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Grüneisen parameters: Origin, identity, and quantum refrigeration
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In solid-state physics, the Grüneisen parameter (GP) was first introduced to study the effect of volume change
of a crystal lattice on its vibrational frequencies and has since been widely used to investigate the characteristic
energy scales of systems associated with the changes of external potentials. However, the GP is less investigated
in gas systems and especially strongly interacting quantum gases. Here we report on some general results on the
origin of the GP, an identity, and caloric effects in ultracold quantum gases. We prove that there exists a simple
identity among three different types of GPs, quantifying the caloric effect induced by variations of volume,
magnetic field, and interaction, respectively. Using exact Bethe ansatz solutions, we present a rigorous study
of these different GPs and the quantum refrigeration in one-dimensional Bose and Fermi gases. Based on the
exact equations of states of these systems, we further obtain analytic results for singular behavior of the GPs
and the caloric effects at quantum criticality. We also predict the existence of the lowest temperature for cooling
near a quantum phase transition. It turns out that the interaction ramp up and down in quantum gases provide
a promising protocol of quantum refrigeration in addition to the usual adiabatic demagnetization cooling in
solid-state materials.
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I. INTRODUCTION

The structure of the energy spectrum of a quantum many-
body system and its evolution under external perturbation can
be used to characterize its possible phases. As an example,
the Grüneisen parameter (GP) [1,2], which was introduced
by Grüneisen at the beginning of the 20th century in the
study of the effect of volume change of a crystal lattice on its
vibrational frequencies, has been extensively studied for the
exploration of the caloric effect of solids and phase transitions
associated with volume change. Similarly, the magnetic GP
quantifies the magnetocaloric effect (MCE), establishing the
connection between refrigeration and variation of the mag-
netic field.

So far, the GP has found diverse applications in geo-
physics [3,4], chemical physics [5,6], high-pressure physics,
and plasma physics [7–9]. Recently, experiments have also
started to investigate the GP in heavy-fermion systems
[10–12], in which the physical properties at low temperatures
are dominated by f electrons and their antiferromagnetic
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exchange interaction with the conduction electrons [13].
Heavy-fermion metals are extremely sensitive to a small
change in pressure, and this pressure sensitivity is reflected in
highly enhanced values of the GP [14]. At low temperatures,
divergence of the GP stronger than logarithmic upon cooling
in the quantum regime is used for experimental identification
of quantum critical points [10,15–18].

In fact, there are many formulations of the GP to quan-
tify the degree of anharmonicity of the energy spectrum in
response to volume change. The original definition of the GP
was introduced by Grüneisen for the Einstein model [1,2],

� =: − V

ω0

∂ω0

∂V
= V

CV

∂S

∂V
, (1)

where the excitations in a solid are described by N phonons
with the same frequency ω0. S is the entropy, and V denotes
the volume. In quantum statistical physics, the differential
forms of the internal energy E and the pressure p can be repre-
sented by the fluctuations and covariances of thermodynamic
quantities. If we regard the population ai of the ith energy level
as a distribution function of a random variable and observable
thermal quantities as the expectation value with respect to
this distribution, then one can obtain the following differential
relations (see the Supplemental Material [19]):

dE = [Cov(E , E )]dβ + [−p − βCov(p, E )]dV,

d p = [Cov(p, E )]dβ + [E ′′ + βCov(p, p)]dV,
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where Cov denotes the covariance. E ′′ =:
∑

i ai∂
2εi/∂V 2, and

β = 1/(kBT ). kB is the Boltzmann constant, and T is the
temperature. Then the GP is simply given by

� = V Cov(p, E )

Cov(E , E )
= V d p/dβ|V

dE/dβ|V . (2)

Thus, in this case, � represents the relative importance of
energy-pressure covariance and the energy fluctuation in the
system. In contrast to the susceptibility (or compressibility)
Wilson ratio proposed in [20–22], i.e., the ratio between the
magnetization M (or particle number) fluctuation and the en-
ergy fluctuation, Rχ

W ∝ Cov(M,M )
Cov(E ,E ) [or Rκ

W ∝ Cov(N,N )
Cov(E ,E ) ], the cross

correlation in Eq. (2) provides additional insights into the
system.

