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Electrical access to critical coupling of circularly
polarized waves in graphene chiral metamaterials
Teun-Teun Kim,1,2,3* Sang Soon Oh,4* Hyeon-Don Kim,5* Hyun Sung Park,5 Ortwin Hess,4†

Bumki Min,5† Shuang Zhang1†

Active control of polarization states of electromagnetic waves is highly desirable because of its diverse applications
in information processing, telecommunications, and spectroscopy. However, despite the recent advances using
artificial materials, most active polarization control schemes require optical stimuli necessitating complex optical
setups. We experimentally demonstrate an alternative—direct electrical tuning of the polarization state of terahertz
waves. Combining a chiral metamaterial with a gated single-layer sheet of graphene, we show that transmission of a
terahertz wave with one circular polarization can be electrically controlled without affecting that of the other circular
polarization, leading to large-intensity modulation depths (>99%) with a low gate voltage. This effective control of
polarization is made possible by the full accessibility of three coupling regimes, that is, underdamped, critically
damped, and overdamped regimes by electrical control of the graphene properties.
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INTRODUCTION
Controlling circular polarization states is important inmodern photonics
because it plays a pivotal role in the field of quantum computation and
information (1, 2), optical communication of spin information (3), and
circular dichroism (CD) spectroscopy (4, 5). Natural chiral materials
composed of elements without any mirror symmetry have been widely
used to manipulate the circular polarization states of light since the
discovery of optical activity (OA) in a quartz crystal (6–8). However,
naturally occurring chirality in the form of CD and OA is extremely
weak, requiring a substantially long propagation length to observe
chirality in naturally chiral media (9). Artificial structures called “chiral
metamaterials” composed of subwavelength metallic building blocks
have been proposed for enhancing CD (10–13) and OA (14–18),
enabling various potential applications, such as broadband circular
polarizers (19, 20) and wave plates (21–23).

In the terahertz (THz) regime, control over CD and OA is of great
importance because macromolecules with ionic or polar constituents
strongly absorb THzwaves because of the presence of large-scale col-
lective vibrational modes (24, 25), and biopolymers, such as proteins,
DNA, and RNA, composed of chiral structures selectively absorb cir-
cularly polarized THz waves (26–28). Despite this importance of chi-
rality at THz frequencies, active control of CD and OA has continued
to remain challenging,mainly due to technical difficulties inmanipulating
THz waves and their polarization states. During the past few years,
optical tuning of the CD andOA of chiral metamaterials has been dem-
onstrated (29–31), which, however, requires elaborate experimental
setups, such as pump lasers and appropriate optical components. For
practical applications, an electrical approach for active control of the
polarization state would be more attractive. Graphene, consisting of
carbon atoms two-dimensionally arranged in a honeycomb lattice,
has been studied extensively for the past decade because of its high
carrier mobility and unique band structure with linear dispersion near
the so-called Dirac point or charge-neutral point (CNP). Strong mod-
ulation of its THz properties can be achieved by electrically tuning the
density of states available for intraband transitions. Efforts have been
made to enhance graphene absorption in the THz regime by integrating
graphene with metamaterials (32–38). Although a large number of
works on graphene-basedmetamaterials have been reported, polarization
modulation by simple electric gating remains largely unexplored.

Here, we demonstrate gate-controlled CD andOA in gated graphene
integrated in a chiralmetamaterial. As shown in Fig. 1A, the transmission
of a right-handed circularly polarized (RCP) THz wave can be strongly
modulated when a voltage is applied to the gate because of a critical
transition followed by a change in the optical conductivity of graphene.
On the other hand, the transmission of the other circular polarization
remains very insensitive to the applied voltage. This selective control
can be explained by the different radiation loss parameters of the chiral
metamaterial for the two circular polarizations, leading to different trans-
mission changeswith applied gate voltagewhen graphene is incorporated
into the metamaterial design. Furthermore, it is shown that the plane of
linearly polarized waves can be electrically rotated while the linear polar-
ization state maintains its linearity.
RESULTS
To effectively control the polarization states of THz waves, we use a
conjugateddoubleZmetamaterial (CDZM), abilayer chiralmetamaterial
structure that ismorphologically transformed from a conventional con-
jugated gammadion shape (18), as shown in Fig. 1 (B and C). As shown
in more detail later, in this metamaterial, the radiation loss for an RCP
wave strongly depends on the gate voltage, in contrast to a small change
in the radiation loss for a left-handed circularly polarized (LCP) wave.
This feature is very useful for selective control of the response of the
metamaterial for the two different circular polarizations. A graphene
layer is directly attached to the top layer of the CDZMusing awet trans-
fer method (39). Raman spectroscopy is performed to confirm the
monolayer characteristics of transferred graphene when averaged over
the overall area of the wafer (see fig. S1). During the synthesis and fab-
rication processes, chemical vapor deposition (CVD)–grown graphene
easily becomes p-doped (40), which is also the case for our graphene
samples. To control the conductivity of graphene via the gate voltage,
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we used an ion gel gate dielectric along with adequate electrodes for a
large change in carrier concentration (Fig. 1C) (for details on the fabri-
cation of the device, see Materials and Methods).

