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Topological phase transition and nontrivial thermal Hall signatures in honeycomb lattice magnets
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We investigate spinon band topology and engineering from the interplay between long-ranged magnetic order
and fractionalized spinons, as well as Zeeman coupling under external magnetic fields, in honeycomb lattice
magnets. The synergism of Néel order and magnetic fields could reconstruct the spinon bands and drive a
topological phase transition from the coexisting phase of long-ranged order and chiral spin liquid with semion
topological order to the conventional magnetic order. Our prediction can be immediately tested through thermal
Hall transport measurements among the honeycomb lattice magnets that are tuned to be proximate to the quantum
critical point. Our theory should also shed light on the critical behavior of honeycomb Kitaev materials with
emergent Majorana fermion bands. We suggest a possible relevance to the spin-1/2 honeycomb spin liquid

candidate material In;Cu, VOy.
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I. INTRODUCTION

Since the concept of a resonated valence bond state
was introduced by Anderson [1], great progress has been
made to understand the quantum spin liquid (QSL), an ex-
otic quantum state of matter characterized by fractionalized
spin excitations and emergent gauge structures [2—4]. The
description of the QSLs goes beyond the traditional Lan-
dau’s paradigm that defines phases from their local order
parameters and symmetry-breaking patterns. Historically, the
original proposal of a QSL was on the geometrical-frustrated
triangular-lattice antiferromagnet, thus the search for QSL
states in quantum magnets has mainly focused on the frus-
trated triangular, kagomé, pyrochlore lattice materials [2—4].
However, the geometrical frustration is not necessary as the
essential ingredient to realize QSLs is the interplay between
competing interactions and quantum fluctuations. A promi-
nent example is the Kitaev spin-1/2 model on a honeycomb
lattice, where geometrical frustration is absent [5]. Instead,
it is the presence of bond-dependent Kitaev interactions that
induces strong quantum fluctuations and frustrates spin or-
ders. The Kitaev honeycomb model is exactly solvable and
its ground state can be a gapped or gapless Z, QSL depend-
ing on the relative strength of the Kitaev interactions along
three different bonds [5,6]. Jackeli and Khaliullin further laid
out the essential ingredients for the realization of the Kitaev
model in Mott-insulating iridates with spin-orbit-entangled
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local moments [7], which ignited the experimental synthesis
of Kitaev materials and exploration of Kitaev QSL [8,9].

In additon to the Kitaev honeycomb model and the search
for Kitaev materials, the antiferromagnetic J;-J, spin-1/2
Heisenberg model on the honeycomb lattice has also attracted
enormous attention since the second-neighbor interaction
could introduce a strong frustration into the system. It is gen-
erally believed that the ground state of the nearest-neighbor
Heisenberg model on the honeycomb lattice is a conventional
antiferromagnetic Néel order, while turning on the second-
neighbor interaction would melt this long-range order and
drive the system into a quantum disordered phase. In fact, a
variety of numerical studies [10-18] suggested that the QSL
phase could emerge from the spin-1/2 antiferromagnetic J;-J,
Heisenberg model on the honeycomb lattice for intermediate
J»/J1, while the specific parameter range of it has been greatly
debated and the detailed properties of the candidate QSLs
have not yet reached a consensus. Remarkably, a very recent
paper [15] found two topologically different phases in the
intermediate disordered regime, one of which is the m /2-flux
chiral spin liquid (CSL) with the semion topological order.
In their case, the second-neighbor exchange J, in the CSL
already behaves with similar properties as the flux term in the
Haldane model [19], and a large J, term promotes spinons
to acquire a topological phase similar to the spin-orbital cou-
pling in the Kane-Mele model [20]. Beyond the pure J;-J,
Heisenberg model, the authors of Ref. [21] further considered
the third-neighbor exchange J; and the scalar spin chirality
term J,, and singled out a parameter window of the CSL
proximate to the conventional Néel order. They formulated a
gauge theory to study the transition from the CSL to another
proximate-confining tetrahedral state.

