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Flexible worker allocation in aircraft final
assembly line using multi-objective evolutionary
algorithms

Pengcheng Fang

Abstract—In a paced aircraft final assembly line, some
disturbances can be collected timely on the basis of the
Cyber-Physical production system (CPPS). In order to re-
duce the execution deviation, some workers need to switch
among stations after a fixed period. Thus, a worker alloca-
tion problem with the multi-stage workstation is introduced
firstly. Then an integer programming formulation is pre-
sented to formulate the problem with the objective of short-
est workstation cycle and the workload balance of both
stations and workers. Moreover, a modified non-dominated
sorting genetic algorithm (NSGA-IV) is proposed to solve
it, which trades off the convergence and the population
diversity in the decision space. Finally, the NSGA-IV algo-
rithm compares with five multi-objective evolutionary algo-
rithms (MOEA) in a real-world case. Compared to manual
allocation, the takt time of an aircraft final assembly line is
reduced by 20.86% by using the NSGA-IV algorithm.

Index Terms— Worker allocation, aircraft final assembly
line, multi-stage workstation, multi-objective evolutionary
algorithm, Cyber-Physical production system

NOTATIONS
Indices
) the time grid index, ¢ € 1
set of time grids
the detailed task, j € J
set of detailed tasks
the stage index, k € K
set of stages
the station index, m € M
set of stations
the worker type index, w € W
set of worker types
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Decision variables

s; the plan start time of task j
fi the plan finish time of task j
ZTw,m, the number of worker type w assigned to

stage k of station m
Parameters

Ajw 1, if task 5 needs to be processed by workers w

bim 1, if task j needs to be processed in station m

€iw L,if the workers w is at work on the time grid ¢

n; the number of workers used for processing task j

Ny the total number of worker type w

Dj the processing time of task j

t; the start time of time grid %

Uik 1, if the time grid ¢ is in the stage k

Uz:j 1, if ti € [Sj , fJ)

Thow the remaining number of worker type w assigned to
station m at time grid i, r,,, € Ry

At the time interval of each grid

DS,  the decision set of the g-th iteration

N population size

NFE the number of fitness evaluations

PT; the predecessor task set of a task j

SS, the scheduled set of the g-th iteration

ST; the successor task set of a task j

[. INTRODUCTION

YPICAL features of aircraft final assembly line are

mixed-model production, paced line with fixed takt time,
and multi-manned assembly at every workstation. A mixed-
model line means manufacturing several types of aircraft from
a basic product family simultaneously. Each aircraft is slightly
different in some attributes and optional features compared to
the basic product. Thus, the production process of every air-
craft is quite similar. Furthermore, each aircraft visits a series
of workstations in sequence and is simultaneously moved to
the next stations at the end of each takt time, considering the
spatial constraints. The takt time is equal to a maximum cycle
for executing all tasks processed by workers assigned to every
station [1]. Moreover, the simultaneous operation of more
than one worker at every workstation describes as the multi-
manned assembly line [2]. In labor-intensive manufacturing,
these workers assigned to each station perform a larger number
of tasks for every cycle. However, there exist a lot of disparate
tasks in a station for different cycles.
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A limited amount of human resources needs to be assigned
among the stations under satisfying the precedence relations
and human resources constraints [3], called the worker alloca-
tion problem. In order to flexibly allocate workers, each work-
station is divided into multiple stages on the time dimension.
In every stage, every worker is assigned to a station. Thus,
employees can switch among the stations at the end of each
stage, which can contribute to resisting some disturbances that
occurred in the final assembly line. In addition, the multi-
stage worker allocation strategy is more practical, and the
performance is better than that of the single-stage worker
allocation strategy. Specifically, this study illustrates that all
workers are flexibly assigned to multi-stage stations.

The multi-objective evolutionary algorithms (MOEA) have
gradually been employed to deal with the scheduling problem
with several conflicting objectives [4]. Due to their outstanding
performance, the improved non-dominated sorting genetic
algorithm (NSGA-II) and NSGA-III are widely used [5]. Deb
et al. proposed NSGA-II according to the non-dominated
sorting and crowding distance sorting. Subsequently, they put
forward the NSGA-III [6] using the reference-point-based non-
dominated sorting to solve a many-objective problem. But
there exist two flaws in the NSGA-II and the NSGA-III. On
one hand, they are easy to become stuck in a locally optimal
solution and trap in premature convergence. The two MOEAs
focus more on the convergence and rarely consider the popu-
lation diversity, especially when the number of solutions in the
last front is far less than the population size (N). On the other
hand, it is difficult to find diversified solutions while some
solutions associated with different decision variables have
almost the same objective function value. It’s mainly because
crowded-comparison and reference-point-based methods rank
the solutions of the last front in objective space rather than
in decision space. To deal with these defects, a modified non-
dominated sorting genetic algorithm (NSGA-IV) is proposed.

The innovative of this paper are as follows. Firstly, a system-
atic framework on the basis of the Cyber-Physical Production
Systems (CPPS) is put forward to ensure the production of
a real aircraft final assembly line with a stable takt time.
Secondly, an integer programming formulation is presented to
formulate the worker allocation problem with the multi-stage
workstation. Thirdly, an NSGA-IV is proposed to trade off the
convergence and the population diversity in the decision space.
As a result, the on-site continuous optimization of the human
resource allocation ensures a stable production process.