The fabricated grapheneCDZMstructures are characterized by THz
time-domain spectroscopy (THz-TDS) (32). The transmission co-
efficients for the circularly polarized lights are obtained through linear
polarization measurements with wire grid polarizers (see Materials and
Methods). A voltage supply is connected to the electrode and the
graphene layer to apply a gate voltage (Fig. 1D). Figure 2A shows the
measured intensity transmission spectra for the RCP and LCP THz
waves, TRCP and TLCP, through the graphene CDZM at four different
gate voltages. For comparison, the intensity transmission spectra of a
bare reference CDZM array are plotted in a black sold line (the trans-
mission amplitude of the bare CDZM is about 20% for the RCPwave at
the resonance frequency of 1.1 THz). The gate voltage relative to CNP
DV = |Vg − VCNP| determines the doping level of graphene. It is shown
that TRCP can be markedly reduced by increasing the applied voltage
(DV < 1.8 V) but almost leaves TLCP unchanged at the resonance fre-
quency of 1.1 THz (Fig. 2B). However, further increasing the gate volt-
age beyond a critical voltage (DV > 1.8 V) leads to an increase in TRCP.
The maximum intensity modulation depth for the RCP wave, defined
as a relative transmission of RCP change DTRCP/TRCP,CNP for graphene
CDZM, is measured to be 99% at the resonance frequency of 1.1 THz.

To clarify the mechanism of electrical control of one circular polar-
ization observed in the experiments, we perform numerical simulations
using both a FEM (finite element method) solver (CST Microwave
Kim et al., Sci. Adv. 2017;3 : e1701377 29 September 2017
Studio) and the FDTD (finite-difference time-domain)method (Lumerical
FDTD Solutions). To numerically model the graphene layer in the sim-
ulations, we calculated the optical conductivity of graphene as a
function of the Fermi levels using the Kubo formula (see Materials
and Methods for more details) (41). For a better understanding of the
gate-dependent modulation characteristics, measured TRCP at the
resonance frequency of 1.1 THz are plotted as a function of DV and
compared with the simulation results. As clearly seen from the plot in
Fig. 2 (B and C), the simulation results show an agreement with the
measured data, where the Fermi level is related to the gate voltage by
|EF| = ℏvF(pN)

1/2. Here, vF is the Fermi velocity, N is the total carrier
density given by N ¼ ðn20 þ a2 DVj j2Þ1=2, and a ≈ 8.0 × 1011 cm−2V−1

is the gate capacitanceof the iongel dielectric. For the intraband scattering
time, we assume that t = 31 fs and the value of the carrier density at the
conductivityminimum is n0 = 5.4 × 1010 cm2. Relative changes in CD,
D = |TRCP − TLCP|, are plotted in Fig. 3 as a function of the gate voltage
fromDV= 0.0V toDV= 4.8V.We experimentally achieve a very large
modulation of CD of up to 45 dB (DV = 1.8 V) at 1.1 THz (Fig. 3B).

Besides CD, OA can be electrically controlled via the gate voltage.
With chiral media, pure optical rotation of a linear polarized wave with
no ellipticity can be obtained at off-resonance frequencies (18, 44). The
measured and simulated ellipticity h, defined as h =1

2= sin−1 [(|TRCP|
2 −

|TLCP|
2)/(|TRCP|

2 + |TLCP|
2)], is plotted as a functionofDV and frequency

(Fig. 4A). At around 1.42 THz (purple dashed line), the transmission of
the RCP and LCPwaves are nearly identical (Fig. 2B), which implies that
the ellipticity is very small (h≈ 0). The ellipticity of the transmittedwaves
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Fig. 1. Schematic views and device image of gate-controlled active graphene CDZM. (A) CD and OA in graphene CDZM. CD: Transmissions for RCP and LCP waves
are different to each other because of the different absorption between RCP and LCP waves (left). OA: The electric field vector of linearly polarized light rotates around
the axis parallel to its propagation direction while passing the graphene CDZM (right). (B) Schematic rendering of a gate-controlled active graphene CDZM composed
of a single-layer graphene deposited on the top layer of CDZM and subsequently covered by a layer of ion gel [thickness (t) = 20 mm]. The geometry parameters are
given as l = 100 mm, w = 7 mm, and s = 10 mm. (C) Top-view microscopy image of the fabricated gate-controlled active graphene CDZM. The gap width between chiral
metamolecules is given as g = 2 mm. (D) Schematic rendering of the fabricated graphene CDZM. B is a base connected to the ion gel, and G is a gate connected to the
graphene layer.
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is less than 0.7° (2.1° in the experimental results) across the whole applied
voltages at the frequency fh≈0. The OA is characterized by the azimuthal
rotation angle q =1

