg interaction and the antisymmetric
part is from the DM interaction. Exchange interactions on
other bonds can be simply generated by cubic permutations.

Although the exchange Hamiltonian in Eq. (1) is intro-
duced for an Ir-based pyrochlore lattice, it is widely applicable
to other pyrochlore systems with the same symmetry prop-
erties as long as the local moment is a Kramers spin-1/2
doublet. Our results would also apply to these contexts as well.
In fact, this model is equivalent to the one that was used for
the rare-earth pyrochlore material Yb2Ti2O7, for which some
detailed analyses are given in Refs. [60,61]. In those studies, a
local coordinate system was used for each pyrochlore sublat-
tice, and the local moment is the Kramers doublet of the Yb3+

ion, while here we are using a global cubic coordinate for

the Ir4+ effective spin-1/2 moments. In Sec. II A, we analyze
the mean-field ground states of this general Hamiltonian and
understand the role of different anisotropic interactions.

A. Role of Dzyaloshinskii-Moriya interaction

Here, we consider the role of Dzyaloshinskii-Moriya
interaction on top of the Heisenberg interaction and set
�1 = �2 = 0. Classically, it is well known that the py-
rochlore lattice is the most frustrated lattice by having a
macroscopic number of ground-state degeneracies with the
nearest-neighbor Heisenberg model. The presence of the
anisotropic exchange surely lifts the classical ground-state
degeneracy. Reference [62] has already studied the role of
DM interaction using mean-field theory and classical Monte
Carlo simulation. Our mean-field analysis below, by treating
the effective spin Ji as a classical vector, is consistent with
their results. With a direct DM interaction that corresponds
to D < 0 in the present work, the ground state is twofold de-
generate (related by time reversal) with the magnetic ordering
wave vector q = 0. The magnetic unit cell coincides with the
crystallographic one, and the four spins on the unit cell are

� ≡ (J0, J1, J2, J3)

= 1√
3

(111, 11̄1̄, 1̄11̄, 1̄1̄1). (4)

Here, we define a vector � for the four spin vectors on the
elementary tetrahedron. This is the simple four-in–four-out
state (see Fig. 2).

For the indirect DM interaction with D > 0, DM interac-
tion only partially lifts the ground-state degeneracy. There are
two sets of ground states, coplanar and noncoplanar states,
both of which have a magnetic wave vector q = 0. The four-
spin vector � of the coplanar ground states can be constructed
as linear superpositions of the following two basis vectors u1

and u2 (or their equivalents under discrete symmetry opera-
tions):

u1 = (100, 010, 01̄0, 1̄00), (5)

u2 = (010, 1̄00, 100, 01̄0). (6)

The noncoplanar states are constructed from the following two
basis vectors v1 and v2 (or their symmetry equivalents):

v1 = 1√
2

(1̄10, 1̄1̄0, 110, 11̄0), (7)

v2 = 1√
6

(1̄1̄2, 1̄12̄, 11̄2̄, 112). (8)

Here, when only the first basis vector v1 is chosen, the ground
state is a special coplanar state with spin oriented along differ-
ent [110] lattice directions. Both the coplanar and noncoplanar
degenerate ground-state manifolds have an accidental U(1)
degeneracy with one continuous degree of freedom. This de-
generate spin manifold is actually identical to the one that
was proposed for the rare-earth pyrochlore Er2Ti2O7 and is
selected via the quantum order-by-disorder mechanism [63].
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FIG. 2. The spin configuration on each sublattice for different phases.