The rest of the paper is organized as follows. Section II gives
a literature review about the CPPS, the worker allocation prob-
lem, and the solution methods. Section III briefly describes
the system architecture and the formulation of the problem
models. The proposed NSGA-IV algorithm is introduced in
Section IV. In Section V, a case study is given to validate the
effectiveness of the proposed algorithm. Section VI concludes
the paper and introduces the future work.

Il. LITERATURE REVIEW

A. Cyber-Physical Production Systems

The CPPS is an emerging paradigm for addressing the
requirements of future production systems [7]. The tasks

scheduling scheme and the worker allocation scheme need
to be generated and published. The CPPS can streamline the
decision-making process, allowing flexible production lines
[8]. Additionally, multiple kinds of disruptions often occur in
the final assembly line, including tasks tardiness, equipment
fault, assembly failure, staff absenteeism, and instability of
a global supply chain [9]. According to our previous study
[10], the CPPS can capture these disturbances in time. To
address them, the final assembly line needs to be re-balanced
periodically after the reality production deviates from the plan.
Thus, the running final assembly line can keep rhythm with a
takt time.

There are three types of adjustment strategies for process-
ing uncertain events, namely completely reactive scheduling,
predictive-reactive scheduling, and robust pro-active schedul-
ing [11]. Completely reactive scheduling is made locally in
real-time, which is applied to the production with a high
automation level. The predictive-reactive scheduling revises
schedules in response to real-time events [11]. But this method
may lead to a significant deviation between the original
schedule and the new schedule. Besides, robust pro-active
scheduling builds predictive schedules under satisfactory per-
formance requirements in a dynamic environment with several
uncertainties. Yet it is difficult to determine the predictability
measures.

B. Worker allocation problem

All tasks for a new aircraft are allotted to each workstation
while satisfying the precedence constraints [12], which is the
assembly line balancing problem. A large number of tasks
often shifts among the whole stations, resulting in the workers’
movement in the multi-manned assembly line frequently. Thus,
workers need to be assigned to every station at the subsequent
decision stage [13]. It is known to be NP-hard in the strong
sense.

Multiple variants of worker allocation problems have been
studied in many works, as shown in Table I. Sikora et al.
[15] developed a mixed-integer linear programming model to
solve the traveling worker assembly line balancing problem.
Thus, all tasks and these workers are assigned to stations
considering movement times. But the order of performing
tasks in every station is neglected. Battaia et al. [1] proposed
eight heuristics methods to balance the workload among
workstations in a mixed-model assembly line, considering the
workers’ movement between the stations at the end of each
task. Yet, it is difficult to frequently swap workers among
stations in an aircraft final assembly line. Heike et al. [14]
developed a linear and two nonlinear programs for evaluating
worker allocation scheme in low-volume aircraft manufactur-
ing environments. However, optimization algorithms are not
discussed. Subsequently, Biele et al. [16] continued to solve
the worker assignment problem by a heuristics that hybridize
the mathematical formulations with variable neighborhood
search techniques in the aircraft manufacturing domain. But
both objective functions are aggregated into a single objective
to simplify the problem. By using a proposed meta-heuristic
algorithm based on NSGA-II, Lian et al. [17] dealt with the
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TABLE |
RESEARCH HIGHLIGHTS ON WORKER ASSIGNMENT PROBLEM.

Year Production Proposed approach Strengths Weaknesses Success rate Ref

environment

2001 Mixed model assembly One linear and two non- Crew is flexibly allocated Optimization methods Using flexible crews can reduce [14]

in aerospace industry  linear programs among stations. were not used. overtime by as much as 24%.
2015 Automotive-assembly  Eight constructive Workers can switch be- Too often swap workers The maximal relative error gap is [1]
line heuristic methods tween the stations at the among stations. 66.7% by using sequential-station
end of each task. heuristic.

2015 Aircraft assembly lines Adaptive binary particle The cooperation of multi- The past positions are The maximum human cost value is [3]
swarm optimization al- skilled workers and their neglected while updat- 5.6 per cent lower than that of parti-
gorithm skill level are considered. ing the position now.  cle swarm optimization.

2017 Mixed-model assembly Mixed-integer linear Sparse sets are utilized to The order of perform- Improvements of 11.3%, 9.4%, and [15]

line programming algorithm reduce search space. ing tasks is ignored. 12.7% in cycle times.

2018 Aircraft assembly lines Variable neighborhood Two mathematical formu- Both objective func- Improvements of up to 11% are pos- [16]
search techniques lations are proposed. tions are aggregated. sible in a real case.

2018 Seru production sys- Meta-heuristic algorithm Multi-skilled worker is Without  considering Heterogeneous workers perform well [17]

tems based on NSGA-II considered. workers’ maturity in balancing inter-seru workload.
multi-skilled worker assignment problem without considering Soft computing approaches
workers’ maturity. In addition, Xin et al. [3] proposed an v I Y
adaptive binary particle swarm optimization algorithm to in- )
. .o . Exact method Approximate method
vestigate the multi-skilled worker assignment problem. :
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)
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Besides, some artificial intelligence algorithms are a very
promising area. One of them is the neural network algorithm.
Although the solution quantity is between that of heuristics and
meta-heuristics, neural network algorithm takes a polynomial
time in terms of problem size [24]. Thus it satisfies the
requirement of some real-time scheduling problems.