2= [arg(TRCP) − arg(TLCP)], as schematically illustrated
in the inset of Fig. 4C. Figure 4B shows the measured and simulated az-
imuthal rotation angle q through the graphene CDZM at three different
gate voltages. We measured the azimuthal rotation angle q to be as large
as 40° at fh≈0 = 1.42 THz in the case of DV = 0.0 V. This experimental
result shows that the rotation angle per wavelength reaches values in
greater than of 274°/l. Here, the thickness of the sample is 31 mm. As
Kim et al., Sci. Adv. 2017;3 : e1701377 29 September 2017
shown in Fig. 4C, the rotation angle of the graphene CDZM can be
tuned from 40° to 30° as the gate voltage increases from DV = 0.0 V
to DV = 4.8 V, which means that the rotation modulation angle per
wavelength reaches 72°/l.
DISCUSSION
To explain the largemodulation of CD, we use temporal coupled-mode
theory (CMT) involving two resonantmodes with two ports (42, 43). In
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Fig. 2. Gate-controlled circular transmission and CD. (A) Measured and simulated intensity of transmission spectra for RCP (TRCP; solid line) and LCP (TLCP; dashed
line) waves are plotted for different gate voltages DV. (B) TRCP (orange) and TLCP (green) at the resonance frequency of 1.1 THz as a function of DV. Whereas TLCP is
almost unchanged, TRCP can be markedly modified by the applied voltage. (C) Measured (scatters) and simulated (line) intensity modulation depth for DTRCP/TRCP,CNP
plotted as a function of DV at the resonance frequency of 1.1 THz. The maximum modulation depth for TRCP is measured to be 99%.
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our CMT model, as shown in Fig. 5A, the couplings between the two
resonance modes ( f1 and f2) and the incident/transmitted RCP waves
are considered (see note S1). We note that the CMTmodel can be ap-
plied to RCP and LCP waves independently because there is no cross-
coupling between them due to the C4 rotational symmetry of the
structure. To quantitatively understand the coupling mechanism, we
derive an analytical expression of transmission coefficients by taking
account of the two resonances. Because there are three coupling chan-
nels between the incident and transmitted waves, that is, two via the
resonance modes and one direct coupling, the complex transmission
amplitude coefficient for RCP can be written as

tRCP ¼ t0 þ G1reif1

ið f � f1Þ � G1r � G1i
þ G1reif2

ið f � f2Þ � G2r � G2i
ð1Þ

where G1r, G2r, G1i, and G2i are the radiation and intrinsic losses of the
two resonances, respectively, f1 and f2 are the resonance frequencies, and
f1 and f2 are the phase differences between the incident and transmitted
waves mediated by the first and second resonances (35). Figure 5B
shows that there is a clear transition in the phase of the RCP transmis-
sion coefficient atDV= 1.8V. This abrupt transition suggests a presence
of a critical coupling state that divides the excitation of the resonance
modes into underdamped (DV < 1.8 V) and overdamped (DV > 1.8 V)
regimes. In contrast to the reflective-type metasurface, which shows a
Kim et al., Sci. Adv. 2017;3 : e1701377 29 September 2017
critical transition in the phase of the reflected beam (35), our chiral
metamaterial shows a critical transition for transmitted beams.

The transmission coefficients, fitted using Eq. 1, are plotted together
with simulated transmission coefficients in the complex plane in Fig. 5
(C toE).This clearly shows that the transmission through themetamaterial
can be classified as three different regimes around the critical coupling
(DV = 1.8 V), where the Smith curve crosses the origin in the complex
plane. In this fitting, the coupling coefficient (the loss parameters of
the resonators), G1r, G2r, G1i, and G2i provide important information
on the couplingmechanism. For the RCP excitation, as shown in Fig. 5F,
the radiation losses (G1r and G2r) decrease as the gate voltage (DV) in-
creases, implying that the resonance modes have a weaker coupling to
free-space radiation. The curvature radius of the curve in the complex
plane, determined by radiation losses G1r and G2r (see note S1 and
table S1), decreases as the gate voltage increases, resulting in a limited
phase angle range. On the other hand, for LCP excitation (Fig. 5G), the
radiation loss for the second resonance (G2r) increases as the gate volt-
age increases, leading to no critical transition. In both RCP and LCP
excitations, the intrinsic losses increase as the gate voltage increases
due to the increased optical conductivity of the graphene (see fig. S2).