There are distinct advantages in studying the GP in dilute
quantum gases. Because of the much smaller compressibility,
it is much easier to change to the volume of quantum gases by
modifying the external potential, and the effects of external
magnetic field can be studied via population imbalance. In
addition to this, it is also possible to change the interaction
directly by using Feshbach resonance [23,24]. This possibility
suggests a new avenue for studying a novel interacting GP in
addition to those defined by changes in volume or magnetic
field [8,11–16,18,25–30]. Furthermore, we establish an exact
identity between these various GPs, making use of the scaling
properties of the quantum gas system.

II. THEORY: GENERALIZATION OF GRÜNEISEN
PARAMETERS AND A NEW IDENTITY

A. Grüneisen parameters in the grand-canonical ensemble

In theoretical study, it is far more convenient to work in
the grand-canonical ensemble, and it is useful to derive the
form of � in the grand-canonical ensemble. Letting μ be the
chemical potential of the system, one finds

� = V
d p
dT

∣∣
V,N

dE
dT

∣∣
V,N

= 1

T

∂2 p
∂μ2

∂ p
∂T − ∂2 p

∂μ∂T
∂ p
∂μ

∂2 p
∂μ2

∂2 p
∂T 2 − (

∂2 p
∂μ∂T

)2 . (3)

In deriving the above equations, we used Maxwell’s relations
and the homogeneous assumption, i.e., 	 = −pV [31]. Here
the grand-thermal potential is a linear function of the vol-
ume by neglecting the surface effect in the thermodynamic
limit [32].

There is a widely used effective GP in experiment,
defined as the ratio of the thermal expansion parameter
βT = 1

V
∂V
∂T |p,N to the specific heat at a constant vol-

ume [11,12,14,25,30,33]:

�eff = βT

cV /V
= �

∂2 p

∂μ2

( ∂ p

∂μ

)−2

= �
κ

n2
, (4)

where κ is the compressibility and n is the density. We denote
it as the “eff-GP” since it is not equivalent to the original
definition (3). In the above equation, the thermal expansion
parameter in the grand-canonical ensemble is given by

βT =
(

∂2 p

∂μ2

∂ p

∂T
− ∂2 p

∂μ∂T

∂ p

∂μ

)( ∂ p

∂μ

)−2

. (5)

Note that the usefulness of the eff-GP is well established in
experiment; see the discussion on its divergent behavior at
quantum critical points [12,14,29]. However, it is clear that
the eff-GP is not a dimensionless parameter and shows dif-
ferent scaling forms at the quantum critical points. To clearly
show the dimensionless nature of the Grüneisen parameter, we
present another form of the GP [19]:

� = V ∂S
∂V |N,T

T ∂S
∂T |N,V

, (6)

which is equivalent to the definition (1)–(3) and is intimately
related to the expansionary caloric effect

∂T

∂V

∣∣∣
S,N,H

= T

V
�. (7)

There are other parameters, in addition to volume, that
can be used to change the state of the system. As an
example, the well-known magnetic GP discussed in experi-
ments [14–16,18] can be introduced analogously by replacing
the volume V by the magnetic field H in the definition (6),

�mag = −
H ∂S

∂H

∣∣
N,T,V

T ∂S
∂T

∣∣
N,H,V

. (8)

Here we added a minus sign following previous work [18,34]
and put the magnetic field H in the numerator in order to make
the magnetic GP dimensionless. It is straightforward to obtain
the explicit form of the magnetic GP in the grand-canonical
ensemble,

�mag = −H

T

∂2 p
∂μ2

∂2 p
∂H∂T − ∂2 p

∂μ∂H
∂2 p

∂μ∂T

∂2 p
∂μ2

∂2 p
∂T 2 − (

∂2 p
∂μ∂T

)2 . (9)

The magnetic GP (8) plays an important role in studies of
solid-state materials [13,18,28,33,35]. One of the most impor-
tant features of the magnetic materials is the magnetocaloric
effect, related to the magnetocaloric refrigeration (adiabatic
demagnetization cooling); see recent developments [16,17].
By the definition of �mag in Eq. (8), we further obtain

∂T

∂H

∣∣∣
S,N,V

= T

H
�mag, (10)

which establishes an important relation between the magne-
tocaloric effect and the magnetic GP. Experimentally, it is eas-
ier to measure the magnetocaloric effect and, from Eq. (10),
obtain �mag instead of using its original definition (8). We
can obtain the magnetic entropy change ∂S/∂H |N,T,V once we
know the value of the specific heat. The magnetic GP contains
information free of any material-specific parameter [18].