In this work, instead of directly solving a specific
spin model numerically on the honeycomb lattice and
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FIG. 1. Schematic illustration of the hopping matrix up to second
neighbors on a honeycomb lattice, where for the nearest-neighbor
hopping #,;; =t j; =t, and for the second-neighbor hopping
hij = he when the spinon hops along the (dashed) arrows or
b= e~ when the spinon hops opposite the arrows. The (light)
gray curved arrows represent Heisenberg exchanges up to third
neighbor, while J, refers to the scalar spin chirality term related to
three neighbor sites.

then determining the detailed properties of the intermediate
quantum-disordered regime, we assume that the intermediate
regime harbors a QSL phase and investigate the phase tran-
sition from a coexisting phase of QSL and Néel order to the
conventional magnetic order under the external fields. Given
the suggestion of a CSL [15,21], we identify a topological
phase transition with increasing magnetic fields. Specifically,
we find a quantized thermal Hall effect in the coexisting
phase and a nontrivially enhanced thermal Hall conductivity
in the confining ordered phase near the quantum critical point,
similar to the discussion in the context of unusual thermal
Hall effect for pseudogap phase of copper-based supercon-
ductors [22,23]. The situation that we considered here would
apply to the relevant quantum materials with multiple compet-
ing phases, where the interplay among conventional ordered
states, fractionalized elementary excitations in QSLs and Zee-
man coupling together drive the topological phase transition
and result in nontrivial thermal Hall signatures.

II. SPIN MODEL AND PARTON CONSTRUCTION

Although we do not attempt to solve any specific spin mod-
els, it would be very instructive to start from a general spin
model on the honeycomb lattice for further investigations,
from which we can clearly see where the degrees of freedom
we considered could emerge. For concreteness, we begin with
the following spin Hamiltonian on the honeycomb lattice:

H=YJySi-Sj+J, Y 8 8;xS, €]
i<j i,j ke

where §; is the spin-1/2 operator at the site 7, J;; > 0 is the
antiferromagnetic Heisenberg exchange, that can be extended

(a)

Néel QsSL? Dimer A

']2,6'1 Jzafz

YL
7 X

FIG. 2. (a) General phase diagram from the numerical studies for
a pure J;-J, Heisenberg model on the honeycomb lattice. For the
small J, region, the ground state is generally believed to be a long-
ranged Néel order, while J, becomes comparable to J;, a dimer state
or a stripe order could be stabilized, and the intermediate regime is
proposed as a QSL, both gapped and gapless. (b) The Néel state.
Here we choose the order along x-direction to minimize the energy
under a z-direction external magnetic field.

to second neighbor, third neighbor, and so on, as shown in
Fig. 1. Although there is no geometrical frustration on the
honeycomb lattice, by switching on an antiferromagnetic J,
term or further neighbor exchange would indeed bring com-
peting interactions. An extremely important question is when
the conventional Néel order is destroyed by the competing
interactions and quantum fluctuations, what kind of states
emerge from the melted phase? This question has long been
pursued by a variety of numerical studies [10-18], but still
without consensus on the exact properties of the interme-
diate phase. In Fig. 2(a), we plot a general phase diagram
of the J;-J, Heisenberg model on a honeycomb lattice. For
the small J, region, just as the nearest-neighbor Heisenberg
model on the honeycomb lattice, the ground state should be
a long-ranged Néel order, while J, becomes comparable to
Ji, a dimer state or a stripe order could be stabilized, and
the intermediate regime is proposed in several papers as a
QSL, both gapped and gapless. Moreover, we also introduced
a scalar spin chirality term J, in Eq. (1) that is helpful in real-
izing a CSL. Although the recent numerical study in Ref. [15]
showed that a pure J,-J, Heisenberg model on the honeycomb
lattice is already able to realize a CSL, here we add it for
further convenience and general discussion. The scalar spin
chirality term J, breaks the time-reversal symmetry 7 and
parity P, but preserves their combination P7T. Physically, in
the weak Mott insulators with strong charge fluctuations, the
ring exchange process would lead to the coupling [24-26]
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between the scalar chirality and external magnetic fields
through Zeeman coupling as
2413 ,
-7 > sin®S; - S; x Sy, )

i,jkeA

which is derived from the higher-order perturbation theory of
the Hubbard model. Here & is the magnetic flux through the
triangular plaquette A in an anticlockwise way. For the strong
Mott insulator with large charge gap, the interplay between the
symmetry-allowed second neighbor Dzyaloshinskii-Moriya
(DM) interaction and Zeeman Coupling can induce [27,28]
a scalar chirality proportional to the magnetic field B and DM
strength D, as

S,"SjXSkO(DZB. (3)

Both cases need a finite magnetic field to induce the scalar
chirality, while the later case depends on the orientation of the
DM vector. Since we are considering the field-driven phenom-
ena, the J, term introduced in Eq. (1) is well justified. More-
over, starting from the Haldane-Hubbard model can naturally
lead to the J,, term without further applied fields [21,29].