The demonstrated active control of OA is associated with the phase
change of two circularly polarized beams while transmitting the CDZM
because the rotation angle is given as the phase difference. As can be
expected by the Bohn-Kuhn model for a chiral medium (45), the OA
becomesmaximum at slightly off-resonance frequencies, where the CD
 on January 11, 2021
advances.sciencem

ag.org/
C

θ

–40

–38

–36

–34

–32

–30

 Sim.
 Exp.

0.0 1.0 2.0 3.0 4.0 5.0

ΔV
0.6 0.8 1.0 1.2 1.4 1.6

–90

–45

0

45

90

Frequency (THz) Frequency (THz)

B

Exp.

Frequency (THz)

η 
30

0

–30

η ~  ~ 0

Frequency (THz)

η 
25

0

–25

η ~  ~ 0

Sim.Exp.

EF

EF

0.80.6 1.0 1.2 1.4 1.6
0

1

2

3

4

ΔV

0.80.6 1.0 1.2 1.4 1.6
0

1

2

3

4

A

0.6 0.8 1.0 1.2 1.4 1.6

–90

–45

0

45

90 Sim.

 ΔV = 0.0 V 

 ΔV = 4.8 V 

 ΔV = 0.0 V 

 ΔV = 4.8 V 

R
ot

at
io

n,
   

(d
eg

)

R
ot

at
io

n,
   

(d
eg

)

Fig. 4. Gate controllable OA. (A) Comparison between measured and simulated ellipticity h with different gate voltages DV. The dashed purple line represents the
frequency of pure OA (h ≈ 0). (B) Measured and simulated azimuthal rotation angle q with different DV. (C) Azimuthal rotation angle q at the frequency for which fh≈0 as
a function of DV.
4 of 7

http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E
becomes maximum (Fig. 2A). In our graphene CDZM, it is the change
of loss parameters that controls the phase change by modifying the res-
onances. This is similar to the electrical control of the phase of linearly
polarized light using a gate voltage in a metallic grating structure with
graphene (46, 47). However, in this work, we change the phase of one
circularly polarized light (LCP in our case) at an off-resonance frequency
(1.42 THz) with a gate voltage to avoid significant losses at the resonance
Kim et al., Sci. Adv. 2017;3 : e1701377 29 September 2017
frequencies. This allows for the rotation of a linearly polarized beamwith
negligible losses (see fig. S3).