B. Role of pseudodipolar interaction: Case 1

Here and in Sec. II C, we study the role of the
PD interaction. We first consider the regime with
D = 0, �1 �= 0, �2 = 0. For �1 > 0, we find that optimal
spin configurations have magnetic wave vector q = 0. Even
though the Hamiltonian breaks the spin rotation symmetry
completely, the ground-state manifold has an accidental O(3)
degeneracy. The four-spin vector � of the ground states is
an arbitrary linear superposition of the following three basis
vectors w1, w2, and w3:

w1 = (100, 100, 1̄00, 1̄00), (9)

w2 = (010, 01̄0, 010, 01̄0), (10)

w3 = (001, 001̄, 001̄, 001). (11)

For �1 < 0, to simultaneously optimize the energy and
satisfy the hard spin constraint, there only exist two sets
of ground states. One has the magnetic wave vector q = 0.
Similar to the case with �1 > 0, the ground-state spin con-
figuration has O(3) degeneracy, and the four-spin vector � is
constructed from the following three basis vectors z1, z2, and
z3 (or their symmetry equivalents):

z1 = (100, 1̄00, 1̄00, 100), (12)

z2 = (010, 01̄0, 01̄0, 010), (13)

z3 = (001, 001, 001̄, 001̄). (14)

The other set of ground states has the magnetic wave vector
q = 2π (100) or its cubic equivalents. Although the magnetic
unit cell doubles the size of the crystallographic cell, the spin
configuration can still be fully described within one tetrahe-
dron, the four-spin vector � is given as

� = (1̄00, 100, 1̄00, 100), (15)

and the spin configuration of other sites is generated from this
and the ordering wave vector.

C. Role of pseudodipolar interaction: Case 2

Here, we consider the parameter regime with
D = 0, �1 = 0, �2 �= 0. For �2 < 0, the ground state is
the same as the case for D < 0, which is the four-in–four-out
state. For �2 > 0, the anisotropy does not lift the classical
degeneracy of the nearest-neighbor Heisenberg model on the
pyrochlore lattice.

D. With both Dzyaloshinskii-Moriya
and pseudodipolar interactions

In this section, we study the classical phase diagram when
both of the two anisotropic exchanges are present. We start
from the D-�1 plane with �2 = 0. The phase diagram is
depicted in Fig. 3. In all the parts of the phase diagram,
the magnetic wave vector is q = 0. Most parts of the phase
diagram can be understood as the intersection of two different
ground-state manifolds separately favored by D and �1, which
have already been discussed in detail in the previous sections.

For D < 0, �1 > 0, the four-in–four-out state is favored.
For D > 0, �1 > 0, we have the classical ground states con-
structed as the linear superpositions of the same two basis
vectors v1 and v2 that are introduced in Eqs. (7) and (8) for
the case of D > 0. For D > 0, �1 < 0, the ground state is a
coplanar state with the spins pointing along different [110]
directions (denoted as “coplanar-[110]” in Fig. 3), whose four-
spin vectors � can be constructed from the basis vectors u1

and u2 in Eqs. (5) and (6),

� = 1√
2

(110, 1̄10, 11̄0, 1̄1̄0). (16)

For D < 0, �1 < 0, the D-demanded and �1-demanded
ground-state manifolds have no overlap. We find that
when D < 3

√
2�1, DM interaction has more weight in the

Hamiltonian and the ground state is the four-in–four-out state
and, in the opposite case, the ground state is a coplanar state
(denoted as “coplanar∗-[110]” in Fig. 3) whose four-spin vec-
tor is given as

� = 1√
2

(11̄0, 1̄1̄0, 110, 1̄10). (17)

FIG. 3. The mean-field phase diagram in the D-�1 plane with
�2 = 0. The corresponding spin configurations are found in Fig. 2.
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FIG. 4. The mean-field phase diagram in the D-�2 plane with
�1 = 0. The corresponding spin configurations are found in Fig. 2.

Note that this coplanar state is distinct from the coplanar-[110]
state found for D > 0, �1 < 0.

Now we discuss the ground states in the D-�2 plane with
�1 = 0. The phase diagram is depicted in Fig. 4. The magnetic
wave vector is q = 0 everywhere in the phase diagram.