B. The interacting Grüneisen parameter

In addition to the usual conjugate variables that one usually
encounters in thermodynamics, in ultracold atomic gases, it
is also possible to define another set of conjugate variables
related to the interaction between atoms. In the case of s-wave
interacting quantum gases, the low-energy scattering proper-
ties are determined entirely by the s-wave scattering length as.
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In a one-dimensional (1D) system, the 1D coupling constant
c is related to the scattering length (c ∝ a−1

s ). In reality, it is
possible to change the scattering length as by the Feshbach
resonance, and one can define analogously another GP related
to interaction,

�int = −
c ∂S

∂c

∣∣
N,H,T,V

T ∂S
∂T

∣∣
N,H,c,V

= −
∂2 p
∂μ2

∂2 p
∂c∂T − ∂2 p

∂μ∂c
∂2 p

∂μ∂T

∂2 p
∂μ2

∂2 p
∂T 2 − (

∂2 p
∂μ∂T

)2

c

T
. (11)

The physical significance of �int is that it describes the caloric
effect due to modification of interaction strength. In particular,
in an isentropic process, one can relate the change in temper-
ature to interaction strength given by

∂T

∂c

∣∣∣
S,N,V,H

= T

c
�int. (12)

This is an interaction analog of the magnetocaloric effect. We
observe from Eq. (12) that a heat engine and quantum refrig-
eration can be constructed by tuning the interaction strength
in quantum gases. Therefore, the interaction gradient is also
capable of cooling the system just like the magnetization
gradient cooling [36,37].

C. An exact identity

So far we have presented three different GPs, i.e., �, �mag,
and �int, which quantify the degrees of anharmonicity of
spectral structures in regard to the variations of volume, mag-
netic field, and interaction strength, respectively. Using the
general thermal potential [38], one can find an identity for
the three GPs for a dilute system described by the s-wave
scattering length as [23]. For these systems, one has the fol-
lowing scaling transformations: L → eλL, c → eχ λc, where
eλ is the scaling amplitude and χ describes the dependences
of the coupling constant c on the scattering length, c ∝ aχ

s ;
then the Hamiltonian transforms as H → e−2λH . As a result,
the spectrum transforms as εn → e−2λεn. In addition, if the
temperature transforms as T → e−2λT , then the occupation
probability an = Z−1e−εn/T , and Z = ∑

i e−εi/T remains in-
variant under such scaling transformations, and so does the
entropy S = −∑

ai ln ai, i.e.,

0 = dS = ∂S

∂V

∣∣∣
T,H,c

dV + ∂S

∂T

∣∣∣
V,H,c

dT

+ ∂S

∂H

∣∣∣
V,T,c

dH + ∂S

∂c

∣∣∣
V,T,H

dc.

We note that after the above transformations, the system
remains in thermal equilibrium. Substituting the scaling trans-
formations into the above equation and noticing V = Ld , with
d being the dimension of the system, we obtain an important
identity,

dV
∂S

∂V

∣∣∣
T,H,c

= 2T
∂S

∂T

∣∣∣
V,H,c

+ 2H
∂S

∂H

∣∣∣
V,T,c

− χc
∂S

∂c

∣∣∣
V,T,H

,

that relates the entropy changes due to the variations of the
interaction, magnetic field, and the volume of the system.

Using the definitions of GPs given in Eqs. (3), (8), (11), we
obtain a simple identity:

d� + 2�mag − χ�int = 2. (13)

In one-dimensional systems we have d = 1 and χ = −1 [39];
the identity above is reduced to � + 2�mag + �int = 2. This
relation is valid in any dimension and can also be proven using
standard statistical mechanical considerations (see [19]). For a
three-dimensional free gas [40], it is clear that �mag = �int =
0 and thus � = 2/d . A further study of the identity (13) will
be published elsewhere [41].