In summary, there remains a considerable gap between the
production practice and the academic research in aircraft final
assembly line, as follows.

e The investigation on the worker allocation considering
their movements in the multi-manned assembly line is
limited. However, frequent switching workers among
stations leads to management difficulties and production
chaos on one hand, and no switching workers results
in the low utilization efficiency of workers on the
other hand. Thus, allocating workers to the multi-stage
workstation is worthy of further research.

Fig. 1. Classification of soft computing approaches.

e Although the application of NSGA-II is widely used, it
focuses too much on convergence and not enough on
population diversity. Thus, it makes sense for studying
the trade-off between both sides in the decision space.

I1l. PROBLEM DESCRIPTION AND FORMULATION
A. Systematic architecture on the basis of CPPS

A systematic framework on the basis of CPPS is intro-
duced to realize flexible worker allocation in an aircraft final
assembly line, as shown in Fig. 2. The top two layers are
deployed to cyberspace in the cloud platform, whereas the
bottom two layers are installed in the physical world. A
sequential workflow is presented to clearly defines how to
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construct a closed-loop scheduling system [25]. The detailed B. Problem statement

CPPS architecture is outlined as follows:
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Fig. 2. Systematic architecture.

1) Production assembly and smart connection: The build-
up of the aircraft is completed in a streamlined workflow
that moves in steps through five stations. Each station
installs several specific components, such as joining
three fuselage sections in the first workstation. Besides,
instead of manual recording, the workshop deploys vari-
able kinds of sensors such as the RFID readers and the
mobile terminal equipment. Thus, real-time production
data can be captured on-site.

2) Edge processing: In this layer, a large quantity of raw
data is captured and addressed into the production in-
formation. Therefore, managers can monitor the status
of production tasks in time. The deviation between the
real world and the virtual space can detect.

3) Production scheduling: By leveraging some multi-
objective evolutionary algorithms, some work allocation
schemes from the Pareto frontier are obtained. In addi-
tion, the procedure of the NSGA-IV is detailed in section
IV-A.

4) Smart service: Production monitor and decision making
are implemented. Some visual interfaces are shown, such
as the task Gantt chart. Thus, every worker clearly learns
the production status and prospective tasks. Besides,
the manager selects and publishes a worker allocation
scheme. All unfinished tasks are executed according to
the scheme.

We focus on assigning workers to the multi-stage stations,
yet the task assignment to workstations is ignored. An aircraft
final assembly line consists of five stations m(m € M), each
of which has multiple stages in terms of the time dimension.
There are multiple types of workers in the final line, and the
total number of each worker type w(w € W) is constant,
denoted with n,,. Each type of worker is identical who has
a single skill. For every stage k(k € K), all workers are
partitioned into five subsets associated with stations. These
workers can stay in a station for an appropriate duration to
assemble tasks. After finishing a stage, some workers exchange
among stations without considering movement times.

Assembling an aircraft requires partitioning the total amount
of work into a set of elementary tasks. The assembly tasks and
the precedence between them in each station are known and
cannot be modified. There are two types of tasks, i.e., virtual
tasks and detailed tasks, which are visualized in a precedence
graph (Fig. 2). The processing time of each virtual tasks is
set to 0 without any worker. Performing a detailed task j(j €
J) takes a deterministic processing time p; and requires n;
special w-type of workers in the station m, but regardless
of the transportation time. Additionally, the start time sy of
the initial taskO is set to the scheduling start time. The task
precedence constraints are represented by the task precedence
links. Thus, all direct predecessor tasks of a detailed task j
are grouped into the predecessor task set PT}, and so do the
immediate successor task set ST).

m
s g AV
|
w C K=t T [Tk=2 []
e
s

mw

Fig. 3. A discrete time-grid model of worker type w on station m.

As can be seen in Fig. 3, the timeline of each worker type
on every station is divided into many discrete-time grids with a
fixed interval of At. For example, the 500-hours period is split
into 500 grids with an interval of At = 1 hour. A time-grid
i(¢ € I) has a start time of ¢;. In addition, each timeline of
every workstation is split into multi-stage. Except for the last
stage, the time length of k stages are equal. For instance, there
are two stages in this study and the first stage k = 1 contains
200 time-grids, while another stage includes 300 time-grids.
There are three decision variables, namely ., ,, the plan
start time s; and the plan finish time f; of each task j. The
first variable represents the number of worker type w assigned
to the stage k& of station m.