For D < 0, �2 < 0, the ground state is simply the four-
in–four-out state. For D > 0, �2 > 0, the ground state is an
arbitrary linear superposition of the basis vectors v1 and v2 in
Eqs. (7) and (8). In the regime of D > 0, �2 < 0, there exist
two phases. When D > Dc1(�2) with

Dc1(�2) =
√

2

6

(
3J0 − 2�2 −

√
9J2

0 − 6J0�2 + 4�2
2

)
, (18)

the ground state turns out to be weakly ferromagnetic and is
denoted as “weak FM” in Fig. 4. The four-spin vectors of the
magnetic unit cell are parametrized as

� = cos θ y1 + sin θ y2 (19)

with

y1 = 1√
2

(1̄1̄0, 11̄0, 1̄10, 110), (20)

y2 = (001, 001, 001, 001), (21)

and the angular variable θ satisfies

cos 2θ = 4J0 + √
2D − �2√

(4J0 + √
2D − �2)2 + 8�2

2

, (22)

sin 2θ = −2
√

2�2√
(4J0 + √

2D − �2)2 + 8�2
2

. (23)

When D < Dc1(�2), the ground state is the four-in–four-out
state.

In the region of D < 0, �2 > 0, there also exist two phases.
When D < Dc2(�2) with Dc2(�2) given by

Dc2 = −3
√

2�2

2
, (24)

and the DM interaction is dominant and negative, the ground
state is the four-in–four-out state. When D > Dc2(�2), a
coplanar state with spins pointing along various [110] direc-
tions is favored, and the four-spin vector � is the same as the

FIG. 5. The direct electron tunneling between the Ir atoms. Left:
the σ bonding with tunneling amplitude t1. Right: the π bonding with
tunneling amplitude t2.

one introduced in Eq. (17) and its symmetry equivalent. Hence
we also denote this coplanar state as coplanar∗-[110] in Fig. 4.

III. MAGNETISM FROM ELECTRON QUASI-ITINERANCY

Having understood the role of each anisotropic exchange
for the generic exchange Hamiltonian in Sec. II, in this section
we discuss the physical exchange Hamiltonian derived per-
turbatively from the microscopic parent Hubbard model and
from there approach the magnetic states in the intermediate-
coupling regime. We analyze the possible magnetic ground
states for the compound R2Ir2O7.

A. Hubbard model and exchange

We assume that the on-site SOC is strong enough so that
the lower J = 3/2 bands are completely filled and the upper
J = 1/2 bands are half filled. This approximation misses the
hybridization between the J = 1/2 and J = 3/2 bands, and
this process may lead to some interesting properties and needs
to be addressed in future. The electrons can tunnel from one
Ir4+ ion to neighboring Ir4+ ions either directly or indirectly
via the p orbitals of the intermediate oxygen ions [15,17].
Since 5d electron orbitals are spatially extended, the direct
tunneling of electrons might be equally as important as the
indirect tunneling. With electrons locally projected onto the
J = 1/2 basis, one can write down a minimal Hubbard model
[17]

H =
∑
〈i j〉

[(
T d

i j,αβ + T id
i j,αβ

)
d†

iαd jβ + H.c.
] +

∑
i

Uni,↑ni,↓,

(25)

in which only the nearest-neighbor tunneling term is included,
d†

iα (diα) is the creation (annihilation) operator for an elec-
tron on effective spin state |J = 1/2, Jz = α〉 at site i, and
niσ ≡ d†

iσ diσ measures the electron number with spin σ at site
i. In Eq. (25), T d and T id are the tunneling matrices for the
direct and indirect processes, respectively.