To describe the QSL with the fractionalized excitations,
we here adopt the Abrikosov fermion construction for the
physical spin operator, which is one of the convenient par-
ton approaches to study the QSL physics. In the Abrikosov
fermion representation, the effective spin operator S; on site
iis given by S; = % Zaﬂ fl.z[aaﬂfiﬂ, with fi, (@ =1, |) being
the fermionic spinon operator and o being a vector of three
Pauli matrices. The Hilbert space is enlarged due to the in-
troduction of spinons, thus the constraint Za flfx fiw =1o0n
the local fermion number is imposed to project out unphysical
states. Substituting the fermion representation into the spin
Hamiltonian Eq. (1), one would obtain an interacting fermion
system, which is an exact representation of the original model
with the local occupation constraint, but still remains unsolv-
able. To tackle the reformulated interacting fermionic system,
a useful and convenient way is to perform a quadratic de-
coupling [30] and recast the spion Hamiltonian into a generic
quadratic form

B ot B ot T
HosL = — Y (6P i fip+ NP ff] 5 +He)
i<j,ap

= Y Wil )

where the parameter tlf';ﬂ corresponds to a spinon hopping

channel while A;’jﬁ corresponds to spinon pairing channel
between sites 7, j, and the local chemical potential u; is
introduced as a Lagrange multiplier to enforce the Hilbert
space constraint. Generally, tf;ﬂ and Af‘jﬁ should involve strong
phase and amplitude fluctuations, and only the state that
could survive against gauge fluctuations can be a deconfined
QSL [30].

The fermionic spinon carries spin-1/2 but does not have
conventional electrical charge, thus it only couples to the
external magnetic field through a linear Zeeman coupling

B
Hy = =5 2 fluiphie ®
i,ap

where we have taken the z-direction external field for con-
creteness and the Bohr magneton up and Landé€ g factor have
been absorbed in B,. It is already quadratic and does not need
further decoupling.

In the coexisting phase of the quantum disordered QSL
and the long-ranged Néel order, a moderate Zeeman coupling
would minimize the energy of the honeycomb lattice anti-
ferromagnet by tuning the Néel order to be orthogonal to
the external magnetic field. Without loss of any generality,
we fix the Néel order along the x-direction throughout this
work under the external magnetic field along the z-direction.
Now we can consider the coupling between the conventional
ordered spins and the fractionalized elementary excitations in
the QSL as

Hcoupling = % Z Vif,‘Tao'gﬂﬁ,ﬂv (6)
i,ap

where m is the magnetic component along the x-direction
and the factor v; takes +1/ — 1 for two different sublattices
A/B, due to the staggered Néel order as shown in Fig. 2(b).
This is essentially a conventional order-parameter mean-field
decoupling and is quadratic. With the z-direction magnetic
field, the Néel order orients in the xy plane and is chosen to
be along x in Fig. 2(b). We ignore the fluctuations of the Néel
order throughout this work as the magnon contribution does
not influence our main result.