C. Mathematical model

The worker allocation problem with the multi-stage work-
station can be formulated as the following integer program-
ming model, as follows.
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D 1
meMweW mw &

min f1 =
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1 1
in fo=y | > D= 3 D 2
min 2=y eM(B?v’é e | GM?&’& m“’)“
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1
mefi me 3
( i > ) (3)

meM

. 1
min f3 = lrunea% M Z

meM

Subject to:

D,y =max {a,jw-bjm~fj\j6<]} 4
—min {a;y-bjm-S; |jEJ\0},Vm€M,Vw€VV(

ti=so+(i—1)-ALViel (5)

pjzz:Zajw-eiwwij-At,VjEJ (6)
el weW

M= Y Twm,,Yw e W,Vk € K (7)
meM

Tow,my > mea;(ajw “bjm -y, Yw € W,Vm € M,Vk € K(8)
J

55 > j?g}?‘% {fi=}.Yjed )]
S tju- bm=1Vi€J (10)
weW meM

[vim1, = vig| = {(1) 1 bl =) an
ajw € {0,1} ,Yw €e W,Vj € J (12)
bjm € {0,1},Ym e M,Vj e J (13)
ew €9{0,1} ,Yw e W,Vie I (14)
wie € {0,1} ,Vk e K,Vie I (15)
vi; €{0,1},Yie I,Yj e J (16)

Formulas (1) is minimizing the maximal workstation cycle
(MWOQ). It directly affects the takt time, which determines
the efficiency of the assembly line [13]. Formulas (2) ex-
presses that the deviation of the workstation cycle (DWC)
is minimized. The DWC balances stations by calculating the
standard deviation of workstation processing times. Formulas
(3) denotes minimizing the maximal deviation of worker
workload (MDPW). The worker workload is set forth to
establish the total processing time for each worker type. Thus,
the last two objectives aim at reducing the imbalance among
stations and work types separately [18]. Equation (4) states
the duration of all tasks processed by worker type w in the
station m. Equation (5) computes that the start time of every
time grid . Equation (6) ensures that the assembly time of task
7 is fully processed by specified workers at the time interval.
Equation (7) denotes that all w-type workers are allocated to
five workstations on each stage k. Constraint (8) is applied
to enforce human resource constraints where a lower bound
on each type of available worker is imposed on every station
[16]. Constraint (9) follows task precedence constraints that
the start time of task j is later than the finish time of any
direct predecessor task [26]. Constraint (10) makes sure that
each task can only be processed by a type of worker in

a fixed station. Constraint (11) guarantees that preemption
is not allowed. Constraint (12)- (16) illustrate five binary
variables. Constraint (12) determines whether task j needs
to be processed by workers w. If so, the value of a;, is 1.
Otherwise, a value of 0 is returned. Constraint (13) expresses
that the value b;,, is 1 if task j needs to be processed in station
m, otherwise it is 0 [15]. Constraint (14) defines whether the
worker type w is at work on the time grid :. If so, the value e,
is 1. The value is calculated in terms of the working calendar.
Constraint (15) implies whether the time grid ¢ is in the
stage k. If (k< |K|&t; €lso+T(k—1),s0+T-k)) or
(k=|K|&t; € [so+ T (k—1), +00)) is satisfied, the value
of w;x is 1. Constraint (16) describes whether the time grid
¢ falls within the range of plan assembly time of task j. The
value of Vij is 1 while t; € [Sj s fj)

V. ALGORITHM DESIGN

In this section, an NSGA-IV is introduced to solve the
worker allocation problem. First, the key steps of the algorithm
are also detailed. Second, the encoding scheme is described.
The final part of this chapter describes the fitness evaluation
procedure.

A. Algorithm framework

Fig. 4 shows a graphical interpretation of the NSGA-IV.
There are three main steps to select the next generation in
NSGA-IV. Firstly, the parents and offsprings are divided into
three groups in terms of the results of the non-dominant
sorting, namely Q1, Q2, and Q3. The number of individuals
in Q1 is not more than half of the population size, whereas the
quantity of solutions in Q2 is not less than the population size.
Secondly, hierarchical clustering is utilized for the group Q2.
The closest individuals are removed from Q2 until the number
of QI and Q2 is the same as the population size. Finally, all the
individuals in Q1 are directly incorporated into the offspring to
ensure fast convergence. The remaining individuals in Q2 are
accommodated in the next population to guarantee population
diversity. Besides, the rest of the individuals, belonging to Q3,
are removed directly.

PUP, P w+e FUF, Ve FUFUF,
F; F; X2
1
% B tas—anntag,
N o .¢°
+ L]
°+ . (]
+ °
¢ : [ .
PE 7 + o¢'
+ e

. ‘ X
Hierarchical clustering

Fig. 4. NSGA-IV’s schematic.

The main procedure of the NSGA-IV is detailed in Algo-
rithm 1.

1) The diversified initial population Py is randomly gener-
ated to start the evolution.
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Algorithm 1 Pseudo-code of NSGA-IV

Algorithm 2 Pseudo-code of hierarchical clustering

Input: F,
Olltpllt: P(NFE/N)
1: while g =1 to NFE/N do

2: Py=Make-new-population( P )

3: Fitness-evaluation (Py)

4: {F1, Fy, ..., Fy, ...}=Nondominated-sort(P; U Py’)
5: ¢=1,0l,=9,and Q2, =0

6:  while |Q1,| + |F,| <0.5N do

7: Ql,=Q1,UF,

8: q++

9: end while

10: do

11: Q2, = Q2,UF,

12: q++

13 while |Q1,] +|Q2,| < 1.5N

14: P41 =Hierarchical-clustering(Q1, U Q2,)

15: g++
16: end while

2) After performing the evolution process of binary tour-
nament selection, the simulated binary crossover (SBX)
and the polynomial mutation (PM), some new offspring
Py are generated at line 2.