For the direct tunneling processes, there exist two types
of tunneling amplitudes: the σ -bonding type, t1, and the π -
bonding type, t2 (see Fig. 5) [17]. Moreover, it is expected
from the orbital overlaps that t2 has a different sign from t1.
In the limit of dominant direct tunneling, standard second-
order perturbation yields the exchange couplings introduced
in Eq. (1),

J0 = 603t2
1 − 58 296t1t2 + 248 368t2

2

2 834 352U
, (26)
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FIG. 6. The dependence of anisotropic couplings on the ratio
between the π -bonding amplitude t2 and the σ -bonding amplitude
t1. In the plot, from top to bottom, the curves are D/J0, �1/J0, and
�2/J0.

D = 5
√

2
(
153t2

1 − 1356t1t2 + 2528t2
2

)
118 098U

, (27)

�1 = 50
(
9t2

1 − 48t1t2 + 64t2
2

)
177 147U

, (28)

�2 = 3�1. (29)

It turns out that the DM interaction has the most weight in
the exchange Hamiltonian. As J0 is assured to be positive in
Eq. (29), we depict the ratios D/J0, �1/J0, and �2/J0 in Fig. 6.

In contrast, the indirect tunneling process is described by
one single tunneling amplitude t . [15] When it is dominant,
the exchange couplings are given by

J0 = 49 132t2

177 147U
, (30)

D = 7280
√

2t2

59 049U
, (31)

�1 = 1568t2

177 147U
, (32)

�2 = 3�1. (33)

It is important to note that although we find �2 = 3�1 for
both limits studied above, this relation is not protected by
symmetry and will break down if a more realistic model is
assumed. Although we find that J0, D, �1, and �2 are all
positive for the two limits studied above, this result actually
breaks down when both direct and indirect tunnelings are
included. As plotted in Fig. 7 for the case of t2 = −t2/3, the
Heisenberg exchange J0 and DM interaction D both change
sign for certain intermediate ranges of t1/t . This indicates
that different magnetic order may emerge in the intermediate
regimes of t1/t .

B. Ground states of the exchange Hamiltonian

In Sec. III A, we have explicitly derived the exchange
Hamiltonian from the Hubbard model. For both exchanges
in the limit of the dominant direct or indirect tunneling, the
coupling parameters J0, D, �1, and �2 are found to be posi-
tive. For this parameter regime, we are ready to show using
the mean-field theory and/or directly observe from the phase

FIG. 7. The dependence of couplings on the ratio between the
direct tunneling and the indirect tunneling. In this figure, we have
set t2 = −2t1/3. The ground state of region II is the four-in–four-out
state. For regions I and III, the ground state is degenerate and spanned
by the basis vectors v1 and v2. The two dashed vertical lines are
the phase boundaries separating the four-in–four-out state in region
II from the (v1, v2) manifold in regions I and III. The units of the
vertical axis are set to be t2/U .

diagrams depicted in Figs. 3 and 4 that the mean-field clas-
sical ground-state manifold is continuously degenerate and is
spanned by the two basis vectors v1 and v2 [see Eqs. (7) and
(8)]. As shown in Fig. 7, there is a region in which the DM
interaction D changes sign that may favor the four-in–four-out
state as the classical ground state in that region. After a com-
plete calculation, we find the phase diagram that is depicted in
Fig. 7. Region II develops the four-in–four-out ground state.
Regions I and III have the degenerate ground-state manifold
(v1, v2). Remarkably, the phase boundaries between region
II and regions I and III are exactly the same as those ob-
tained from a self-consistent mean-field calculation for the
intermediate-coupling regime in the calculation below and the
one in Ref. [17].

This continuous degeneracy of the (v1, v2) ground-state
manifold will be lifted if the quantum fluctuation is included.
We study this quantum order-by-disorder effect using the
linear spin-wave theory. We express the classical four-spin
vectors as

� = cos φ v1 + sin φ v2, (34)

where φ parametrizes the orientation of the spin vectors. Then
we introduce the Holstein-Primakoff bosons,

Ji · m̂i = J − a†
i ai, (35)

Ji · n̂i =
√

2J

2
(ai + a†

i ), (36)

Ji · (m̂i × n̂i ) =
√

2J

2i
(ai − a†

i ), (37)

where m̂i is the unit vector describing the spin orientation
of classical spin order at site i and n̂i is a unit vector
that is normal to n̂i but within the plane spanned by v1

and v2. Plugging the above relations into the exchange
Hamiltonian, one is ready to write the quadratic spin wave
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FIG. 8. The magnon dispersion along the high-symmetry mo-
mentum direction �-X-W-L-�. The parameters in this figure are set
to be D = 0.5J0, �1 = 0.2J0, �2 = 0.3J0. The gapless mode at the �

point is an artifact of the linear spin-wave theory.