III. APPLICATIONS: QUANTUM CRITICALITY
AND QUANTUM REFRIGERATION

Inspecting Eq. (10), it is possible to lower the temperature
of the system by changing the external magnetic field in an
isentropic process. The efficiency of cooling is also related to
the magnetic Grüneisen parameter. In fact, it has been possible
to cool the systems into extremely low temperatures via either
spin flip or magnetic field gradient (spin transport) [36,37].
Other refrigerators have also been discussed [42,43]; see also
discussions on cooling and thermometry of atomic Fermi
gases [44].

In cold atomic gas systems, however, interconversion be-
tween different spin (hyperfine) states is very slow, and the
usual magnetic cooling is inefficient. In addition, the corre-
sponding external magnetic field is determined by population
imbalance of the two spin states and cannot be controlled
directly in experiments. On the other hand, by analogy be-
tween (10) and (12), it should be possible to lower the
temperature of the system by changing the interaction strength
in an isentropic process. This offers particular convenience
since in most cold-atom systems, interactions can be con-
trolled via Feshbach resonances.

A. Interaction-driven refrigeration

To make the above statement concrete, we first demonstrate
quantum refrigeration based on the Bethe ansatz solution of
the Lieb-Liniger model, which describes the 1D Bose gas with
a contact interaction. The Hamiltonian of the Lieb-Liniger
model in a 1D box with length L is given by [45]

Ĥ = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ 2c
∑

1�i< j�N

δ(xi − x j ), (14)

where m is the mass of the particles and c is the coupling
strength, which is determined by the 1D scattering length c =
−2h̄2/ma1D. In a quasi-1D system, a1D = (−a2

⊥/2as)[1 −
C(as/a⊥)] [39,46,47], where a⊥ is the oscillator length in
the transverse direction, as is the three-dimensional scattering
length, and C is a constant.

Before analyzing the refrigerator cycle, we first briefly
review the scaling invariance of this model. The Hamilto-
nian (14) can be solved by Bethe ansatz [45,48], and here
we list some related key results in the Supplemental Ma-
terial [19]. Suppose that we have obtained the solution of
the thermodynamic Bethe ansatz equation of dressed en-
ergy ε(k) under the input parameters μ, T , and c [49];
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FIG. 1. Interaction-driven refrigeration cycle with the Lieb-Linger model in (a) the T -s plane and (b) T -c plane. The cycle consisting of
four processes is an analog of the demagnetization refrigeration which we discussed in [19]. Here the processes are A → B, interaction ramp-up
isentrope; B → C, an isochore by contacting a hot source (release heat to the hot source); C → D, interaction ramp-down isentrope; D → A,
an isochore by contacting a cold source (absorb heat from the target source). The cycle in both (a) and (b) is plotted by numerically solving the
thermodynamic Bethe ansatz equations of the Lieb-Linger model (see [19]). The cycle begins at point A with n = 0.1, c = 1.0, T = 1.0 (here
all the quantities are in the natural units h̄ = 2m = kB = 1). Then the coupling strength is tuned to the strong interacting region c = 10.0; after
contacting with the heat source the coupling strength is tuned back to c = 1.0. Finally, the working material contacts the target sufficiently,
and then a cycle is complete. This figure shows the complete analogy of the interaction-driven MCE to the traditional MCE.

it is obvious that the dressed energy ε′(k′) = e−2λε(eλk′)
is the corresponding scaling form for input parameters un-
der such rescaling T ′ = e−2λT, μ′ = e−2λμ, and c′ = e−λc.
Strictly speaking, the dressed energy is a homogeneous
function with ε(eλk, e−2λμ, e−2λT, e−λc) = e−2λε(k, μ, T, c)
for all λ ∈ R. By definition, the pressure can be ob-
tained in a straightforward way, p(e−2λμ, e−2λT, e−λc) =
e−3λ p(μ, T, c) [19]. By differentiation, the density is given
by n(e−2λμ, e−2λT, e−λc) = e−λn(μ, T, c). Furthermore, the
entropy density s = S/L is given by

s(e−2λμ, e−2λT, e−λc) = e−λs(μ, T, c). (15)

For the system with a fixed particle number, we need L →
L′ = eλL to ensure N ′ = N under scaling transformation μ′ =
e−2λμ, T ′ = e−2λT, c′ = e−λc; then according to (15), we
arrive at the conclusion that under this scaling transformation
the entropy is unchanged, S′ = S, which is the key conclusion
we used to obtain the identity of Grüneisen parameters (13) in
the last section.