3) At line 3, every individual in the offspring is decoded.
Then, the fitness evaluation is executed to obtain the
multi-objectives of each individual.

4) All individuals in the P, and P is divided into multiple
sets on the basis of the non-dominant sorting at line 4.

5) Allindividual in every set F, is allocated to three groups
in sequence from line 5 to line 13. The third group is
deleted directly.

6) At line 14, the next population P, ; is generated by
removing the worst member in the group Q2 on the
basis of the hierarchical clustering.

7) The algorithm continues with step 2 until the number
of iterations exceeds the maximum number of iterations
(NFE/N). The NFE represents the number of fitness
evaluations.

B. Hierarchical clustering

In this study, a modified bottom-up hierarchical clustering
is presented to remove redundant individuals in group Q2. The
pseudo-code in Algorithm 2 illustrates the procedure.

2
a(Cn, ) = | S (e = 2, ) V0w Cre € (D)

k,m,w

1) Line 1 reports that each individual in Q1 and Q2 is
divided into a cluster.

2) Line 2 represents the Euclidean distance matrix in which
any value represents a Euclidean distance of two indi-
viduals in set C. The Euclidean distance is calculated by
Formula 17.

3) On the basis of the Euclidean distance matrix, two
nearest clusters in which at least one cluster belongs
to 2, are found in line 4.

Input: Q1,,0Q2,
Output: Q1,UQ2, [1: (N —[Q1,])]
1. C={C1,Cy,...,Cy, ..} ,¥C, € Q1,UQ2,
2: Calculate-Euclidean-Distance-Matrix (ED)|c|x|c))
3: while |C| > N do
4 Find-nearest-clusters(Cp,, Cy), Cp, € C,Cj € Q2
5: if Oy € Q1,&C) € 2, then
6: remove C; from C
7 else if Cy, € Q2,&C) € (2, then
8 d (Cov Cq)

0= arg min

o€{h,l},qeC\{CrUC}
9: remove C, from C'

10: end if
11: Update ED\C|><\C\
12: end while

4) Algorithm 5-10 lines show that a cluster in Q2 is
removed. If only one of the two nearest clusters belongs
to set Q1, another is deleted. Once both clusters are from
set Q2, the cluster that is closer to other clusters will be
remove.

5) The Euclidean distance matrix is updated. The hier-
archical clustering method goes back to step 3 until
the remaining quantity of all clusters is equal to the
population size.

The non-dominated sorting (line 4 in Algorithm 1) of a
population size 2N having M-dimensional objective vectors
require O (N log™ 2N ) computations [6]. In the worst case
scenario, the number of the last non-dominated set exceeds a
half of the population size; that is | (3| = 0. Therefore the time
complexity of a hierarchical clustering is O (N3) . Thus, the
overall worst-case complexity of one generation of NSGA-IV
is O (N4).

C. Solution Encoding

An integer encoding scheme is presented in a series of
the integer decomposition codes. Each code ¢, ;; denotes the
allocation scheme of worker type w in station k. The length
of an individual is equal to |W| x |K]|.

‘13‘121‘165‘162‘ ] ‘ 1 ‘

Cw,k

‘993‘555‘

Fig. 5. Solution encoding.

In order to satisfy Equation (7), the number of each worker
type is decomposed into five (M=5) integers, which represent
the allocation result of the worker type in five stations suc-
cessively. Besides, the allocation schemes of each worker type
are encoded from 1 to the number of decomposition solutions.
Thus, the number of the worker type w in stage k of every
station can be retrieved by the unique code c¢,, ;. For example,
the value of the first gene is 13 in Fig. 5. By retrieving in the
Table II, the third station and the fourth station assign two
workers and six workers belonging to the first worker type,
respectively. Yet each of the other stations allocates a worker
of the first type.
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TABLE Il
INTEGER DECOMPOSITION TABLE OF FIRST WORKER TYPE(w = 1).
cig 1234567891011 1213 14 15 16 17 ... 210
w11, 1 1 1T T 1T 11111 1 1 1 1 1 1 1 7
w12, 1 1 1T T 1T 11111 1 1 1 1T 1T 1 1 I
z13, 1 1 11111222 2 2 2 3 3 3 3 I
z14, 1 234567123 4 5 6 1 2 3 4 1
15, 765432165 4 3 2 1 5 4 3 2 1

Workstations in the final assembly line are aligned as shown
in Fig. 6 [13]. Each aircraft is moved from the first station
to the fifth workstation in sequence. Additionally, all kinds
of assembly parts are delivered to the corresponding station
continuously. Moreover, all workers are assigned to every
multi-stage workstation. Thus, the worker allocation scheme
depicted in Fig. 5 is decoded and shown in Fig. 6. For each
worker allocation scheme, each line signifies workers assigned
to the corresponding stage, and each column represents the
corresponding worker type with different colors. For example,
the number of the first worker type assigned to the first stage
can be shown on the top left corner in every station.