Hamiltonian,

Hsw =
∑

k

[Ai j (k)a†
i (k)a j (k) + Bi j (k)ai(−k)a j (k)

+ B∗
i j (k)a†

i (k)a†
j (−k)] + Ecl, (38)

in which Ecl is the classical ground-state energy and Ai j and
Bi j satisfy

Ai j (k) = A∗
i j (k), (39)

Bi j (k) = Bji(−k) (40)

and are given in the Appendix. From the quadratic spin-wave
Hamiltonian, we obtain the quantum zero-point energy, which
is found to be optimized by the noncoplanar spin configuration
v2 [see Eq. (8)] with φ = π/2 (and its symmetry equivalents).
We also find that the magnon spectrum (see Fig. 8) is gapless
at the � point, which originates from the continuous degen-
eracy of the classical ground states. This gapless mode is not
supposed to remain if the anharmonic effects beyond the lin-
ear spin-wave theory are included, as the gapless feature is not
protected by any continuous symmetry of the Hamiltonian. A
minigap would appear if a full calculation is performed.

C. Hubbard model and electron quasi-itinerancy
in the intermediate-coupling regime

In the previous sections, we have analyzed the magnetic
ground states of the Ir-based pyrochlore lattice for R2Ir2O7

in the strong-coupling regime. We find that even though the
classical mean-field ground states are continuously degener-
ate for the exchange derived from the Hubbard model, all
the ground states have a magnetic wave vector q = 0. It is
known that the SOC twists the electron motion and reduces
the electron bands. Although the large spatial extension of the
5d electrons reduces the electron correlation, as the bandwidth
is also reduced, it is then not quite obvious where the actual
physical system is located. Thus it is legitimate for us to tackle
the system from the strong correlation to the intermediate cor-
relation by reducing the correlation strength. The knowledge
that we have learned from the strong-coupling regime may be
extended to the intermediate regime. Moreover, the existing
experiments on Eu2Ir2O7, Nd2Ir2O7, Tb2Ir2O7, and Sm2Ir2O7

suggest a q = 0 magnetic order [24,25,27,39]. In this section,
we study the magnetic properties of the Hubbard model in
the intermediate-coupling regime by a self-consistent mean-
field theory. Based on the results from the strong-correlation
regime, we assume that the magnetic order in this regime
also has a magnetic wave vector q = 0. To implement the
mean-field theory, we decouple the Hubbard U interaction as

Uni,↑ni,↓ = −2U

3
J2

i + U

6
ni

→ −2U

3
(2〈Ji〉 · Ji − 〈Ji〉2) + U

6
ni, (41)

in which ni is the electron number at site i and
Ji = ∑

αβ d†
iασαβdiβ/2 is the operator for the effective spin

moment. With this decoupling, the mean-field Hamiltonian is
quadratic with

HMF ≡
∑
〈i j〉

[(
T d

i j,αβ + T id
i j,αβ

)
d†

iαd jβ + H.c.
]