Similar discussions can also be had for the Gaudin-Yang
model (see the next section) and other integrable models.
However, we emphasize that the identity (13) depends only on
the scaling properties of the spectrum. In fact, historically, the
study of the Grüneisen parameter started from the discussion
of homogeneity of thermodynamic quantities as functions of
the oscillation frequency ω0 in the simple Einstein model [1,2]
(for details, see the Supplemental Material [19]).

Now let us return to our discuss of the refrigerator cy-
cle driven by the interaction strength c in the Lieb-Liniger
model (14). As a direct analogy to the demagnetization cool-
ing, the interaction-driven refrigerator cycle is shown in the

T -S and T -c planes in Fig. 1 via a rigorous calculation
by the thermodynamic Bethe ansatz equations; details are
given in the Supplemental Material [19]. In this approach,
grand-canonical equilibrium states are valid for the study of
thermodynamical properties of quantum gases trapped in a
harmonic potential [50,51], although 1D tubes are well iso-
lated from each other on a certain experimental timescale. We
note that in the process of changing the interaction strength
c, it is important at the same time to change the size of
the system (L → L′ = eλL), so the spectrum of the system
satisfies the scaling law, and thus, the process remains thermo-
dynamically adiabatic under the quantum-mechanical unitary
evolution.

Figure 1(a) shows the four strokes in a cooling cycle with
the interacting bosons. For A → B, the working medium is
initially in the thermal state A determined by the interaction
strength cA = 1 and temperature Ttar = 1. The isentropic ramp
up of interaction takes place, and the interaction strength is
finally enhanced to the value cB. After the adiabatic unitary
evolution, the system reaches a state with temperature TB. For
B → C, keeping cB constant, the working medium is cou-
pled to the hot reservoir at temperature Tsour and reaches the
equilibrium state (cB, Tsour ). The heat �Q1 is moved from the
working medium to the hot reservoir. For C → D, the working
medium is decoupled from the hot reservoir. By performing
external work, the interaction ramp-down isentropic process
takes place. The interaction strength decreases from cB to
cD = cA, and the working medium reaches the temperature
TD. For D → A, the working medium is coupled to the target
cold reservoir while keeping the interaction strength constant
until it reaches the thermal state (cA, Ttar ). The heat �Q2 is
extracted from the target reservoir. The cooling efficiency is
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η = �Q2/�Q1. We would like to stress that in a realistic cy-
cle, A → B and C → D are unlikely to be rigorously quantum
adiabatic [52].

As discussed above, the temperatures at states B and D
are still well defined if the spectra of the working system are
scaling invariant under unitary evolution (see the discussion in
Ref. [53]). The efficiency of such an interaction-driven cycle
is set by the heat transfer between the target and reservoirs.
An important practical concern of the cooling process is the
maximal speed of interaction modulation below which the
system can remain adiabatic, especially close to the quan-
tum critical regime. In this regard, it has been proved by
Campisi and Fazio [54] that the performance rate of the Otto
engine can be enhanced when the working substance is at
the verge of quantum criticality. This is mainly due to the
emergence of new quantum scalings of the energy, entropy,
and density which lead to the change in the speed of the
propagation near a quantum critical point. This performance
rate does not seem to directly relate to the known Lieb-
Robinson bound in unitary evolution of quantum dynamics
(see more discussions in [55–57]). In fact, the timescale in
these discussions is under the typical timescale in quantum
physics of the order O(h̄) [58], which can be ignored in
quantum statistic physics because the Plank scale is much
smaller than the Boltzmann scale. Therefore, it can be ex-
pected that the thermodynamic equilibrium takes place almost
instantaneously.

The exact solution of the working system allows us to
determine working efficiency in this particular case. We would
like to mention that the modulation of the coupling strength
in an interaction-driven cooling cycle can be associated with
the coupling to external degrees of freedom (also see a recent
study of the quantized refrigerator [59]). In low-temperature
physics, the reachable low-temperature limit is the most im-
portant issue for engineering refrigeration. In the next section,
we shall discuss the reachable lowest temperature for an en-
gineering refrigeration with the 1D interacting fermions at
quantum criticality.