[ w=1[ Jw=2 [ w=3-[ Jw=17
L) (31611 [3]{1)1]1] |2
L4131 14][4]1]1]]2

ad
N =

L|3)1] | 3]j112f1]||4112]4

213/ 1]14]|3]2]1]14]|1]2
v Y “

[ m=1 | m=2 }>{ m=3 m=4 m=5

[Parts}j [Parts}j [Parts}J [Parts}/‘ [Parts}j

Fig. 6. Worker allocation in multi-stage workstation.

D. A serial schedule generation scheme with working
calendar

For solving the evaluation problem, a serial schedule gener-
ation scheme (SSGS) with a working calendar is introduced.
Only one task is assigned for each iteration under satisfying
task precedence constraint and human resource constraint [26].
Associated with each iteration are two disjoint task sets,
namely the scheduled set SS; and the decision set DJS,.
The scheduled set comprises all tasks that have been already
scheduled, whereas the decision set contains all tasks, each of
which can be assigned at this iteration. In addition, let r?,,,
be the remaining capacity of worker type w in station m at
time-grid 4. And R,,,,, represents the set of 7% in the whole-
time grids. The procedure of the fitness evaluation is shown
in Algorithm 3.

1) At line 1, the initialization puts the virtual assembly
taskO into the scheduled set S'Sy. The remaining capacity
Ry is initialized by setting each %, .

2) The decision set DS, is calculated according to the
scheduled tasks and the task precedence constraints.

3) At line 4, one task j is selected from the decision set
based on six priority rules, which are maximum total
successors, longest processing time, most immediate
successors, shortest processing time, maximum critical,
and random rule, in sequence.

Algorithm 3 Pseudo-code of SSGS with working calendar.

Input: so, {zw,m,|w e Wyme M ke K}

Output: {(s;, f;)|j € J}
1: Initialization SS, =

T i —
{rmw T’m’w -

keK

2: while ¢ =1 to |J| do
3: Calculate DS, = {j|(j ¢ SSq—1)U(PT; CSSq-1) }
4: Select j € DS, according to priority rules
5: Calculate s; = ‘Zreuzl?ij {fj=}

Calculate f; according to Equation (6)

Update R,y = {rinw ‘T;:nw_ =Qjw 'bjm “Vij 15, 1€ I}

NYw e W¥m e M

8: Update SSy+1 =SS, U{j}
9: end while

{0},DSy, =
> Zwmy, Ciw Uik, t € [ w € Wome M}

9, me =

4) The plan start time of the task j is set to the latest time
of the direct predecessor tasks.

5) At line 6, the plan finish time of the task j is calculated
by backward accumulation from the plan start time
until the total time of the worker-feasible grid equals
processing time.

6) The remaining capacity R, is updated by subtracting
the used number of workers in each grid.

7) The task j is added to the scheduled set. The procedure
continues to go to step 2 until all tasks are scheduled.

V. CASE STUDY

The overall experiment process is described as follows:
Firstly, the production data from a real aircraft final assem-
bly line is preprocessed. Secondly, the basic parameters of
algorithms are determined. Thirdly, three performance metrics
and the Wilcoxon signed-rank test are utilized to compare the
NSGA-IV with five MOEAs. Fourthly, it describes how to
apply the process in practice. Finally, we discuss and analyze
the application of the NSGA-IV in the worker allocation
problem. The experiments were implemented in Java 8.0 based
on the Eclipse platform with 6 threads and run on a computer
with an Intel Core i5-8500 3.0 GHz processor and 16 GB
RAM.

A. Preprocessing production information

The case illustrates that five aircrafts are assembled on five
different stations, drawn from an aeronautical manufacturing
plant. The production information was preprocessed as fol-
lows.

There are 17 types of workers in the aircraft final assembly
line, as shown in Table III. The total number n,, of worker
type w 1is listed in the second row. Furthermore, the normal
working calendar of each worker is 08:00-12:00 and 14:00-
18:00 from Monday to Saturday.

The number n; of a specific worker type w and the
processing time p; is already known to process a task j.
Moreover, the processing state of each task is acquired on
the basis of CPPS. Thus, all finished tasks are removed from
the precedence graph. The unfinished assembly tasks are listed
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TABLE IlI
WORKER TYPE INFORMATION.
w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ny 11115 16 12 14 16 7 11 15 16 10 15 10 15 12 16

in Table IV partially and the total amount of detailed tasks is
|J| = 3787.

TABLE IV
ASSEMBLY TASKS INFORMATION.

j pj m w ny Type | j p; m w n; Type
0 0 1 0O wvirtual |5 8 1 17 1 detail

1 0 1 0 virtual |6 8 1 17 1 detail
2 8 1 6 1 detailed|7 4 1 7 1 detailed
3 8 1 6 1 detailed|{ 8 4 1 7 1 detailed
4 8 1 17 1  detailed| 9 0 1 0  virtual

Task precedence constraints in the real final assembly line
are shown in Table V. For example, any task in the immediate
successor set STo = {task4,task5} cannot be assembled
before task2 is completed.