−
∑

i

4U

3
〈Ji〉 · Ji + · · · , (42)

where “· · · ” refers to the unessential terms that do not involve
the electron operators. We then diagonalize the mean-field
Hamiltonian and solve for the magnetic order of each sub-
lattice self-consistently. Our results for the magnetic orders
can be found in Fig. 2. In region II, the calculation quickly
converges to the four-in–four-out magnetic order. For regions
I and III, the calculation does not quickly converge. After a
few steps, the magnetic order from the self-consistent cal-
culation actually drops into the continuous manifold that is
spanned by the four-spin vectors v1 and v2 and then fluctuates
within this manifold without seeing a quick convergence. To
resolve the magnetic orders in these two regions, we perform
a different calculation below that may be illuminating. The
self-consistent calculation tells us that the magnetic orders can
be parametrized as

�(φ) = (J0, J1, J2, J3)

= M(cos φ v1 + sin φ v2), (43)

where the order parameter M depends on the dimensionless
parameter U/t that measures the strength of the interaction.
For a given U/t , the magnetic order parameter M is fixed. The
self-consistent calculation was unable to quickly converge the
angular parameter φ, which is the task to be fulfilled. We are
ready to see that the task boils down to optimizing the kinetic
energy in the mean-field Hamiltonian HMF, i.e.,

〈�(φ)|
∑
〈i j〉

[(
T d

i j,αβ + T id
i j,αβ

)
d†

iαd jβ + H.c.
]|�(φ)〉. (44)

The spirit of this calculation scheme is a bit similar to the dou-
ble exchange. In the double exchange, the itinerant electron is
coupled with the local moments with ferromagnetic Kondo
or Hund coupling, and the magnetic order is established by
optimizing the kinetic energy of the itinerant electrons and
the exchange energy of the local moments [64]. In the doped
manganites, to gain the kinetic energy, the local moments
twist themselves from the spin configuration favored by the

043273-7



GANG CHEN AND XIAOQUN WANG PHYSICAL REVIEW RESEARCH 2, 043273 (2020)

exchange energy. Another possibly electron-kinetic-energy-
driven magnetism was proposed for the doped van der Waals
antiferromagnet CeTe3 [65] and was refereed as fermionic
order by disorder. For our case here, the electron kinetic
energy is optimized within the background of the magnetism
that operates on the continuously degenerate manifold. Our
calculation suggests the selection of π/2 for the angle φ

for all U > 0. We find that the kinetic energy stabilizes the
noncoplanar state with φ = π/2. Although this mechanism of
breaking the continuous degeneracy by optimizing the kinetic
energy is qualitatively different from the quantum order by
disorder discussed in Sec. III B, the magnetic order from both
mechanisms turns out to be identical, and the phase bound-
aries separating different ordered phases are also remarkably
identical for both mechanisms. These results suggest that the
magnetic orders in the intermediate- and the strong-coupling
regimes may be continuously connected.

IV. DISCUSSION

To summarize, we have studied the magnetic ground states
for the Ir-based pyrochlore lattice in both intermediate- and
strong-coupling regimes. Various classical ground states are
identified for the generic exchange Hamiltonian in the strong-
coupling limit. These results can be further applied to other
magnetic systems on the pyrochlore lattice. We find that
the magnetic orders in the intermediate- and strong-coupling
regimes for the pyrochlore iridates turn out to be identical.

Experiments on the pyrochlore iridates have rapidly
evolved [19–42]. There exists a large body of experimental
work, and the review papers on this topic can provide more
information to interested readers [1–4]. Instead of delving
into a few specific experimental results and details, we here
make some experimental suggestions based on the theoretical
calculations in our work. In the strong-coupling analysis, there
exists a broad parameter regime in which the magnetic order
is realized from the quantum order-by-disorder mechanism.
Once the particular magnetic order with the ordering wave
vector q = 0 and the spins orientating along the vector v2