III. MEAN-FIELD ANALYSIS AND PHASE DIAGRAM

We specifically choose the QSL to be a CSL with a semion
topological order. It has been numerically demonstrated that
this state could be stabilized in the honeycomb magnets, both
for the pure antiferromagnetic J;-J, Heisenberg model [15]
and the extended spin model involving a finite third-neighbor
exchange and scalar spin chirality term [21]. Additionally,
it has been shown that the CSL can emerge in the Kitaev-
I' model on the honeycomb lattice with certain fields [31].
Historically, Kalmeyer and Laughlin first proposed the CSL
on the triangular lattice [32] that is closely related to the
celebrated Laughlin wave function of the fractional quantum
Hall effect. Wen later identified [33] Chern-Simons theory
as a topological field theory description of this chiral state.
Recently, it has also been shown numerically that the CSL can
be the ground state of several extended Heisenberg models
on the kagomé lattice and on the triangular lattice with a
nonzero J, interaction. To capture the CSL on the honeycomb
lattice at the mean-field level, we proceed by decoupling the
spin Hamiltonian Eq. (1) to the Abrikosov fermion form in
Eq. (4) and further suppress the gauge fluctuations. Without
the spinon pairing, one can simply ignore A;; terms and
only preserve the hopping sector. Moreover, in the mean-
field treatment the local fermion occupation constraint can be
replaced by the relaxed one, i.e., Za ( ffa fiw) =1, then one
could obtain a general quadratic spinon Hamiltonian with an
uniform chemical potential u and suppressed gauge fluctua-
tions, which is given as follows:

Hyr = — Z (tijfiofia + i flofra + He.)

i<j,o

—u Y flofia- (7)
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FIG. 3. Representative spinon bands along the high symmetry
momentum direction in the Brillouin zone. The numbers £1 near
the bands stand for the corresponding Chern numbers and the
letter C represents the total Chern number of the fully occupied
spinon bands. In the calculation we fixed ¢ = 7 /3, m/t; = 0.5 and
t,/ty = 0.1 while varying the magnetic fields for (a) B,/t; = 0.1,
(b) B,/t; =0.75, and (c) B,/t; = 1.1. With the increasing of the
magnetic fields, the spinon bands experience a gap closing and re-
opening. (d) First Brillouin zone of honeycomb lattice and the high
symmetry line marked by colored arrows. b, and b, are two basis
vectors of the reciprocal lattice.

The amplitudes #;;; and t,;; are constrained by the corre-
sponding projective symmetry group since the spinons fulfill
the projective symmetries of the honeycomb lattice [30]. We
choose a simple case and the value of 7;; we take is schemat-
ically depicted in Fig. 1, where for the nearest-neighbor
hopping t,;; =t ji = ti, and for the second-neighbor hop-
ping 1,;; = he' when the spinon hops along the arrows and

hij = e when the spinon hops opposite to the arrows.
The corresponding phase ¢ could arise either from the decou-
pling of J, or just as a CSL ansatz of the pure Heisenberg
model that will be treated as a tuning parameter. Moreover,
the chemical potential u included to impose the Hilbert space
constraint on average results in half-filling spinon bands. Then
the full spinon Hamiltonian is

Hior1 = Hvr + Hp + Hcoupling~ (®

In the mean-field analysis, we depict the spinon band evo-
Iution in Fig. 3 with various magnetic fields. In the absence
of external magnetic field, the influence of long-range Néel
order is transmitted into fractionalized spinon degree of free-
dom through Houping term and splits both the occupied and
unoccupied spinon bands around K point of Brillouin zone, as
shown in Fig. 3(a) (here to obtain well-defined Chern numbers
we applied a very weak magnetic field). A sufficiently large
1, can stabilize the CSL coexisting with the Néel order. At
the mean-field level, this phase is characterized by the van-
ishing spinon Fermi surface and nonzero total Chern number
of the occupied spinon bands. Then the Chern-Simons term
enters the theory for U(1) gauge fluctuations and results in a
topological quantum field theory, corresponding to a semion
topological order. With the increasing of magnetic fields, the
spinon bands experience a gap closing and reopening [see
Figs. 3(b) and 3(c)]. Although the spinon bands separately
have well-defined and nonvanishing Chern numbers, the net
Chern number of the occupied bands turns out to be 0, corre-
sponding to a compact U(1) gauge theory in two dimensions
(2D). The gapped spinons can be integrated out, resulting in
a pure compact U(1) gauge field that is always confined in
2D due to the proliferation of instantons [34], and the system
enters a trivial state. A topological quantum phase transition
occurs here since the net Chern number jumps from —2 to 0,
indicating a transition from the topologically ordered state to