TABLE V
TASK PRECEDENCE CONSTRAINTS.

id 1 23 45 6 7 8 9 10 11 12 13
Predecessor 0 1 1 1 2 2 3 3 7 4 5 8 6
Successor 1 2 3 7 4 5 4 5 8 6 6 9 9

B. Parameter settings

All evolution algorithms apply the same parameters for a
fair comparison, as shown in Table VI. Each population has
N=100 individuals and the number of fitness evaluations is
fixed to NFE=10,000. Additionally, the crossover rate and the
mutation rate are configured as 0.92 and 0.03, respectively.
Both of the maximum cognitive factor ®1 ,,,4, and the max-
imum social factor ®g .4, are set to 0.8 for running multi-
objective particle swarm optimizer (MOPSO).

TABLE VI
THE PARAMETER SETTINGS.
N  NFE  Stage SBX PM B az  P2.man
100 10,000 2 002 003 0.8 0.8

The solution for the worker allocation problem with the
multi-stage workstation outperforms that with a single-stage.
To prove it, the proposed NSGA-IV algorithm was run sepa-
rately 30 times for worker allocation problem with a single-
stage station and with two stages station. This study set two
stages instead of many stages since too many stations can
easily cause production chaos. The Pareto set of two stages
compares with the Pareto frontier of a single-stage on the
dimension of the three objectives (MWC, DWC, and MDPW),
as shown in Fig. 7. It can be observed that the three objectives
are conflicting with each other, except for the connection
between DWC and MDPW. In addition, it is obvious that the
Pareto set of the two-stages dominates that of a single-stage
under all objectives.

250 . DWC
200 704
150 601
MDPW 50
100
40
50
30/
20/
104 :
0 S MWC
5000 0 200 400 600 800
(a)Three dimensions (b)MWC and DWC
MDPW MDPW
300, . 300
250 " 250
200! I N S 200 i
150 150
100 100
504 50
0 MWC 0/ DWC
0 10 20 30 40 50 60 70 0 200 400 600 800

(¢)MWC and MDPW (d)DWC and MDPW

Fig. 7. Pareto Frontier of the worker allocation problem with two-stages
(red point) compared to that with single stage (green point).

C. Comparison with five MOEAs

Five MOEAs algorithms, namely vector evaluated genetic
algorithms (VEGA), improved strength Pareto evolutionary
algorithm (SPEA2), MOPSO, NSGA-II, and NSGA-III, were
employed to compare with the proposed NSGA-IV algo-
rithm. Each of them was run independently 30 times to
ensure generalization performance. Then, the hypervolume
ratio (HVR), the inverted generational distance (IGD), and
the additive epsilon indicator (AEI) were used for measuring
diversity, proximity, and consistency of solution, respectively
[27]. Furthermore, the Wilcoxon signed-rank test was utilized
to compare the significant differences between NSGA-IV and
five MOEAs.

The three subplots on the left of Fig. 8 show the aver-
age performance metrics of six MOEAs across generations.
These trend plots represent that all algorithms can converge
quickly, except VEGA and MOPSO. It is clear that the three
performances (HVR, IGD, and AEI) of SPEA2, NSGA-II,
NSGA-III, and NSGA-IV are similar improvements between
generations 1 and 50. However, after generation 50, the three
performances of NSGA-IV are slightly better than those of
other MOEAs. Besides, the average AEI of NSGA-III drops
slightly faster than that of NSGA-IV over the top 20 genera-
tions, whereas the trend has reversed after that.

In addition, each algorithm can obtain 90 performance
metrics by running 30 times independently. The same metrics
get together to draw three box plots on the right of Fig. 8.
The solution obtained by NSGA-IV has the largest median
of HVR as well as has the smallest median of IGD and AEI
in all algorithms. The NSGA-IV has the shortest interquartile
range in the IGD and AEI metric. It indicates that the NSGA-
IV is not susceptible to random factors comparing with other
algorithms.

The Wilcoxon signed-rank test with the significance level
0.05 is utilized to calculate the significant difference between
NSGA-IV and other MOEAs. The results are listed in Table
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Fig. 8. Trend plots and box plots of average performance metrics.

VII in terms of the HVR, IGD, AEI. The results illustrate that
the NSGA-IV can dominate any other algorithm under the
IGD, and AEI. Besides, the NSGA-IV is better than VEGA,
SPEA2, and MOPSO on the metric of HVR, but there is
no significant difference between the proposed algorithm and
NSGA-II, NSGA-III.

TABLE VI
COMPARISON WITH FIVE ALGORITHMS IN TERM OF THE WILCOXON
SIGNED-RANK TEST.

NSGA-IV ~ VEGA SPEA2  MOPSO NSGA-II NSGA-III
HVR 0.00(+) 0.019(+) 0.00(+) 0.139(=) 0.079(=)
IGD 0.00(+) 0.003(+)  0.00(+) 0.043(+) 0.032(+)
AEI 0.00(+) 0.030(+)  0.00(+) 0.025(+) 0.024(+)

* the NSGA-IV is significantly better than others according to the metric

considered.

= there is no significant difference between NSGA-IV and others.