in Eq. (8) is realized, one can check whether the excitation
spectrum and thermodynamic properties are consistent with
the theoretical results. A qualitative feature in the magnetic
excitation spectrum is the almost gapless mode at the � point
(see Fig. 8 and the explanation in Sec. III C). A consequence
for the thermodynamics is the nearly ∼T 3 temperature depen-
dence in the specific heat at temperatures above the minigap
energy. In the intermediate-coupling scenario, the interac-
tion and the charge gap are not very large compared with
the bandwidth. Although the same magnetic order persists
to the intermediate-coupling regime, the quantum order-by-
disorder mechanism is expected to break down. If one uses
the local-moment language and relies on the exchange in-
teraction, one necessarily needs to invoke further neighbor
exchanges and even the ring exchange interactions. These ex-
tra interactions modify the original pairwise nearest-neighbor
exchange model and will break the original applicability of
the quantum order by disorder here. A surprising result in our
self-consistent calculation in Sec. III C is that the magnetic
order quickly falls into the degenerate manifold spanned by v1

and v2, and then we use the electron kinetic energy to break

the degeneracy and select the magnetic order. This indicates
that the degenerate manifold could be readily accessible if
the system is activated by a small energy. A pump-probe
measurement of the magnetic properties of the system would
be helpful in this regard.

Finally, the weak Mott regime with quasi-itinerant elec-
trons might be relevant for many other 4d/5d materials. The
effect should be considered if the charge gap is not very large.
It is very likely that many 4d/5d magnets would be located
in this regime. Even the square-lattice material Sr2IrO4 was
believed to be proximate to a Mott transition [6]. The well-
known α-RuCl3 has a relatively weak charge gap [66–69],
even though the existing theoretical analysis mostly starts
from a pairwise superexchange interaction between the effec-
tive spin-1/2 moments. The interlayer ring exchange, due to
the weak Mott gap and the electron quasi-itinerancy, could be
responsible for the anomalous thermal Hall effect in α-RuCl3

for the magnetic field in the honeycomb plane and parallel to
the zigzag ordering axis [70–72], where the interlayer mag-
netic flux could be experienced by the material.
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APPENDIX: THE LINEAR SPIN-WAVE THEORY

In Sec. III B of the main text, the couplings Ai j (k) and
Bi j (k) in the spin-wave Hamiltonian for the magnetic orders
given by the basis vector v2 are listed as follows:

A00(k) = A11(k)

= A22(k) = A33(k) = c1, (A1)

A12(k) = 1
24 (1 + e−i(ky+kz )/2)c2, (A2)

A13(k) = 1
24 (1 + e−i(kx+kz )/2)c2, (A3)

A14(k) = 1
12 (1 + e−i(kx+ky )/2)c3, (A4)

A23(k) = 1
12 (1 + e−i(kx−ky )/2)c3, (A5)

A24(k) = 1
24 (1 + e−i(kx−kz )/2)c2, (A6)

A34(k) = 1
24 (1 + e−i(ky−kz )/2)c2 (A7)
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and

B12(k) = 1
24 (1 + e−i(ky+kz )/2)c4, (A8)

B13(k) = 1
24 (1 + e−i(kx+kz )/2)c∗

4, (A9)

B14(k) = 1
12 (1 + e−i(kx+ky )/2)c5, (A10)

B23(k) = 1
12 (1 + e−i(kx−ky )/2)c5, (A11)

B24(k) = 1
24 (1 + e−i(kx−kz )/2)c∗

4, (A12)

B34(k) = 1
24 (1 + e−i(ky−kz )/2)c4, (A13)

in which we have set J = 1/2 and the coefficients are given as

c1 = J0 +
√

2D + 4�1 + �2, (A14)

c2 = −2J0 +
√

2D − 17�1 + 4�2, (A15)

c3 = −4J0 + 2
√

2D − 7�1 − �2, (A16)

c4 = −(2 + 4i
√

6)J0 + (7
√

2 − 2i
√

3)D

+(1 + 2i
√

6)�1 + (4 + 2i
√

6)�2, (A17)

c5 = 2J0 + 2
√

2D − �1 + 5�2. (A18)

Other entries of Ai j (k) and Bi j (k) are either zero or obtained
by the relations in Eq. (40).
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