(a) 0 =x/5 (b) o =rmr/3 (c) ¢ =mn/2
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FIG. 4. Mean-field phase diagram for three certain phases ¢ with varying second-neighbor hopping coefficient #, and magnetic field B,
while m/t; is fixed as 1/2 here. (a) ¢ = 7 /5, (b) ¢ = 7 /3, and (c) ¢ = 7 /2. Specifically, the phase ¢ = /2 corresponds to a pure imaginary
second-neighbor hopping coefficient. The colored arrow in (a) represents a phase transition from the coexisting phase of magnetic order and
CSL to the conventional antiferromagnetic Néel state, well compatible with the fact that the second-neighbor exchange brings the competing
interaction, and decrease of 7, would recover the conventional magnetic order. The orange stars in the phase diagrams correspond to the
parameters we chose to plot the spinon bands, while the (dark) gray dots represent parameters for calculating the thermal Hall conductivity

later.
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a phase with a trivial topology. Thus, the external magnetic
field drives the system from a nontrivial coexisting phase into
a conventional Néel state.

We establish the phase diagram with distinct ¢ and fixed
m = 1/2 by tracing the changes of the spinon band gap and
corresponding Chern numbers. The results are depicted in
Fig. 4. While the magnetic field can drive a phase transi-
tion as we discussed above, decreasing the second-neighbor
hopping #, can also diminish the interaction competition and
then recover the conventional Néel order. We note that the
approach is not self-consistent because the coupling between
the magnetic field and the ordered spins is not involved here.
A finite external magnetic field along the z-direction would
induce a nonzero magnetization in the same direction. How-
ever, this modification can be treated as an effective in-plane
magnetization we used in our model. In the weak field regime,
the induced out-plane magnetization can be considered small
enough such that the coupling between it and the spinon ex-
citations in QSL could be ignored safely. Therefore, low field
intervals in the phase diagrams are fairly reliable and there is
no impact on our main conclusion in this work.

IV. NONTRIVIAL THERMAL HALL SIGNATURES

Experimentally, an inelastic neutron scattering (INS)
measurement is better to directly detect the magnetic ex-
citations in spin systems, which reveals the sharp magnon

excitations and two-spinon continuum in the spectrum. In con-
trast, thermal transport is more sensitive to probe the character
of low-energy itinerant excitations, specifically, the thermal
Hall transport may get rid of the phonon interference. Com-
pared to the INS measurement, thermal Hall transport even
has the ability to reflect the topological properties of spinon
bands, while the first only encodes the dynamical informa-
tion of magnetic excitations. Actually, the pioneering work
[26] about thermal Hall effect in magnets by Katsura et al.
stimulated intensive related studies both experimentally and
theoretically [28,35—42]. The magnon contribution and the
possible spinon contribution to the thermal Hall effect were
observed in a series of experiments [39-42]. In particular,
the half-integer quantized thermal Hall effect proposed for
Majorana fermions was also reported [43] in the honeycomb
Kitaev materials «-RuCls, which, if confirmed, would be a
revolutionary discovery of the Kitaev QSL.

To utilize this powerful experimental probe to examine
the topological quantum phase transition and its critical be-
havior, we next explicitly demonstrate the finite thermal Hall
conductivity in the coexisting phase of long-range magnetic
order and CSL, and in the proximate confined ordered phase.
The thermal Hall conductivity formula for a general nonin-
teracting fermionic system with chemical potential p is given
[44] as
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FIG. 5. Density plot of Berry curvatures calculated with #,/¢; = 0.1, B,/t; = 0.4, m/t; = 1/2, and ¢ = 7 /2 for (a) the lowest occupied
spinon band and (b) the second occupied spinon band. The temperature dependence of thermal Hall conductivity with colored solid lines
representing the thermal Hall conductivity in the coexisting phase with semion topological order and dashed lines standing for thermal Hall
response in proximate confined ordered phase. The data are calculated with fixed m/t; = 1/2 and B, /t; = 1/2, while varying the temperature
and 7, for (¢) ¢ = 7/5,(d) ¢ = /3, (e) ¢ = 7 /2, and (f) ¢ = —7 /3. The unit of k,,/T here is wk3 /6.
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Here f(e,pu,T)=1/[e /& 1 1] is the usual Fermi-
Dirac distribution function, and o,,(¢) is the zero-temperature
Hall coefficient for a system with the chemical potential €.
It is defined by oy, (€) = —%l qugn_k« Q,x with the Berry
curvature 2, for the fermion band indexed by n and the
sum runs over all the Berry curvatures below the Fermi en-
ergy. In the zero-temperature limit, Eq. (9) recovers [28] the
Wiedemann-Franz law and gives