D. Practical application

This study aims to address the worker allocation problem
with the multi-stage workstation. The proposed NSGA-IV is
embedded in the manufacturing execution system and success-
fully applied on the shop floor. In the past, manual allocation is
based on a heuristic rule that assigning workers is proportional
to the tasks remaining time. Thus, its three objective values
(MWC, DWC, MDPW) are 580.0, 82.05, 241.47, respectively.

This study utilizes the predictive-reactive scheduling strat-
egy that is widely used in practice. All finished tasks remove
from the production tasks set and the remaining processing
times of all unfinished tasks are calculated. Besides, the
production managers manually update the product information

in terms of uncertain events. For example, if one staff is
absent, the working calendar needs to be changed. Once an
assembly task fails, the task will be added to the production
task set again. Thus, the manager needs to make a new
worker allocation scheme every weekend. Then, one solution
is selected on the basis of Lexicographic resolution [13].
According to the impact importance extent, these objective
functions are utilized in sequence. Finally, the solution is
published in the workshop. However, some critical events
inevitably have a strong impact on the execution of the scheme.
Thus, the worker allocation scheme can be locally adjusted by
managers. Once the event is tackled, these workers will return
to the original stations.

We selected a Pareto solution according three objective,
ie, MWC, DWC, MDPW (values 459.0, 19.20, 195.55),
respectively. Compared to manual allocation, the takt time
of the aircraft final assembly line is reduced by 20.86%. As
space is limited, this paper only displays its task Gantt graph
of critical worker type w = 16, as illustrated in Fig. 9. The
Gantt bars in each workstation are represented by different
colors. In the header table, the first three columns signify the
station number, the total number of processing tasks, and the
worker allocation results, respectively. As shown in Fig. 9,
the two stages in the first station assign four workers and
two workers of the sixteen type in sequence. Moreover, the
detailed information of each task can be viewed by clicking
the Gantt bar. The processing time of task2450 is 4 hours, yet
the interval time from plan start time to plan finish time is 18
hours which includes the off-duty time. Besides, the constraint
(8) results in that the fourth station is not less than one worker
belonging to the sixteenth type. Therefore, although there is
no task in the second stage, one worker still is allocated in
the fourth station. The idle worker either take a holiday or
assist other workers in a bottleneck station, making a robust
production system.

E. Discussions and analysis

The worker allocation problem with the multi-stage work-
station comes from a real aircraft factory, which is an effective
complement to the assembly line balancing problem. It can
help reduce takt time and improve production efficiency.
However, there are still three issues that need to be discussed
and further analyzed.

Firstly, it is necessary to study how long the worker alloca-
tion scheme is modified. The planning scheme is easy to lag
behind the real production situation as a result of the uncertain
events. On one hand, if the deviation cannot be eliminated
timely, an aggravation of the condition will occur. On the
other hand, the production arrangement will be chaotic if the
adjustment is frequent.

Secondly, there are fewer bottleneck resources in the aircraft
final assembly line, which has a great impact on the scheduling
results. Therefore, these bottleneck resources should have been
concerned to generate the next generation. For example, the
weighted Euclidean distance may be employed in the NSGA-
IV, whereas it is difficult to determine the bottleneck resources
and their weight.
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Fig. 9. Task Gantt graph of sixteen worker type (w=16).

Thirdly, the SSGS is used for the fitness evaluation to find
a solution within reasonable computation time. However, the
heuristic method is usually defeated by the meta-heuristic
algorithm in terms of the solution quality. So it is meaningful
to encode the worker allocation and the operations assignment
simultaneously. But the encoding scheme needs to consume
huge amounts of computing resources to converge to the
optimal solutions.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes an NSGA-IV algorithm to solve the
worker allocation problem with the multi-stage workstation.
The major contributions of this work are summarized as
follows: 1) A systematic framework is put forward on the
basis of the application of Cyber-Physical Production Systems.
It has the capability of capturing and tackling uncertain
events quickly, eventually forming a closed-loop production
system. 2) An integer programming formulation is developed
to formulate a worker allocation problem with the multi-stage
workstation in an aircraft final assembly line, implementing
effective arrangements for the scarce human resource. And 3)
an NSGA-IV by leveraging the non-dominant sorting and the
hierarchical clustering is proposed to improve the population
diversity in the decision space.

The multi-stage workstation is effective to improve the
productivity of a paced aircraft final assembly line. There
is not the assignment of lots of tasks among stations, mak-
ing a controllable production process. Moreover, the Pareto
solutions of the proposed NSGA-IV dominate those of the
VEGA, SPEA2, and MOPSO in terms of HVR in a real-
world case. Additionally, the Pareto solutions of the NSGA-
IV dominate those of five algorithms consisting of VEGA,
SPEA2, MOPSO, NSGA-II, and NSGA-III under IGD and
AEIL Therefore, it is clear that NSGA-IV is an outstanding
algorithm for solving the worker allocation problem. The algo-
rithm has been applied in production to enable manufacturing
aircraft with a stable takt time.

Our future work will mainly focus on three aspects. Firstly,
we consider the influence of multi-skill workers and their
skill levels in real-world applications. Secondly, some hy-
brid evolutionary algorithms can be exploited to improve the
strengths of multiple meta-heuristics. Finally, the fuzzy logic
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scheduling algorithm can be employed to solve robust pro-
active scheduling.
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