B. The Grüneisen parameter at quantum criticality

As discussed in the last section, the Grüneisen param-
eters play a central role in this cooling process based
on Eq. (10) or (12). Since the Grüneisen parameters are
second-order derivatives with respect to free energy, it is
expected that the Grüneisen parameters will also show di-
vergent and scaling behaviors at the quantum critical points
(QCPs) [13,14,17,18,28,33,35], leading to much enhanced
effects for quantum refrigeration.

In order to illustrate this idea and to analyze the scaling
behaviors of the GPs, we take the Yang-Gaudin model [60,61]
as an example to carry out rigorous calculations. This model
was solved long ago by Yang [60] and Gaudin [61] using
the Bethe ansatz. Theoretical prediction of the existence of
a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing state in
the 1D interacting Fermi gas emerged by using the exact
solution [62–64]. The key features of this T = 0 phase dia-
gram were experimentally confirmed using finite-temperature
density profiles of trapped fermionic 6Li atoms [50]. The

FIG. 2. Contour plot of the negative GP (3), i.e., −�, mapping
out the full phase diagram of the Yang-Gaudin model with an attrac-
tive interaction in the h-μ plane. It consists of three novel phases,
a fully paired state, a fully polarized state, and an FFLO-like state.
Here the dimensionless temperature t = 0.001. The GP has a sudden
enhancement near the phase boundaries, giving a universal divergent
scaling � ∼ t−1/2; in the numerical calculation of this figure, we
assumed c = 1, see the text.

Hamiltonian of the Yang-Gaudin model

Ĥ =
∑

σ=↓,↑

∫
φ†

σ (x)

(
− h̄2

2m

d2

dx2
+ μσ

)
φσ (x)dx

+ g1D

∫
φ

†
↓(x)φ†

↑(x)φ↑(x)φ↓(x)dx

− 1

2
h

∫
(φ†

↑(x)φ↑(x) − φ
†
↓(x)φ↓(x))dx (16)

describes a 1D δ-function interacting two-component Fermi
gas of N fermions with mass m and an external magnetic
field h constrained with periodic boundary conditions to a
line of length L. g1D = −2h̄2/(ma1D) is determined by an
effective scattering length a1D via Feshbach resonances or
confinement-induced resonances [39,46,47]. g1D > 0 (<0)
represents repulsive (attractive) interaction. Usually, c =
mg1D/h̄2 = −2/a1D denotes the effective interaction strength.

Here we show that the different GPs, (3), (9), and (11),
not only signal quantum phase transitions but also quantify
various fluctuations in quantum systems. Using the exact
thermodynamic Bethe ansatz (TBA) equations, a full critical
phase diagram of the Yang-Gaudin model at t = 0.0001εb

is determined by the GP expression (3) (see Supplemental
Material [19]). In this contour plot, the rescaled units were
used, i.e., t̃ = t/(c2/2), μ̃ = μ/(c2/2), and h̃ = h/(c2/2). We
observe that the GP (3) characterizes the universal divergent
scaling near the phase boundaries. It shows that the energy-
pressure covariance has stronger fluctuations than the energy
fluctuation. This feature can be used to identify different quan-
tum phases, i.e., novel Luttinger liquids of the fully paired
state, a FFLO-like pairing state, and a fully polarized state (see
Fig. 2). We show that the phase boundaries between the fully
polarized phase and FFLO-like pairing phase and between the
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fully paired phase and FFLO-like pairing phase in Fig. 2 can
be cast into a universal scaling form (for a constant h):

� =
√

λπnt−1/2G
(λ(μ − μc)

t

)
, (17)

with the factor λ = 1 and λ = 2 for phase transitions from
FFLO-like to fully pairing and fully polarized to FFLO-like,
respectively. In the above equation, n is the density, G(x) is the
scaling function, and μ is an effective chemical potential [24].
A more detailed study on the quantum scalings of the GPs (17)
was published elsewhere [41]. In addition, the use of magnetic
and interacting GPs (9) and (11) also gives the same phase
diagram at low temperatures.