In conclusion, we have experimentally demonstrated an electrically
tunable chiral metamaterial in which the transmission of the RCP wave
can be markedly modified by varying the applied voltage without
changing the transmission of the LCP. From the measurement, we val-
idated that the graphene CDZM achieves a high-intensity modulation
 on January 11, 2021
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depth of up to 99% for the RCP wave at a small gate voltage while
maintaining high transmission of the LCPwave up to 52%.As a result, a
large CD value of up to 45 dB was achieved. In practice, all fabricated
samples show a different performance from the designed one to a cer-
tain extent because of the imperfectness in fabrication process. There-
fore, adding the active control would help to precisely locate the
optimized operation point even after the sample is fabricated, while this
post-optimization process would be impossible with passive devices. In
addition, theoretical analysis based on the temporal CMT for two ports
verifies that this gigantic active CD is attributed to a phase transition
from an underdamped to an overdamped resonator by varying radia-
tion losses in the metasurface resonators. Our work also highlights that
a graphene CDZM structure can achieve an active modulation of the
polarization rotation angle up to 10°with very small ellipticity.Note that
the operating principles of graphene chiral metamaterials can be
extended to other frequency ranges, from microwave to mid-infrared.
In addition, because the designed CDZM structure is scalable, it can be
applied with other activematerials at microwave regime, such as diodes
or varactors, and phase-change materials at infrared frequencies, such
asVO2 orGe3Sb2Te6, by changing the unit cell size. Benefitting from the
electric control of polarization, the grapheneCDZMconceptmay lead to
various applications in THz technologies, such as an ultra-compact active
polarizationmodulator for telecommunications and imaging devices and
ultrasensitive sensors for identification of the chirality and structures of
macromolecules or biomolecules.
 on January 11, 2021
advances.sciencem
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MATERIALS AND METHODS
Sample fabrication
For the realization of the CDZM, we used and combined three fabrica-
tion techniques—conventional microelectromechanical systems pro-
cess, CVD-grown graphene transfer, and ion gel transfer. First, to
forma flexible substrate, apolyimide solution (PI-2610,HDMicroSystems)
was spin-coated to a target thickness of 1 mm on a sacrificial silicon
wafer, and the polyimide solution was fully cured in a subsequent
two-step baking process in a convection oven and a furnace. As a first
double Zmetamaterial layer, a 100-nm-thick gold was deposited with a 10-
nm-thick chromium adhesion layer on a negative photoresist (AZ nLOF
2035, MicroChemicals), which was patterned by photolithography. After
the lift-off process, the first double Z metamaterial layer was defined. To
separate the second double Z metamaterial layer from the first layer, the
samepolyimide curingprocesswas repeatedbutwith adifferent thickness
of 10 mm. On top of a spacer, a second double Z metamaterial and a
square ring-shaped graphene electrode were defined following the
same process, which was used for the first layer. At the same time, a
side-gate electrode was used beside the graphene electrode to simplify
the fabrication process. This was a distinctive advantage based on the
high-capacitance ion gel dielectric. Second, a commercial CVD-grown
monolayer graphene on a copper film (Graphene Square) was
transferred to the entire area covering the seconddouble Zmetamaterial
(5 mm × 5 mm) and the surrounding graphene electrode. We used a
conventional wet-based transfer method using a thermal release tape as
a supporting layer. Third, as a gate dielectric, we used a 20-mm-thick ion
gel using the cut-and-stick method. The ion gel solution was prepared
by dissolving poly(vinylidene fluoride-co-hexafluoropropene) and
1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) amide
in acetone with a weight ratio of 1:4:7. This solution was dried in a
vacuum oven at a temperature of 70°C for 24 hours. The cured ion
gel was cut with a razor blade and then transferred between two elec-
Kim et al., Sci. Adv. 2017;3 : e1701377 29 September 2017
trodes. Finally, the thin flexible graphene CDZMwas peeled off from
the silicon substrate and attached to a holed printed circuit board
substrate.

THz-TDS measurements
To generate broadband THz waves, we used a low temperature–grown
GaAs photoconductive antenna (iPCA, BATOP) as a THz emitter
illuminated by a femtosecond Ti:sapphire laser (Mai Tai, Spectra-
Physics) with a central wavelength of 800 nm and a repetition rate
of 80MHz. An electro-optic sampling method with a ZnTe crystal of
1-mm thickness was used to detect the transmitted THz signals in
the time domain. The THz-TDS system has a usable bandwidth of
0.1 to 2.0 THz. Because the signal from the THz antenna was linearly
polarized, the transmission amplitude for the linearly polarizedwaveswas
measured as txx, txy, tyx, and tyybyusing fourwire grid polarizers.Here, the
first subscript indicates the polarization (x or y) of the transmitted wave,
and the second subscript indicates the polarization of the incident wave.
From these transmission amplitudes calculated in a linear basis, the RCP
and LCP transmission amplitude, can be obtained as tRCP = {(txx+ tyy) +
i(txy + tyx)}/2 and tLCP = {(txx + tyy) − i(txy + tyx)}/2 (17).

Numerical modeling
Frequency-dependent material parameters (complex permittivity) of
gold and those of polyimide and ion gel at THz frequencies were exper-
imentally determined. The complex dielectric constants of gold for the
frequency range of interest (0.1 to 2.5 THz) can be fitted by using the
Drude model, with a plasma frequency of wp = 1.37 × 1016 rad/s and a
collision frequency of g = 4.07 × 1013 rad/s. The optical conductivity of
graphene in the THz regime can be calculated as a function of EF using
the Kubo formula, which comprises only intraband contributions

sintraðwÞ ¼ e2

pℏ2

i
wþ it�1

∫
∞

D dD 1þ D2

D2

� �
½ f ðD� EFÞ þ f Dþ EFÞ�ð

Here, f(D − EF) is the Fermi distribution function with Fermi energy EF,
G describes the broadening of the interband transitions, t is themomen-
tum relaxation time due to intraband carrier scattering, and D is a half-
bandgap energy from the tight-binding Hamiltonian near K points of
the Brillouin zone (48).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/9/e1701377/DC1
fig. S1. Characterization of single-layer graphene by Raman spectroscopy.
fig. S2. Electric field distribution.
fig. S3. Transmission phase spectra.
note S1. Temporal CMT for two ports and two resonances.
table S1. Fitting parameters of temporal CMT.
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