Kxy ﬂkg Z
- = G, (10
r 6h nefilled

since here w lies in the gap and C, is the Chern number of
the nth spinon band defined by C,, = ﬁ fBZ Q, k. The typical
density plot of Berry curvatures for the two occupied spinon
bands in the coexisting phase are plotted in Figs. 5(a) and 5(b),
one can see the Berry curvatures are predominantly located
around the corner K point of the Brillouin zone, specifically,
the Berry curvature of the second band exhibits sharp peaks at
K points.

In Figs. 5(c) to 5(e), we numerically calculate the tem-
perature dependence of thermal Hall conductivity with the
parameters marked by dark gray dots in phase diagrams
Figs. 4(a) to 4(c). In these figures, the colored solid lines
represent the thermal Hall conductivity in the coexisting phase
with a semion topological order, which is quantized to 2 in
the zero-temperature limit and decreases monotonically with
increasing temperature. Finally, the vanishing value in the
higher-temperature region is consistent with the fact that the
total Chern number of the spinon bands is 0. On the other
hand, the dashed lines represent the thermal Hall conductivity
in the proximate confined phase, which is exactly O in the
zero-temperature limit, but it increases rapidly with temper-
ature and then decreases gradually after reaching a maximum
in the finite-temperature regime. We note that the thermal Hall
conductivity in the coexisting phase is quantized as expected,
but the nonquantized and finite thermal Hall conductivity of
the proximate confined phase with the same order of magni-
tude in the finite-temperature region is rather nontrivial since
the magnon picture from the ordered phase only gives rise to
a much smaller thermal Hall conductivity. This implies that
the ordered phase near the topological state can result in a
nontrivial thermal Hall signature due to the proximity effect of
topological quantum critical point. The sign influence of the
phase ¢ is depicted in Fig. 5(f), where we plot the temperature
dependence of thermal Hall conductivity when ¢ = —m /3
with other parameters same as in Fig. 5(d). One can see the
only change is that the thermal Hall response also acquires a
minus sign, which can be traced back to the Chern number
exchanges between the occupied and unoccupied bands.

To further observe the field-driven transition, Fig. 6
displays the temperature dependence of the thermal Hall
response under four different magnetic fields B,, where
¢ = /3 and other parameters are fixed as explained in the
caption. The main conclusion is very similar to that from
Figs. 5(c) to 5(e), while we note that the thermal Hall con-
ductivity curves cross in the finite-temperature region, which
is slightly different from that in Figs. 5(c) to 5(e) with well-
separated curves, and this is nothing but a specific dependence
on the band evolution under fields.

2.0 o=x/3 - B,/t1=1.15

B,/t; =095

15l —— B,/t;=0.06

o ——— By/t;=0.04
S
<

0.0l s - -
0.0 0.25 05 075 1.0

kgT/t,

FIG. 6. The temperature dependence of thermal Hall conductiv-
ity calculated with fixed m/t; = 1/2 and second-neighbor hopping
amplitude #,/t; = 0.09, while varying the temperature and magnetic
field B, for ¢ = 7 /3. The unit of «,,/T here is also 7k} /6F.

V. DISCUSSION

In conclusion, we investigated the phase transition from a
coexisting phase of QSL and Néel order to the conventional
magnetic order under external fields. For the CSL, we identify
a topological phase transition with increasing magnetic field,
specifically, we find a quantized thermal Hall effect in the
coexisting phase and a nontrivial thermal Hall response in the
confining ordered phase near the quantum critical point. The
interplay between the conventional long-ranged magnetic or-
der and Zeeman coupling is transmitted into the spinon bands
and influences their topology. From the point of view of a pure
band theory, the mathematical structure behind, in a certain
sense, might be very similar to the celebrated Haldane model
or its extension Kane-Mele model [19,20], but the physical
contents are fundamentally different. In the Haldane model or
Kane-Mele model, they mainly focus on the single electron
physics and the topology of the corresponding electron wave
function. While in our case, QSL is an emergent phenomenon
from the strongly correlated electron system and its low-
energy physics is effectively described by a compact gauge
theory. In particular, when the spinon band is gapped and
owns a nonvanishing net Chern number, the Chern-Simons
term enters the theory for gauge fluctuations and results in a
topological quantum field theory. The corresponding quantum
critical behavior could be very exotic and rather nontrivial.
Similar physics was also identified by the authors of Ref. [22]
where they started from a w-flux QSL on a square lattice and
studied the proximity behavior of critical point to explain the
experimental observation of giant thermal Hall conductivity
in the pseudogap phase of cuprate superconductors [23].