The divergence of the GPs at T → 0 near QCPs can be
clearly understood by investigating the entropy of the sys-
tem. At low temperatures, the state of the system away from
the critical points usually behaves like a Fermi liquid (or a
Tomonaga-Luttinger liquid region in 1D; see Fig. 2). The en-
tropy S ∝ T . In contrast, the entropy at the quantum criticality
behaves as [65,66]

S

V
∝ T (d/z)+1−(1/νz)K

(μ − μc

T 1/νz

)
. (18)

For a 1D system, the dynamic critical exponent z = 2, and the
critical exponent for correlation length ν = 1/2, whereas μ

presents an effective chemical potential and μc is the quan-
tum critical point. K(x) is some analytical scaling function.
Note that the entropy is exactly zero at zero temperature, so
there is no constant term in Eq. (18) [21,22,24,38,67,68]. For
the Gaudin-Yang model, the entropy S ∝ √

T � T near the
QCPs, which implies the local maximum of the entropy at
QCPs. If we plot the entropy in the T -H plane in Fig. 3,
the isentropic lines will be bent down significantly at QCPs.
A similar feature is observed in the T -|c| plane (see Fig.
S2 in [19]). According to Eqs. (10) and (12), the GPs are
proportional to the slope of the isentropic line, which leads
to the divergence of the GP when T → 0.

We note that the maximum point of the entropy is shifted
from the critical point when temperature increases. The lo-
cal maximum of the entropy at low temperatures reveals the
essence of the QCPs when the low-lying excitation becomes
degenerate with the ground state [69]. In general, the diver-
gence of the GPs is also present in generic models when
a quantum phase transition occurs and has been extensively
studied both in theory and experiments [10–16,18,25,27,33–
35,70,71].

C. Refrigeration near a quantum phase transition

For refrigeration, it is important to ask what the lowest
temperature one can achieve is. In the Supplemental Mate-
rial [19], we answer this question for the free Fermi gas.
This question seems trivial in common refrigeration [27].
However, if the system approaches its quantum critical point,
things can be significantly different. The divergent behavior
of the GPs near QCPs can lead to significant cooling of the
system. In fact, the feature of local maximum of the entropy
leads to a local temperature minimum in an isentropic process
(see Fig. 3). Consequently, one can make use of this fact
to enhance the MCE (or interaction-driven cooling). Using
the exact solution of the 1D attractive Fermi gas, we further

FIG. 3. The contour plot of the entropy in the t-h plane for the
attractive Yang-Gaudin model at low temperatures. Here the mag-
netic field h = H/εb and the temperature t = T/εb are rescaled by
the binding energy with 2m = h̄ = kB = 1. We carried out our calcu-
lation through the TBA equations [19] with a fixed density n = 0.1.
hc1 and hc2 are the critical points for the phase transitions from fully
paired TLL to the FLLO-like phase and from the FFLO-like phase
to the fully polarized phase at t = 0, respectively. The dashed lines
in different colors present the contour values of entropies at different
temperatures. The bending down of the contour lines indicates an
entropy accumulation with a minimum temperature (yellow dot). For
h < hc1 the system is in the TLL of bound pairs obeying the state
equation (22), whereas for h > hc2 the system is in a fully polarized
TLL obeying Eq. (22). These analytical results of the state equations
directly give the minima of the temperature during the adiabatic
demagnetization processes [see (23)].

demonstrate magnetic (or interaction-driven) refrigeration in
the interacting Fermi gas [60,61].

Let us take an example of magnetic-driven cooling. Using
the condition [see Eq. (10)]

�mag = 0, (19)

we may answer what the lowest possible temperature achiev-
able is. For the Yang-Gaudin model [19], we expect an
enhancement of the cooling efficiency when the working
system is approaching a quantum critical point in the phase
diagram (Fig. 2). Here we focus on the low-temperature
region, i.e., T � Td , where Td = ( h̄2n2

2mkB
) is the degenerate

temperature. Figure 3 shows that the condition �mag = 0 gives
solutions for each quantum phase transition. Like the free
Fermi gas given in [19], the condition �mag = 0 leads to two
independent equations for the Yang-Gaudin model at the two
quantum critical points, namely,