As for the specific material, In3Cu;VOgy [45] has been
synthesized and the Cu ions form a honeycomb lattice with
spin-1/2 local moments. The spin-orbit coupling in this mate-
rial is rather weak, thus the degrees of freedom are essentially
physical spins. The superexchange interaction would be pri-
marily Heisenberg-like. Due to the weak spin-orbit coupling,
the DM interaction provides an extra perturbation to the
Heisenberg interactions. Thus In3Cu; VOyq is probably more
close to the model in this work. The system might develop a
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FIG. 7. Representative spinon bands for (a-c) ¢ = 7 /5 and (d-f) ¢ = /2 along the high symmetry momentum direction in the Brillouin
zone. The numbers +1 near the bands also stand for the corresponding Chern numbers, and the letter C represents the total Chern number of
the fully occupied spinon bands. In the calculation we fixed m/f; = 0.5 and 7, /t; = 0.1 while varying the magnetic fields for (a,d) B,/f; = 0.1,
(c,t) B/t = 1.1, (b) B;/t; = 0.35, and (e) B,/t; = 0.91. These parameters are also marked by the orange stars in the phase diagrams of

Figs. 4(a) and 4(c).

QSL ground state, though no strong evidence has been pro-
vided [45]. It is expected that, to have a disordered state, the
system is more likely to be located in the model regime with
strong frustration. Further first-principle calculations indeed
suggest frustrated spin interaction in In3Cu,; VOy. In addition
to further neutron study, it will be interesting to examine the
magnetic field response and thermal Hall transport in this
system. Our theory may find an application in this compound.
Furthermore, our result could apply to the Kitaev honeycomb
lattice magnets with strong Kitaev interactions. Among the
honeycomb Kitaev materials, so far, most of the them experi-
ence a phase transition to long-ranged magnetic order at low
temperatures, such as the zig-zag order in a-RuCls. Thus it
would be very interesting to study the coexisting phase of
magnetic order and Kitaev QSL under fields, which might tell
us how the interplay of these degrees of freedom influence
the topology of Majorana fermion bands and related critical
behavior.

Overall, we considered here the honeycomb magnets with
multiple competing phases, where the interplay between the
conventional ordered state and fractionalized spinon excita-
tions in QSL, as well as a linear Zeeman coupling, together
drives the topological phase transition and results in nontrivial
thermal Hall signatures. It is rather appealing to investigate the
coexisting phase of the conventional magnetic ordered state
and quantum disordered state, and the corresponding quan-

tum critical behavior. Further works may involve the charge
degrees of freedom, that might help us understand the relation
between microscopic objects and macroscopic phenomena,
for example, the high-temperature superconductivity.

ACKNOWLEDGMENTS

This work is supported by the Ministry of Science and
Technology of China with Grants No. 2018 YFGHO000095,
No. 2016YFA0301001, No. 2016YFA0300500, and by
Shanghai Municipal Science and Technology Major Project
(Grant No. 2019SHZDZXO01), and by the Research Grants
Council of Hong Kong with General Research Fund Grant No.
17303819.

APPENDIX: SPINON BANDS FOR DIFFERENT PHASES ¢

For completeness, the band structures for the other two
values of the phase discussed in Figs. 4(a) and 4(c) are also
depicted in this section (see Fig. 7), where the parameters
adopted are marked by the orange stars in the phase dia-
grams of Figs. 4(a) and 4(c). Likewise, for each ¢, with the
increasing of magnetic fields, the spinon bands experience
a gap closing and reopening. The Hilbert space constraint
guarantees the bands to be half-filled, thus the lowest two
spinon bands are always fully occupied while the upper two
spinon bands are completely empty at zero temperature.
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