−1

2
Li 1

2

( − eÃ(r)/t
) + Ã(r)

t
Li− 1

2

( − eÃ(r)/t
) = 0, (20)

where r = 1 and r = 2 stand for the unpaired fermions and
bound pairs, respectively. This means that at the phase tran-
sition Hc1 the density of states of unpaired fermions changed
dramatically, whereas at the critical point Hc2 the density of
states of the paired fermions changed dramatically. The effec-
tive chemical potentials of unpaired fermions and pairs, Ã(1) =
(μ + H/2)/εb and Ã(2) = (2μ + c2/2)/εb, were rescaled by
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the bonding energy εb = c2/2. Here μ is the chemical poten-
tial, and t = T/εb is the rescaled temperature.

Equation (20) is very similar to the equation Y (x) = x −
Li1/2(−ex )

2Li−1/2(−ex ) = 0 found for the free Fermi gas [19]. We thus

have the same solution, Ã(r)/t = x0 ≈ 1.3117. Substituting
this solution into TBA results given in [19], we get entropies
at the phase transition points from the fully paired phase to
the FFLO-like state and from the FFLO-like state to the fully
paired Fermi gas, respectively,

S

L
= λ1

√
m

h̄
√

2π
k3/2

B T 1/2
c1 , H → Hm1,

(21)
S

L
= λ1

√
m

h̄
√

π
k3/2

B T 1/2
c2 , H → Hm2,

where λ1 = x0Li1/2(−ex0 ) − 3
2 Li3/2(−ex0 ) ≈ 1.3467. Hm1 and

Hm2 are two critical fields corresponding to the two tempera-
ture minima in the isentropic contour lines. Using the TBA
equation, we have the entropy in the liquid phases of pairs
and fully polarized fermions,

S

L
= 4m

3h̄2 k2
BTL1n−1, H < Hm1,

S

L
= m

3h̄2 k2
BTL2n−1, H > Hm2. (22)

Here TL1 and TL2 are the temperatures in the Luttinger liquid
regions; see phases TLL 1 and TLL 2 in Fig. 3. For the first
equation in (22), we applied the strong-coupling condition
γ = c/n � 1. From Eqs. (21) and (22), we find two tem-
perature minima of the refrigeration around the two phase
transitions:

Tc1

Td
= 8λ2

2

(TL1

Td

)2

,

Tc2

Td
= λ2

2

2

(TL2

Td

)2

, (23)

with λ2 = 2π
3λ1

≈ 1.5552. We further observe that the leading
contribution to the entropy at the critical point Hm1 involves
the excitations of the excess fermions [21]. However, at the
critical point Hm2, the leading contribution to the entropy
comes from the excitations of the bound pairs. In the isen-
tropic process, the system can thus retain more entropy per

unit temperature near the finite-temperature critical point Hm2.
This result reveals an enhancement of the cooling efficiency
at Hm2. In cold-atom experiments, the temperature is usu-
ally much lower than the degenerate temperature [72], i.e.,
TL1/Td � 1 and TL2/Td � 1. From Eq. (23), we thus have
Tc1 � TL1 and Tc2 � TL2. Moreover, the ideal limit of the tem-
perature Tc1,2 for the refrigeration is one order of magnitude
lower than the temperature at the heat source TL1,2 .

IV. SUMMARY

We have conducted a comprehensive investigation of the
Grüneisen parameters for ultracold quantum gases, including
its origin, an identity, the caloric effects, and quantum refrig-
eration. We have proposed the interaction-related GP, which
reveals also the characteristic energy scales of a quantum
system induced by the variation of the interaction. Together
with the other two GPs related to the variations of volume
and magnetic field, we have established an identity among
them which characterizes the universal scalings of fluctuations
and the caloric effect in quantum gases. Based on the entropy
accumulation at the quantum critical point, two promising
protocols of quantum refrigeration driven either by interaction
or by magnetic field were studied. Using the Bethe ansatz,
we studied the expansionary, magnetic, and interacting GPs;
quantum refrigeration; the magnetocaloric effect; and the
quantum critical phenomenon of the Lieb-Liniger model and
Yang-Gaudin model. Our method opens an avenue to further
study the GPs and quantum refrigeration for quantum gases
with different spin symmetries in 1D and higher dimensions.
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